Municipal Wastewater: A Sustainable Source for the Green Microalgae Chlorella vulgaris Biomass Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microalgae Culture Preparation
2.2. Wastewater Collection
2.3. Experimental Design
2.4. Microalgae Growth Assessment
- NL—the biomass concentration at time L
- N0—the biomass concentration at time 0
- tL—is the moment time for the end of the period L
- t0—is the moment time for the start of the period 0
2.5. Determination of Physical and Chemical Parameters
2.6. Nutrient Analysis
2.7. Statistical Analysis
3. Results
3.1. Microalgae Growth
3.2. Physical and Chemical Parameters of Cultivation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Savage, C.; Thrush, S.F.; Lohrer, A.M.; Hewitt, J.E. Ecosystem services transcend boundaries: Estuaries provide resource subsidies and influence functional diversity in coastal benthic communities. PLoS ONE 2012, 7, e42708. [Google Scholar] [CrossRef]
- Luisetti, T.; Jackson, E.L.; Turner, R.K. Valuing the European ‘coastal blue carbon’ storage benefit. Mar. Pollut. Bull. 2013, 71, 101–106. [Google Scholar] [CrossRef]
- Beaumont, N.J.; Jones, L.; Garbutt, A.; Hansom, J.D.; Toberman, M. The value of carbon sequestration and storage in coastal habitats. Estuar. Coast. Shelf Sci. 2014, 137, 32–40. [Google Scholar] [CrossRef] [Green Version]
- Evans, M.A.; Scavia, D. Exploring estuarine eutrophication sensitivity to nutrient loading. Limnol. Oceanogr. 2013, 58, 569–578. [Google Scholar] [CrossRef] [Green Version]
- McLusky, D.S.; Elliott, M. The Estuarine Ecosystem: Ecology, Threats and Management, 3rd ed.; McLusky, D.S., Elliott, M., Eds.; Oxford University Press: Cambridge, UK, 2004; ISBN 9780198525080. [Google Scholar]
- Jonge, V.N.; Elliott, M.; Orive, E. Causes, Historical development, effects and future challenges of a common environmental problem: Eutrophication. Hydrobiologia 2002, 1, 475–476. [Google Scholar]
- Sun, J.; Wang, M.-H.; Ho, Y.-S. A historical review and bibliometric analysis of research on estuary pollution. Mar. Pollut. Bull. 2012, 64, 13–21. [Google Scholar] [CrossRef]
- EU Council Directive of 21 May 1991 concerning urban waste water treatment (91/271/EEC). Off. J. Eur. Commun. 1991, 31, 40.
- EU Comission Directive 98/15/EC of 27 February 1998 amending Council Directive 91/271/EEC with respect to certain requirements established in Annex I thereof. Off. J. Eur. Commun. 1998, 29, 41.
- Voulvoulis, N. Water reuse from a circular economy perspective and potential risks from an unregulated approach. Curr. Opin. Environ. Sci. Health 2018, 2, 32–45. [Google Scholar] [CrossRef]
- Russo, D. Estudo do Crescimento da Microalga Chlorella vulgaris Numa Água Residual Tratada, Sob Diferentes Condições de Fotoperíodo e Temperatura. Master’s Thesis, Energy and Bioenergy, University of Lisbon, Lisbon, Portugal, 2002. [Google Scholar]
- Smith, H.M.; Fantinel, F. Realising the circular economy in wastewater infrastructure—The role of governance. In Proceedings of the International Symposium for Next Generation Infrastructure, London, UK, 11–13 September 2017. [Google Scholar]
- EU Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. Off. J. Eur. Commun. 1998, 330, 44.
