Effect of Shrinking and No Shrinking Dentine and Enamel Replacing Materials in Posterior Restoration: A 3D-FEA Study
Abstract
:1. Introduction
2. Materials and Methods
Numerical Simulation
3. Results
4. Discussion
5. Conclusions
- Class I and class II posterior cavities adhesively restored with shrinking filling material’s combination showed the most unfavorable stress concentrations in replacing dentine and enamel tissues;
- In these same posterior adhesive restorations, residual lower shrinkage stress and occlusal loading stress magnitude were detected when combining non-shrinking filling material with bulk filling composite;
- Multilayer technique confirmed to be an adequate restorative option in posterior adhesive restorations when deep dentin and enamel volumes were missing.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yadav, R.; Kumar, M. Dental restorative composite materials: A review. J. Oral Biosci. 2019, 61, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Khosravani, M.R. Mechanical behavior of restorative dental composites under various loading conditions. J. Mech. Behav. Biomed. Mater. 2019, 93, 151–157. [Google Scholar] [CrossRef]
- Borgia, E.; Baron, R.; Borgia, J.L. Quality and Survival of Direct Light-Activated Composite Resin Restorations in Posterior Teeth: A 5- to 20-Year Retrospective Longitudinal Study. J. Prosthodont. 2019, 28, e195–e203. [Google Scholar] [CrossRef] [Green Version]
- Treglia, A.S.; Turco, S.; Ulianich, L.; Ausiello, P.; Lofrumento, D.D.; Nicolardi, G.; Miele, C.; Garbi, C.; Beguinot, F.; di Jeso, B. Cell fate following ER stress: Just a matter of quo ante recovery or death? Histol. Histopathol. 2012, 27, 1–12. [Google Scholar]
- Weimann, D.; Morgenthal, A.; Schwendicke, F.; Fleck, C.; Razi, H. Substantial regional differences in the biomechanical behavior of molar treated with selective caries tissue removal technique: A finite element study. Dent. Mater. 2020, S0109-5641, 30328–30336. [Google Scholar] [CrossRef]
- Davidson, C.L.; Feilzer, A.J. Polymerization shrinkage and polymerization shrinkage stress in polymer-based restoratives. J. Dent. 1997, 25, 435–440. [Google Scholar] [CrossRef]
- Schneider, L.F.J.; Cavalcante, L.M.; Silikas, N. Shrinkage stresses generated during resin-composite applications: A review. J. Dent. Biomech. 2010, 2010, 131630. [Google Scholar] [CrossRef] [PubMed]
- Apicella, A.; Di Palma, L.; Aversa, R.; Ausiello, P. DSC kinetic characterization of dental composites using different light sources. J. Adv. Mater. 2002, 34, 22–25. [Google Scholar]
- Watts, D.C.; Satterthwaite, J.D. Axial shrinkage-stress depends upon both C-factor and composite mass. Dent. Mater. 2008, 24, 1–8. [Google Scholar] [CrossRef]
- Ausiello, P.; Ciaramella, S.; De Benedictis, A.; Lanzotti, A.; Tribst, J.P.M.; Watts, D.C. The use of different adhesive filling material and mass combinations to restore class II cavities under loading and shrinkage effects: A 3D-FEA. Comput. Methods Biomech. Biomed. Eng. 2020, 22, 1–11. [Google Scholar] [CrossRef]
- Jantarat, J.; Palamara, J.E.A.; Messer, H.H. An investigation of cuspal deformation and delayed recovery after occlusal loading. J. Dent. 2001, 29, 363–370. [Google Scholar] [CrossRef]
- Fu, J.; Aregawi, W.A.; Fok, A.S.L. Mechanical manifestation of the C-factor in relation to photopolymerization of dental resin composites. Dent. Mater. 2020, 36, 1108–1114. [Google Scholar] [CrossRef]
- Ausiello, P.; Apicella, A.; Davidson, C.L. Effect of adhesive layer properties on stress distribution in composite restorations—A 3D finite element analysis. Dent. Mater. 2002, 18, 295–303. [Google Scholar] [CrossRef]