- Panepinto, D.; Fiore, S.; Genon, G.; Acri, M. Thermal valorization of sewer sludge: Perspectives for large wastewater treatment plants. J. Clean. Prod. 2016, 137, 1323–1329. [Google Scholar] [CrossRef]
- Rawat, I.; Gupta, S.K.; Singh, P.; Kumari, S. Microalgae applications in wastewater treatment. In Algae Biotechnology: Products and Processes; Green Energy and Technology; Bux, F., Chisti, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2016; ISBN 978-3-319-12333-2. [Google Scholar]
- Muñoz, R.; Köllner, C.; Guieysse, B.; Mattiasson, B. Salicylate biodegradation by various algal-bacterial consortia under photosynthetic oxygenation. Biotechnol. Lett. 2003, 25, 1905–1911. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Raouf, N.; Al-Homaidan, A.A.; Ibraheem, I.B.M. Microalgae and wastewater treatment. Saudi J. Biol. Sci. 2012, 19, 257–275. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Birru, R.; Sibi, G. Nutrient Removal Efficiencies of Chlorella vulgaris from urban wastewater for reduced eutrophication. J. Environ. Prot. (Irvine Calif) 2017, 8, 1. [Google Scholar] [CrossRef] [Green Version]
- García, D.; Posadas, E.; Blanco, S.; Acién, G.; García-Encina, P.; Bolado, S.; Muñoz, R. Evaluation of the dynamics of microalgae population structure and process performance during piggery wastewater treatment in algal-bacterial photobioreactors. Bioresour. Technol. 2018, 248, 120–126. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Min, M.; Li, Y.; Chen, P.; Chen, Y.; Liu, Y.; Wang, Y.; Ruan, R. Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl. Biochem. Biotechnol. 2010, 162, 1174–1186. [Google Scholar] [CrossRef] [PubMed]
- Barsanti, L.; Gualtieri, P. Algae: Anatomy, Biochemistry, and Biotechnology, 2nd ed.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2014; ISBN 9780429107184. [Google Scholar]
- Bajwa, K.; Bishnoi, N.R.; Kirrolia, A.; Sharma, J.; Gupta, S. Comparison of various growth media composition for physio-biochemical parameters of biodiesel producing microalgal species (Chlorococcum aquaticum, Scenedesmus obliquus, Nannochloropsis oculata and Chlorella pyrenoidosa). Eur. J. Biotechnol. Biosci. 2017, 5, 27–31. [Google Scholar]
- Barata, A. Microalgas: Produção Económica e Ambientalmente Sustentável. Microalgas: Produção Económica e Ambientalmente Sustentável. Master’s Thesis, Energy and Environmental Engeneering, University of Lisbon, Lisbon, Portugal, 2016. [Google Scholar]
- Gouveia, L. Microalgae as a Feedstock for Biofuels; Springer: Berlin/Heidelberg, Germany, 2011; ISBN 978-3-642-17996-9. [Google Scholar]
- Daliry, S.; Hallajisani, A.; Roshandeh, J.M.; Nouri, H.; Golzary, A. Investigation of optimal condition for Chlorella vulgaris microalgae growth. Glob. J. Environ. Sci. Manag. 2017, 3, 217–230. [Google Scholar] [CrossRef]
- Mata, T.M.; Martins, A.A.; Caetano, N.S. Microalgae for biodiesel production and other applications: A review. Renew. Sustain. Energy Rev. 2010, 14, 217–232. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Zhang, W.; Chen, L.; Wang, J.; Liu, T. The contamination and control of biological pollutants in mass cultivation of microalgae. Bioresour. Technol. 2013, 128, 745–750. [Google Scholar] [CrossRef]
- Satyanarayana, K.G.; Mariano, A.B.; Vargas, J.V.C. A review on microalgae, a versatile source for sustainable energy and materials. Int. J. Energy Res. 2011, 35, 291–311. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, L.; Liu, Z.; Martin, G.; Sun, Z. Integration of waste valorization for sustainable production of chemicals and materials via algal cultivation. Top. Curr. Chem. 2017, 375, 89. [Google Scholar] [CrossRef]
- Nwoba, E.G.; Ayre, J.M.; Moheimani, N.R.; Ubi, B.E.; Ogbonna, J.C. Growth comparison of microalgae in tubular photobioreactor and open pond for treating anaerobic digestion piggery effluent. Algal Res. 2016, 17, 268–276. [Google Scholar] [CrossRef] [Green Version]
- Eriksen, N.T.; Geest, T.; Iversen, J.J.L. Phototrophic growth in the lumostat: A photo-bioreactor with on-line optimization of light intensity. J. Appl. Phycol. 1996, 8, 345–352. [Google Scholar] [CrossRef]
- Sforza, E.; Enzo, M.; Bertucco, A. Design of microalgal biomass production in a continuous photobioreactor: An integrated experimental and modeling approach. Chem. Eng. Res. Des. 2014, 92, 1153–1162. [Google Scholar] [CrossRef]
- Ho, S.-H.; Ye, X.; Hasunuma, T.; Chang, J.-S.; Kondo, A. Perspectives on engineering strategies for improving biofuel production from microalgae—A critical review. Biotechnol. Adv. 2014, 32, 1448–1459. [Google Scholar] [CrossRef]
- Fazal, T.; Mushtaq, A.; Rehman, F.; Ullah Khan, A.; Rashid, N.; Farooq, W.; Rehman, M.S.U.; Xu, J. Bioremediation of textile wastewater and successive biodiesel production using microalgae. Renew. Sustain. Energy Rev. 2018, 82, 3107–3126. [Google Scholar] [CrossRef]
- Enamala, M.K.; Enamala, S.; Chavali, M.; Donepudi, J.; Yadavalli, R.; Kolapalli, B.; Aradhyula, T.V.; Velpuri, J.; Kuppam, C. Production of biofuels from microalgae—A review on cultivation, harvesting, lipid extraction, and numerous applications of microalgae. Renew. Sustain. Energy Rev. 2018, 94, 49–68. [Google Scholar] [CrossRef]
- Nur, M.M.A.; Buma, A.G.J. Opportunities and challenges of microalgal cultivation on wastewater, with special focus on palm oil mill effluent and the production of high value compounds. Waste Biomass Valorization 2019, 10, 2079–2097. [Google Scholar] [CrossRef] [Green Version]
- Perez-Garcia, O.; Bashan, Y. Microalgal heterotrophic and mixotrophic culturing for bio-refining: From metabolic routes to techno-economics. In Algal Biorefineries; Prokop, A., Bajpai, K.R., Zappi, M., Eds.; Springer International Publishing: Cham, Switherland, 2015; pp. 61–131. [Google Scholar]
- Kang, R.; Wang, J.; Shi, D.; Cong, W.; Cai, Z.; Ouyang, F. Interactions between organic and inorganic carbon sources during mixotrophic cultivation of Synechococcus sp. Biotechnol. Lett. 2004, 26, 1429–1432. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.; Qiu, S.; Tremblay, D.; Viner, K.; Champagne, P.; Jessop, P.G. Centrate wastewater treatment with Chlorella vulgaris: Simultaneous enhancement of nutrient removal, biomass and lipid production. Chem. Eng. J. 2018, 342, 310–320. [Google Scholar] [CrossRef]
- Alaa, P.; Mohammed, K.; Fareed, I. Treatment using locally isolated Chlorella vulgaris in wastewater treatment. In Proceedings of the 2nd Conference on Environment and Sustainable Development, Yunnan, China, 26–28 August 2016; Volume 34. [Google Scholar]
- Park, K.C.; Whitney, C.G.E.; Kozera, C.; O’Leary, S.J.B.; McGinn, P.J. Seasonal isolation of microalgae from municipal wastewater for remediation and biofuel applications. J. Appl. Microbiol. 2015, 119, 76–87. [Google Scholar] [CrossRef]
- Guiry, M.D.; Guiry, G.M. AlgaeBase. World-Wide Electronic Publication, National University of Ireland, Galway. Available online: https://www.algaebase.org/search/species/detail/?species_id=27676 (accessed on 11 January 2021).
- Allaguvatova, R.; Myasina, Y.; Zakharenko, V.; Gaysina, L. A simple method for the cultivation of algae Chlorella vulgaris Bejerinck. IOP Conf. Ser. Earth Environ. Sci. 2019, 390, 012020. [Google Scholar] [CrossRef]
- Johar Gunawan, T.; Ikhwan, Y.; Restuhadi, F.; Pato, U. Effect of light Intensity and photoperiod on growth of Chlorella pyrenoidosa and CO2 Biofixation. E3S Web Conf. 2018, 31, 03003. [Google Scholar] [CrossRef] [Green Version]
- Chojnacka, K.; Marquez-Rocha, F. Kinetic and stoichiometric relationships of the energy and carbon metabolism in the culture of microalgae. Biotechnology 2004, 3, 21–34. [Google Scholar] [CrossRef] [Green Version]
- Lari, Z.; Moradi-kheibari, N.; Ahmadzadeh, H.; Abrishamchi, P.; Moheimani, N.R.; Murry, M.A. Bioprocess engineering of microalgae to optimize lipid production through nutrient management. J. Appl. Phycol. 2016, 28, 3235–3250. [Google Scholar] [CrossRef]
- Khalil, Z.I.; Asker, M.M.S.; El-Sayed, S.; Kobbia, I.A. Effect of pH on growth and biochemical responses of Dunaliella bardawil and Chlorella ellipsoidea. World J. Microbiol. Biotechnol. 2010, 26, 1225–1231. [Google Scholar] [CrossRef]