- Al Sunbul, H.; Silikas, N.; Watts, D.C. Polymerization shrinkage kinetics and shrinkage-stress in dental resin-composites. Dent. Mater. 2016, 32, 998–1006. [Google Scholar] [CrossRef] [Green Version]
- Frankenberger, R.; Reinelt, C.; Glatthöfer, C.; Krämer, N. Clinical performance and SEM marginal quality of extended posterior resin composite restorations after 12 years. Dent. Mater. 2020, 36, e217–e228. [Google Scholar] [CrossRef]
- Baroudi, K.; Rodrigues, J.C. Flowable resin composites: A systematic review and clinical considerations. J. Clin. Diagn. Res. 2015, 9, ZE18–ZE24. [Google Scholar] [CrossRef]
- Boruziniat, A.; Gharaee, S.; Sarraf Shirazi, A.; Majidinia, S.; Vatanpour, M. Evaluation of the efficacy of flowable composite as lining material on microleakage of composite resin restorations: A systematic review and meta-analysis. Quintessence Int. 2016, 47, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Martorelli, M.; Ausiello, P. A novel approach for a complete 3D tooth reconstruction using only 3D crown data. Int. J. Interact. Design Manuf. 2013, 7, 125–135. [Google Scholar] [CrossRef]
- Ausiello, P.; Ciaramella, S.; Garcia-Godoy, F.; Martorelli, M.; Sorrentino, R.; Gloria, A. Stress distribution of bulk-fill resin composite in class II restorations. Am. J. Dent. 2017, 30, 227–232. [Google Scholar] [PubMed]
- Anatavara, S.; Sitthiseripratip, K.; Senawongse, P. Stress relieving behaviour of flowable composite liners: A finite element analysis. Dent. Mater. J. 2016, 35, 369–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, S.H.; Park, S.H. Incremental and bulk-fill techniques with bulk-fill resin composite in different cavity configurations. Oper. Dent. 2018, 43, 631–641. [Google Scholar] [CrossRef] [PubMed]
- Correia, A.; Andrade, M.R.; Tribst, J.; Borges, A.; Caneppele, T. Influence of bulk-fill restoration on polymerization shrinkage stress and marginal gap formation in class V restorations. Oper. Dent. 2020, 45, E207–E216. [Google Scholar] [CrossRef]
- Rosatto, C.M.; Bicalho, A.A.; Veríssimo, C.; Bragança, G.F.; Rodrigues, M.P.; Tantbirojn, D.; Versluis, A.; Soares, C.J. Mechanical properties, shrinkage stress, cuspal strain and fracture resistance of molars restored with bulk-fill composites and incremental filling technique. J. Dent. 2015, 43, 1519–1528. [Google Scholar] [CrossRef]
- Ferracane, J.L.; Lawson, N.C. Probing the hierarchy of evidence to identify the best strategy for placing class II dental composite restorations using current materials. J. Esthet. Restor. Dent. 2020, 18. [Google Scholar] [CrossRef] [PubMed]
- Van Ende, A.; De Munck, J.; Lise, D.P.; Van Meerbeek, B. Bulk-Fill composites: A review of the current literature. J. Adhes. Dent. 2017, 19, 95–109. [Google Scholar] [CrossRef] [Green Version]
- Kaisarly, D.; Meierhofer, D.; Gezawi, M.; El Rösch, P.; Kunzelmann, K.H. Effects of flowable liners on the shrinkage vectors of bulk-fill composites. Clin. Oral Investig. 2021. [Google Scholar] [CrossRef]
- Ausiello, P.P.; Ciaramella, S.; Lanzotti, A.; Ventre, M.; Borges, A.L.; Tribst, J.P.; Dal Piva, A.; Garcia-Godoy, F. Mechanical behavior of Class I cavities restored by different material combinations under loading and polymerization shrinkage stress. A 3D-FEA study. Am. J. Dent. 2019, 32, 55–60. [Google Scholar] [PubMed]
- Ausiello, P.; Ciaramella, S.; Di Rienzo, A.; Lanzotti, A.; Ventre, M.; Watts, D.C. Adhesive class I restorations in sound molar teeth incorporating combined resin-composite and glass ionomer materials: CAD-FE modeling and analysis. Dent. Mater. 2019, 35, 1514–1522. [Google Scholar] [CrossRef]