- Tanadul, O.; VanderGheynst, J.S.; Beckles, D.M.; Powell, A.L.T.; Labavitch, J.M. The impact of elevated CO2 concentration on the quality of algal starch as a potential biofuel feedstock. Biotechnol. Bioeng. 2014, 111, 1323–1331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gim, G.H.; Ryu, J.; Kim, M.J.; Kim, P.I.; Kim, S.W. Effects of carbon source and light intensity on the growth and total lipid production of three microalgae under different culture conditions. J. Ind. Microbiol. Biotechnol. 2016, 43, 605–616. [Google Scholar] [CrossRef]
- Ratha, S.K.; Babu, S.; Renuka, N.; Prasanna, R.; Prasad, R.B.N.; Saxena, A.K. Exploring nutritional modes of cultivation for enhancing lipid accumulation in microalgae. J. Basic Microbiol. 2013, 53, 440–450. [Google Scholar] [CrossRef]
- Wang, J.; Yang, H.; Wang, F. Mixotrophic cultivation of microalgae for biodiesel production: Status and prospects. Appl. Biochem. Biotechnol. 2014, 172, 3307–3329. [Google Scholar] [CrossRef] [PubMed]
- Xia, A.; Jacob, A.; Tabassum, M.R.; Herrmann, C.; Murphy, J.D. Production of hydrogen, ethanol and volatile fatty acids through co-fermentation of macro- and micro-algae. Bioresour. Technol. 2016, 205, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Begum, H.; Yusoff, F.M.; Banerjee, S.; Khatoon, H.; Shariff, M. Availability and utilization of pigments from microalgae. Crit. Rev. Food Sci. Nutr. 2016, 56, 2209–2222. [Google Scholar] [CrossRef]
- Ferruzzi, M.G.; Blakeslee, J. Digestion, absorption, and cancer preventative activity of dietary chlorophyll derivatives. Nutr. Res. 2007, 27, 1–12. [Google Scholar] [CrossRef]
- Janarthanan, M.; Senthil Kumar, M. The properties of bioactive substances obtained from seaweeds and their applications in textile industries. J. Ind. Text. 2018, 48, 361–401. [Google Scholar] [CrossRef]
- Spolaore, P.; Joannis-Cassan, C.; Duran, E.; Isambert, A. Commercial applications of microalgae. J. Biosci. Bioeng. 2006, 101, 87–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaaban, M.M. Green microalgae water extract as foliar feeding to wheat plants. Pakistan J. Biol. Sci. 2001, 4, 628–632. [Google Scholar] [CrossRef] [Green Version]
- Ambati, R.; Phang, S.-M.; Ravi, S.; Aswathanarayana, R. Astaxanthin: Sources, extraction, stability, biological activities and its commercial applications—A Review. Mar. Drugs 2014, 12, 128–152. [Google Scholar] [CrossRef]
- Sakarika, M.; Kornaros, M. Chlorella vulgaris as a green biofuel factory: Comparison between biodiesel, biogas and combustible biomass production. Bioresour. Technol. 2019, 273, 237–243. [Google Scholar] [CrossRef]
- Ghimire, A.; Kumar, G.; Sivagurunathan, P.; Shobana, S.; Saratale, G.D.; Kim, H.W.; Luongo, V.; Esposito, G.; Munoz, R. Bio-hythane production from microalgae biomass: Key challenges and potential opportunities for algal bio-refineries. Bioresour. Technol. 2017, 241, 525–536. [Google Scholar] [CrossRef]
- Škaloud, P. Culture Collection of Algae of Charles University in Prague. Available online: https://botany.natur.cuni.cz/algo/caup-media.html (accessed on 14 January 2021).
- Andersen, R.A. Algal Culturing Techniques: A Book for all Phycologists, 1st ed.; Andersen, R.A., Ed.; Elsevier Academic Press: New York, NY, USA, 2005; ISBN 9780080456508. [Google Scholar]
- Almomani, F.A.; Örmeci, B. Performance of Chlorella vulgaris, Neochloris oleoabundans, and mixed indigenous microalgae for treatment of primary effluent, secondary effluent and centrate. Ecol. Eng. 2016, 95, 280–289. [Google Scholar] [CrossRef]
- OECD. Test. No. 201: Freshwater Alga and Cyanobacteria, Growth Inhibition Test, OECD Guidelines for the Testing of Chemicals, Section 2; OECD Publishing: Paris, France, 2011.
- Znad, H.; Al Ketife, A.M.D.; Judd, S.; AlMomani, F.; Vuthaluru, H.B. Bioremediation and nutrient removal from wastewater by Chlorella vulgaris. Ecol. Eng. 2018, 110, 1–7. [Google Scholar] [CrossRef]
- Lau, P.S.; Tam, N.F.Y.; Wong, Y.S. Effect of algal density on nutrient removal from primary settled wastewater. Environ. Pollut. 1995, 89, 59–66. [Google Scholar] [CrossRef]
- Sharma, R.; Singh, G.P.A.L.; Vijendra, K. Comparison of different media formulations on growth, morphology and chlorophyll content of green alga, Chlorella vulgaris. Int. J. Pharma Bio Sci. 2011, 2, 509–516. [Google Scholar]
- Sydney, E.B.; da Silva, T.E.; Tokarski, A.; Novak, A.C.; de Carvalho, J.C.; Woiciecohwski, A.L.; Larroche, C.; Soccol, C.R. Screening of microalgae with potential for biodiesel production and nutrient removal from treated domestic sewage. Appl. Energy 2011, 88, 3291–3294. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Bhatnagar, M.; Chinnasamy, S.; Das, K.C. Chlorella minutissima—A promising fuel alga for cultivation in municipal wastewaters. Appl. Biochem. Biotechnol. 2010, 161, 523–536. [Google Scholar] [CrossRef]
- Li, Y.; Chen, M. Novel chlorophylls and new directions in photosynthesis research. Funct. Plant. Biol. 2015, 42, 493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jurić, S.; Jurić, M.; Król-Kilińska, Ż.; Vlahoviček-Kahlina, K.; Vinceković, M.; Dragović-Uzelac, V.; Donsì, F. Sources, stability, encapsulation and application of natural pigments in foods. Food Rev. Int. 2020, 1–56. [Google Scholar] [CrossRef]
- Raja, R.; Coelho, A.; Hemaiswarya, S.; Kumar, P.; Carvalho, I.S.; Alagarsamy, A. Applications of microalgal paste and powder as food and feed: An update using text mining tool. Beni-Suef Univ. J. Basic Appl. Sci. 2018, 7, 740–747. [Google Scholar] [CrossRef]
- Yaakob, Z.; Ali, E.; Zainal, A.; Mohamad, M.; Takriff, M. An overview: Biomolecules from microalgae for animal feed and aquaculture. J. Biol. Res. 2014, 21, 6. [Google Scholar] [CrossRef] [Green Version]
- Moura, Y.A.S.; de Viana-Marques, D.A.; Porto, A.L.F.; Bezerra, R.P.; Converti, A. Pigments production, growth kinetics, and bioenergetic patterns in Dunaliella tertiolecta (Chlorophyta) in response to different culture media. Energies 2020, 13, 5347. [Google Scholar] [CrossRef]
- Fakhri, M.; Arifin, N.B.; Hariati, A.M.; Yuniarti, A. Growth, biomass, and chlorophyll-a and carotenoid content of Nannochloropsis sp. strain BJ17 under different light intensities. J. Akuakultur Indones. 2017, 16, 15. [Google Scholar] [CrossRef] [Green Version]
- Benavente-Valdés, J.R.; Aguilar, C.; Contreras-Esquivel, J.C.; Méndez-Zavala, A.; Montañez, J. Strategies to enhance the production of photosynthetic pigments and lipids in chlorophycae species. Biotechnol. Rep. 2016, 10, 117–125. [Google Scholar] [CrossRef] [Green Version]
- Alketife, A.M.; Judd, S.; Znad, H. Synergistic effects and optimization of nitrogen and phosphorus concentrations on the growth and nutrient uptake of a freshwater Chlorella vulgaris. Environ. Technol. 2017, 38, 94–102. [Google Scholar] [CrossRef]
- Mata, T.M.; Almeida, R.; Caetano, N.S. Effect of the culture nutrients on the biomass and lipid productivities of microalgae Dunaliella tertiolecta. Chem. Eng. Trans. 2013, 32, 973–978. [Google Scholar] [CrossRef]
- Lourenço, S.O.; Barbarino, E.; Marquez, U.M.L.; Aidar, E. Distribution of intracellular nitrogen in marine microalgae: Basis for the calculation of specific nitrogen-to-protein conversion factors. J. Phycol. 2002, 34, 798–811. [Google Scholar] [CrossRef]
- da Silva Ferreira, V.; Sant’Anna, C. Impact of culture conditions on the chlorophyll content of microalgae for biotechnological applications. World J. Microbiol. Biotechnol. 2017, 33, 20. [Google Scholar] [CrossRef] [PubMed]
- Jerez, C.G.; Malapascua, J.R.; Sergejevová, M.; Figueroa, F.L.; Masojídek, J. Effect of nutrient starvation under high irradiance on lipid and starch accumulation in Chlorella fusca (Chlorophyta). Mar. Biotechnol. 2016, 18, 24–36. [Google Scholar] [CrossRef]
- Richmond, A. Handbook of Microalgal Culture: Biotechnology and Applied Phycology; Richmond, A., Ed.; Wiley-Blackwell: Ames, IA, USA, 2004. [Google Scholar]
- Liang, K.; Zhang, Q.; Gu, M.; Cong, W. Effect of phosphorus on lipid accumulation in freshwater microalga Chlorella sp. J. Appl. Phycol. 2013, 25, 311–318. [Google Scholar] [CrossRef]
- Manhaeghe, D.; Blomme, T.; Van Hulle, S.W.H.; Rousseau, D.P.L. Experimental assessment and mathematical modelling of the growth of Chlorella vulgaris under photoautotrophic, heterotrophic and mixotrophic conditions. Water Res. 2020, 184, 116152. [Google Scholar] [CrossRef] [PubMed]
- EPA. Wastewater Treatment Fact. Sheet: External Carbon Sources for Nitrogen Removal; Environmental Protection Agency Office of Wastewater Management: Washington, DC, USA, 2013.