- Ausiello, P.; Ciaramella, S.; Martorelli, M.; Lanzotti, A.; Gloria, A.; Watts, D.C. CAD-FE modeling and analysis of class II restorations incorporating resin-composite, glass ionomer and glass ceramic materials. Dent. Mater. 2017, 33, 1456–1465. [Google Scholar] [CrossRef] [Green Version]
- Williams, S.H.; Wright, B.W.; Truong, V.D.; Daubert, C.R.; Vinyard, C.J. Mechanical properties of foods used in experimental studies of primate masticatory function. Am. J. Primatol. 2005, 67, 329–346. [Google Scholar] [CrossRef]
- Williams, K.R.; Edmundson, J.T.; Rees, J.S. Finite element stress analysis of restored teeth. Dent. Mater. 1987, 3, 200–206. [Google Scholar] [CrossRef]
- Hada, Y.S.; Panwar, S. Comparison of the fracture resistance of three different recent composite systems in large Class II mesio-occlusal distal cavities: An in vitro study. J. Conserv. Dent. 2019, 22, 287–291. [Google Scholar] [CrossRef]
- Tribst, J.P.; Dal Piva, A.M.; Borges, A.L. Biomechanical behavior of indirect composite materials: A 3D-FEA study. Braz. Dent. Sci. 2017, 20, 52–57. [Google Scholar] [CrossRef] [Green Version]
- da Rocha, D.M.; Tribst, J.P.M.; Ausiello, P.; Dal Piva, A.M.O.; da Rocha, M.C.; Di Nicoló, R.; Borges, A.L.S. Effect of the restorative technique on load-bearing capacity, cusp deflection, and stress distribution of endodontically-treated premolars with MOD restoration. Restor. Dent. Endod. 2019, 44, e33. [Google Scholar] [CrossRef] [PubMed]
- Bonilla, E.D.; Hayashi, M.; Pameijer, C.H.; Le, N.V.; Morrow, B.R.; Garcia-Godoy, F. The effect of two composite placement techniques on fracture resistance of MOD restorations with various resin composites. J. Dent. 2020, 101, 103348. [Google Scholar] [CrossRef]
- Frankenberger, R.; Nassiri, S.; Lücker, S.; Lygidakis, N.N.; Krämer, N. The effect of different liners on the bond strength of a compomer to primary teeth dentine: In vitro study. Eur. Arch. Paediatr. Dent. 2021. [Google Scholar] [CrossRef] [PubMed]
- Peumans, M.; Politano, G.; Bazos, P.; Severino, D.; Van Meerbeek, B. Effective Protocol for Daily High-quality Direct Posterior Composite Restorations: Layering and Finishing. J. Adhes. Dent. 2020, 22, 597–613. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, V.; Singla, M.; Yadav, S.; Yadav, H. Effect of flowable composite liner and glass ionomer liner on class II gingival marginal adaptation of direct composite restorations with different bonding strategies. J. Dent. 2014, 42, 619–625. [Google Scholar] [CrossRef]
- Van Ende, A.; De Munck, J.; Van Landuyt, K.; Van Meerbeek, B. Effect of bulk-filling on the bonding efficacy in occlusal Class I cavities. J. Adhes. Dent. 2016, 18, 119–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Politi, I.; McHugh, L.E.J.; Al-Fodeh, R.S.; Fleming, G.J.P. Modification of the restoration protocol for resin-based composite (RBC) restoratives (conventional and bulk fill) on cuspal movement and microleakage score in molar teeth. Dent. Mater. 2018, 34, 1271–1277. [Google Scholar] [CrossRef]
- Schneider, L.F.; Cavalcante, L.M.; Prahl, S.A.; Pfeifer, C.S.; Ferracane, J.L. Curing efficiency of dental resin composites formulated with camphorquinone or trimethylbenzoyldiphenylphosphine oxide. Dent. Mater. 2012, 28, 392–397. [Google Scholar] [CrossRef]
- McHugh, L.E.J.; Politi, I.; AlFodeh, R.S.; Fleming, G.J.P. Implications of resin-based composite (RBC) restoration on cuspal deflection and microleakage score in molar teeth: Placement protocol and restorative material. Dent. Mater. 2017, 33, e329–e335. [Google Scholar] [CrossRef]