- Kim, S.; Lee, Y.; Hwang, S.-J. Removal of nitrogen and phosphorus by Chlorella sorokiniana cultured heterotrophically in ammonia and nitrate. Int. Biodeterior. Biodegrad. 2013, 85, 511–516. [Google Scholar] [CrossRef]
- Lin, W.; Li, P.; Liao, Z.; Luo, J. Detoxification of ammonium to Nannochloropsis oculata and enhancement of lipid production by mixotrophic growth with acetate. Bioresour. Technol. 2017, 227, 404–407. [Google Scholar] [CrossRef]
- Lu, Q.; Chen, P.; Addy, M.; Zhang, R.; Deng, X.; Ma, Y.; Cheng, Y.; Hussain, F.; Chen, C.; Liu, Y.; et al. Carbon-dependent alleviation of ammonia toxicity for algae cultivation and associated mechanisms exploration. Bioresour. Technol. 2018, 249, 99–107. [Google Scholar] [CrossRef]
- Beuckels, A.; Smolders, E.; Muylaert, K. Nitrogen availability influences phosphorus removal in microalgae-based wastewater treatment. Water Res. 2015, 77, 98–106. [Google Scholar] [CrossRef]
- Singh, N.; Dhar, D. Nitrogen and phosphorous scavenging potential in microalgae. Indian J. Biotechnol. 2007, 6, 52–56. [Google Scholar]
- Gao, F.; Yang, Z.; Li, C.; Zeng, G.; Ma, D.; Zhou, L. A novel algal biofilm membrane photobioreactor for attached microalgae growth and nutrients removal from secondary effluent. Bioresour. Technol. 2015, 179, 8–12. [Google Scholar] [CrossRef]
- Gonzalez, L.E.; Bashan, Y. Increased growth of the microalga Chlorella vulgaris when coimmobilized and cocultured in alginate beads with the plant-growth-promoting bacterium Azospirillum brasilense. Appl. Environ. Microbiol. 2000, 66, 1527–1531. [Google Scholar] [CrossRef] [Green Version]
- Song, D.; Fu, J.; Shi, D. Exploitation of oil-bearing microalgae for biodiesel. Chin. J. Biotechnol. 2008, 24, 341–348. [Google Scholar] [CrossRef]
- Pires, J.C.M.; Alvim-Ferraz, M.C.M.; Martins, F.G.; Simões, M. Wastewater treatment to enhance the economic viability of microalgae culture. Environ. Sci. Pollut. Res. 2013, 20, 5096–5105. [Google Scholar] [CrossRef] [PubMed]
- Ángeles, R.; Rodero, R.; Carvajal, A.; Muñoz, R.; Lebrero, R. Potential of microalgae for wastewater treatment and its valorization into added value products. In Application of Microalgae in Wastewater Treatment; Gupta, S., Bux, F., Eds.; Springer International Publishing: Cham, Switzerland, 2019; Volume 4, pp. 281–315. [Google Scholar]
- Martínez-Herrera, R.E.; Alemán-Huerta, M.E.; Almaguer-Cantú, V.; Rosas-Flores, W.; Martínez-Gómez, V.J.; Quintero-Zapata, I.; Rivera, G.; Rutiaga-Quiñones, O.M. Efficient recovery of thermostable polyhydroxybutyrate (PHB) by a rapid and solvent-free extraction protocol assisted by ultrasound. Int. J. Biol. Macromol. 2020, 164, 771–782. [Google Scholar] [CrossRef]
- Ang, S.L.; Sivashankari, R.; Shaharuddin, B.; Chuah, J.-A.; Tsuge, T.; Abe, H.; Sudesh, K. Potential applications of polyhydroxyalkanoates as a biomaterial for the aging population. Polym. Degrad. Stab. 2020, 181, 109371. [Google Scholar] [CrossRef]
- Krishnan, S.; Chinnadurai, G.S.; Ravishankar, K.; Raghavachari, D.; Perumal, P. Statistical augmentation of polyhydroxybutyrate production by Isoptericola variabilis: Characterization, moulding, in vitro cytocompatibility and biodegradability evaluation. Int. J. Biol. Macromol. 2021, 166, 80–97. [Google Scholar] [CrossRef] [PubMed]
- Faheed, F.A. Effect of Chlorella vulgaris as bio-fertilizer on growth parameters and metabolic aspects of lettuce plant. J. Agric. Soc. Sci 2008, 4, 1813–2235. [Google Scholar]
- Jamal Uddin, A.F.M.; Rakibuzzaman, M.; Wasin, E.W.N.; Husna, M.A.; Mahato, A.K. Foliar application of Spirulina and Oscillatoria on growth and yield of okra as bio-fertilizer. J. Biosci. Agric. Res. 2019, 22, 1840–1844. [Google Scholar] [CrossRef]
- Ronga, D.; Biazzi, E.; Parati, K.; Carminati, D.; Carminati, E.; Tava, A. Microalgal biostimulants and biofertilisers in crop productions. Agronomy 2019, 9, 192. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Gonzalez, J.; Sommerfeld, M. Biofertilizer and biostimulant properties of the microalga Acutodesmus dimorphus. J. Appl. Phycol. 2016, 28, 1051–1061. [Google Scholar] [CrossRef] [Green Version]
- Kube, M.; Mohseni, A.; Fan, L.; Roddick, F. Energy and nutrient recovery by treating wastewater with fluidised-beds of immobilised algae. J. Water Process. Eng. 2020, 38, 101585. [Google Scholar] [CrossRef]
- Fernandes, F.; Silkina, A.; Fuentes-Grünewald, C.; Wood, E.E.; Ndovela, V.L.S.; Oatley-Radcliffe, D.L.; Lovitt, R.W.; Llewellyn, C.A. Valorising nutrient-rich digestate: Dilution, settlement and membrane filtration processing for optimisation as a waste-based media for microalgal cultivation. Waste Manag. 2020, 118, 197–208. [Google Scholar] [CrossRef]
- Al dayel, M.F.; El Semary, N.A.; Al Amer, K.; Al Ali, K.M. Investigating the applications of Chlorella vulgaris in agriculture and nanosilver production. J. Environ. Biol. 2020, 41, 1099–1104. [Google Scholar] [CrossRef]
- Yadavalli, R.; Rao, C.S.; Rao, R.S.; Potumarthi, R. Dairy effluent treatment and lipids production by Chlorella pyrenoidosa and Euglena gracilis: Study on open and closed systems. Asia Pacific J. Chem. Eng. 2014, 9, 368–373. [Google Scholar] [CrossRef]
- Dineshkumar, R.; Subramanian, J.; Gopalsamy, J.; Jayasingam, P.; Arumugam, A.; Kannadasan, S.; Sampathkumar, P. The impact of using microalgae as biofertilizer in maize (Zea mays L.). Waste Biomass Valorization 2019, 10, 1101–1110. [Google Scholar] [CrossRef]
- Saratale, R.G.; Kuppam, C.; Mudhoo, A.; Saratale, G.D.; Periyasamy, S.; Zhen, G.; Koók, L.; Bakonyi, P.; Nemestóthy, N.; Kumar, G. Bioelectrochemical systems using microalgae—A concise research update. Chemosphere 2017, 177, 35–43. [Google Scholar] [CrossRef]
- Ganesh Saratale, R.; Kumar, G.; Banu, R.; Xia, A.; Periyasamy, S.; Dattatraya Saratale, G. A critical review on anaerobic digestion of microalgae and macroalgae and co-digestion of biomass for enhanced methane generation. Bioresour. Technol. 2018, 262, 319–332. [Google Scholar] [CrossRef]
- Gupta, P.L.; Choi, H.-J.; Pawar, R.R.; Jung, S.P.; Lee, S.-M. Enhanced biomass production through optimization of carbon source and utilization of wastewater as a nutrient source. J. Environ. Manag. 2016, 184, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Yang, I.-S.; Salama, E.-S.; Kim, J.-O.; Govindwar, S.P.; Kurade, M.B.; Lee, M.; Roh, H.-S.; Jeon, B.-H. Cultivation and harvesting of microalgae in photobioreactor for biodiesel production and simultaneous nutrient removal. Energy Convers. Manag. 2016, 117, 54–62. [Google Scholar] [CrossRef]
- Ryu, B.-G.; Kim, J.; Farooq, W.; Han, J.-I.; Yang, J.-W.; Kim, W. Algal–bacterial process for the simultaneous detoxification of thiocyanate-containing wastewater and maximized lipid production under photoautotrophic/photoheterotrophic conditions. Bioresour. Technol. 2014, 162, 70–79. [Google Scholar] [CrossRef]
- Deviram, G.; Mathimani, T.; Anto, S.; Ahamed, T.S.; Ananth, D.A.; Pugazhendhi, A. Applications of microalgal and cyanobacterial biomass on a way to safe, cleaner and a sustainable environment. J. Clean. Prod. 2020, 253, 119770. [Google Scholar] [CrossRef]
- Ayala-Parra, P.; Liu, Y.; Field, J.A.; Sierra-Alvarez, R. Nutrient recovery and biogas generation from the anaerobic digestion of waste biomass from algal biofuel production. Renew. Energy 2017, 108, 410–416. [Google Scholar] [CrossRef]
- Calicioglu, O.; Demirer, G.N. Integrated nutrient removal and biogas production by Chlorella vulgaris cultures. J. Renew. Sustain. Energy 2015, 7, 033123. [Google Scholar] [CrossRef]