- Kim, Y.J.; Kim, R.; Ferracane, J.L.; Lee, I.B. Influence of the compliance and layering method on the wall deflection of simulated cavities in bulk-fill composite restoration. Oper. Dent. 2016, 41, e183–e194. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk, P. Influence of the shape of the layers in photo-cured dental restorations on the shrinkage stress peaks-FEM study. Dent. Mater. 2009, 25, e83–e91. [Google Scholar] [CrossRef] [PubMed]
- Oliveira Schliebe, L.R.S.; Lourenço Braga, S.S.; da Silva Pereira, R.A.; Bicalho, A.A.; Veríssimo, C.; Novais, V.R.; Versluis, A.; Soares, C.J. The new generation of conventional and bulk-fill composites do not reduce the shrinkage stress in endodontically-treated molars. Am. J. Dent. 2016, 29, 333–338. [Google Scholar] [PubMed]
- Sun, T.; Shao, B.; Liu, Z. Effects of the lining material, thickness and coverage on residual stress of class II molar restorations by multilayer technique. Comput. Methods Programs Biomed. 2021. [Google Scholar] [CrossRef]
Models | Bonding Layer | Material Lower Layer | Material Upper Layer | Single Material Layer |
---|---|---|---|---|
A and D | 10 µm thick | - | - | Bulk fill composite (4 mm in-between cavity and 5.5 mm at the box) |
B and E | 10 µm thick | Flowable composite (1.5 and 3 mm thick in-between cavity and box) | Bulk fill composite (2.5 mm thick) | - |
C and F | 10 µm thick | Glass ionomer (GIC) (1.5 and 3 mm thick in-between cavity and box) | Bulk fill composite (2.5 mm thick) | - |
Material | Modulus of Young (GPa) | Poisson Ratio | Linear Shrinkage (%) |
---|---|---|---|
Dentin | 18.0 | 0.30 | -- |
Enamel | 80.0 | 0.30 | -- |
Food apple pulp | 3.4 | 0.1 | -- |
Adhesive layer | 4.0 | 0.30 | 1.0 |
Flowable composite | 8.0 | 0.25 | 1.0 |
Glass inomer | 8.0 | 0.25 | -- |
Bulk fill composite | 12.0 | 0.25 | 1.0 |
Cavity Shape | Model | Enamel | Dentin | Restoration |
---|---|---|---|---|
Class I | A | 10.4 MPa | 6.3 MPa | 19.5 MPa |
B | 10.2 MPa | 6.0 MPa | 18.2 MPa | |
C | 9.0 MPa | 2.3 MPa | 13.0 MPa | |
Class II | D | 23.3 MPa | 12.9 MPa | 18.9 MPa |
E | 22.1 MPa | 12.2 MPa | 18.3 MPa | |
F | 21.7 MPa | 5.3 MPa | 17.9 MPa |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ausiello, P.; Dal Piva, A.M.d.O.; Borges, A.L.S.; Lanzotti, A.; Zamparini, F.; Epifania, E.; Mendes Tribst, J.P. Effect of Shrinking and No Shrinking Dentine and Enamel Replacing Materials in Posterior Restoration: A 3D-FEA Study. Appl. Sci. 2021, 11, 2215. https://doi.org/10.3390/app11052215
Ausiello P, Dal Piva AMdO, Borges ALS, Lanzotti A, Zamparini F, Epifania E, Mendes Tribst JP. Effect of Shrinking and No Shrinking Dentine and Enamel Replacing Materials in Posterior Restoration: A 3D-FEA Study. Applied Sciences. 2021; 11(5):2215. https://doi.org/10.3390/app11052215
Chicago/Turabian StyleAusiello, Pietro, Amanda Maria de Oliveira Dal Piva, Alexandre Luiz Souto Borges, Antonio Lanzotti, Fausto Zamparini, Ettore Epifania, and João Paulo Mendes Tribst. 2021. "Effect of Shrinking and No Shrinking Dentine and Enamel Replacing Materials in Posterior Restoration: A 3D-FEA Study" Applied Sciences 11, no. 5: 2215. https://doi.org/10.3390/app11052215
APA StyleAusiello, P., Dal Piva, A. M. d. O., Borges, A. L. S., Lanzotti, A., Zamparini, F., Epifania, E., & Mendes Tribst, J. P. (2021). Effect of Shrinking and No Shrinking Dentine and Enamel Replacing Materials in Posterior Restoration: A 3D-FEA Study. Applied Sciences, 11(5), 2215. https://doi.org/10.3390/app11052215