Chemical Compound | Concentration (g/ L) |
---|---|
NaNO3 | 0.25 |
MgSO4·7H2O | 0.075 |
NaCl | 0.025 |
K2HPO4 | 0.075 |
KH2PO4 | 0.175 |
CaCl2·2H2O | 0.025 |
ZnSO4·7H2O | 0.00882 |
MnCl2·4H2O | 0.00144 |
(NH4)6Mo7O24 · 4H2O | 0.00176 |
CuSO4·5H2O | 0.00157 |
Co(NO3)2·6H2O | 0.00049 |
H3BO3 | 0.01142 |
EDTA | 0.05 |
KOH | 0.031 |
FeSO4·7H2O | 0.00498 |
H2SO4 | 0.001 |
Typology | Method |
---|---|
Inoculum size | 1.28 × 105 cells/ mL |
Operation mode | Batch |
Temperature | 25 ± 3 °C |
Light | White fluorescent |
Light Intensity | 5 klux |
Photoperiod | 16 h day; 8 h night |
Working volume | 250 mL |
Aeration | Continuous |
Agitation | Mechanically, daily |
Aeration rate | 0.05 L/ min |
N-NH3 (mg/ L) | Total P (mg/ L) | |||||
---|---|---|---|---|---|---|
Time (Days) | Control | 50% SE | 100% SE | Control | 50% SE | 100% SE |
0 | 0.12 ± 0.09 | 0.05 ± 0.00 | 0.04 a | 52.23 ± 1.57 | 32.62 ± 4.99 * | 18.68 ± 8.57 * |
2 | 0.12 ± 0.04 | 0.08 ± 0.02 | 0.19 ± 0.04 | 51.33 ± 2.74 | 27.34 ± 5.34 * | 0.97 ± 0.31 * |
4 | 0.15 ± 0.02 | 0.11 ± 0.02 | 0.2 ± 0.07 | 46.5 ± 1.76 | 20.09 ± 1.75 * | 1.16 ± 0.11 * |
6 | 0.171 a | 0.22 ± 0.03 | 0.2 ± 0.03 | 43.76 ± 4.25 | 19.44 ± 7.63 * | 1.06 ± 0.35 * |
8 | 0.28 ± 0.01 | 0.27 ± 0.02 | 0.15 ± 0.02 | 49.7 ± 4.59 | 15.03 ± 0.92 * | 1.82 ± 0.28 * |
10 | 0.28 ± 0.06 | 0.26 ± 0.04 | 0.26 ± 0.04 | 52.5 ± 5.66 | 17.23 ± 2.67 * | 1.68 ± 0.47 * |
12 | 0.48 ± 0.18 | 0.26 ± 0.02 | 0.66 ± 0.41 | 52.64 ± 5.18 | 17.81 ± 0.34 * | 0.97 ± 0.17 * |
N-NH3 (mg/ L) | Total N (mg/ L) | Total P (mg/ L) | |||||||
---|---|---|---|---|---|---|---|---|---|
Time (Days) | Control | 50% SR | 100% SR | Control | 50% SR | 100% SR | Control | 50% SR | 100% SR |
0 | 0.01 a | 22.62 ± 1.53 * | 28.14 ± 1.88 * | 15.13 ± 2.35 | 76.49 ± 21.36 * | 22.95 ± 1.80 | 59.86 ± 7.54 | 47.94 ± 3.39 | 17.11 ± 0.84 * |
2 | 0.34 ± 0.02 | 11.62 ± 1.76 | 21.42 ± 4.23 * | 11.72 ± 1.03 | 48.36 ± 3.52 * | 21.92 ± 4.16 | 53.29 ± 5.55 | 53.09 ± 2.57 | 12.24 ± 1.38 * |
4 | 0.06 ± 0.02 | 2.86 ± 1.06 | 16.91 ± 3.13 * | 13.57 ± 2.63 | 31.45 ± 1.88 * | 16.52 ± 2.08 | 41.06 ± 10.15 | 43.3 ± 2.33 | 18.58 ± 0.34 * |
6 | 1.46 ± 0.54 | 5.51 ± 3.69 | 12.05 ± 4.07 | 13.31 ± 2.21 | 27.35 ± 6.14 | 15.07 ± 2.85 | 65.65 ± 9.92 | 42.54 ± 3.86 * | 31.36 ± 4.11 * |
8 | 1.28 ± 0.97 | n.a. | 2.43 ± 0.75 | 8.17 ± 1.24 | n.a. | 10.09 ± 0.33 | 44.82 ± 11.61 | n.a. | 20.44 ± 4.07 * |
10 | 1.72 ± 0.35 | 4.42 ± 3.15 | 2.03 ± 0.48 | 8.84 ± 1.40 | 24.26 ± 2.36 | 9.26 ± 1.03 | 51.08 ± 0.87 | 42.18 ± 0.45 | 21.77 ± 0.84 * |
12 | 2.28 ± 0.37 | 4.82 ± 1.72 | 1.39 ± 0.27 | 7.24 ± 1.63 | 19.97 ± 4.05 | 7.82 ± 1.86 | 50.44 ± 13.40 | 32.97 ± 2.90 * | 20.21 ± 1.42 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pacheco, D.; Rocha, A.C.S.; Garcia, A.; Bóia, A.; Pereira, L.; Verdelhos, T. Municipal Wastewater: A Sustainable Source for the Green Microalgae Chlorella vulgaris Biomass Production. Appl. Sci. 2021, 11, 2207. https://doi.org/10.3390/app11052207
Pacheco D, Rocha ACS, Garcia A, Bóia A, Pereira L, Verdelhos T. Municipal Wastewater: A Sustainable Source for the Green Microalgae Chlorella vulgaris Biomass Production. Applied Sciences. 2021; 11(5):2207. https://doi.org/10.3390/app11052207
Chicago/Turabian StylePacheco, Diana, A. Cristina S. Rocha, Analie Garcia, Ana Bóia, Leonel Pereira, and Tiago Verdelhos. 2021. "Municipal Wastewater: A Sustainable Source for the Green Microalgae Chlorella vulgaris Biomass Production" Applied Sciences 11, no. 5: 2207. https://doi.org/10.3390/app11052207
APA StylePacheco, D., Rocha, A. C. S., Garcia, A., Bóia, A., Pereira, L., & Verdelhos, T. (2021). Municipal Wastewater: A Sustainable Source for the Green Microalgae Chlorella vulgaris Biomass Production. Applied Sciences, 11(5), 2207. https://doi.org/10.3390/app11052207