Impact of Adenosine A2 Receptor Ligands on BCL2 Expression in Skeletal Muscle Cells
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Cell Culture
2.3. Experimental Design
2.4. Total RNA Extraction and Reverse Transcription
2.5. Quantitative Real-Time PCR
2.6. Statistical Analysis
3. Results
3.1. NECA Did Not Stimulate BCL2 mRNA Expression
3.2. CGS21680 Stimulated BCL2 mRNA Expression
3.3. PSB 603 Did Not Significantly Affect mRNA Expression of BCL2
3.4. Role of cAMP Pathway in the Expression of BCL2
3.5. Insulin Failed to Modulate BCL2 mRNA Expression
3.6. NECA Did Not Modulate the Insulin Action in BCL2 mRNA Expression
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Dirks, A.; Leeuwenburgh, C. Apoptosis in skeletal muscle with aging. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002, 282, R519–R527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, G.; Lim, J.-Y.; Frontera, W.R. Apoptosis in young and old denervated rat skeletal muscle. Muscle Nerve 2017, 55, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Dominov, J.A.; Kravetz, A.J.; Ardelt, M.; Kostek, C.A.; Beermann, M.L.; Miller, J.B. Muscle-specific BCL2 expression ameliorates muscle disease in laminin {alpha}2-deficient, but not in dystrophin-deficient, mice. Hum. Mol. Genet. 2005, 14, 1029–1040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Xu, M.; Zhang, X.; Chu, F.; Zhou, T. MAPK/c-Jun signaling pathway contributes to the upregulation of the anti-apoptotic proteins Bcl-2 and Bcl-xL induced by Epstein-Barr virus-encoded BARF1 in gastric carcinoma cells. Oncol. Lett. 2018, 15, 7537–7544. [Google Scholar] [CrossRef] [Green Version]
- Dominov, J.A.; Dunn, J.J.; Miller, J.B. Bcl-2 Expression Identifies an Early Stage of Myogenesis and Promotes Clonal Expansion of Muscle Cells. J. Cell Biol. 1998, 142, 537–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dominov, J.A.; Houlihan-Kawamoto, C.A.; Swap, C.J.; Miller, J.B. Pro- and Anti-apoptotic Members of the Bcl-2 Family in Skeletal Muscle: A Distinct Role for Bcl-2 in Later Stages of Myogenesis. Dev. Dyn. 2001, 220, 18–26. [Google Scholar] [CrossRef]
- Davies, J.E.; Rubinsztein, D.C. Over-expression of BCL2 rescues muscle weakness in a mouse model of oculopharyngeal muscular dystrophy. Hum. Mol. Genet. 2011, 20, 1154–1163. [Google Scholar] [CrossRef] [Green Version]
- Schöneich, C.; Dremina, E.; Galeva, N.; Sharov, V. Apoptosis in differentiating C2C12 muscle cells selectively targets Bcl-2-deficient myotubes. Apoptosis 2014, 19, 42–57. [Google Scholar] [CrossRef] [Green Version]
- Apasov, S.G.; Chen, J.-F.; Smith, P.T.; Schwarzschild, M.A.; Fink, J.S.; Sitkovsky, M.V. Study of A2A adenosine receptor gene deficient mice reveals that adenosine analogue CGS 21680 possesses no A2A receptor-unrelated lymphotoxicity. Br. J. Pharmacol. 2000, 131, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Shalaby, A.; Rinne, T.; Järvinen, O.; Latva-Hirvelä, J.; Nuutila, K.; Saraste, A.; Laurikka, J.; Porkkala, H.; Saukko, P.; Tarkka, M. The Impact of Adenosine Fast Induction of Myocardial Arrest during CABG on Myocardial Expression of Apoptosis-Regulating Genes Bax and Bcl-2. Cardiol. Res. Pract. 2009, 2009, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Z.Q.; Budde, J.M.; Morris, C.; Wang, N.P.; Velez, D.A.; Muraki, S.; Guyton, R.A.; Vinten-Johansen, J. Adenosine attenuates reper-fusion-induced apoptotic cell death by modulating expression of Bcl-2 and Bax proteins. J. Mol. Cell. Cardiol. 2001, 33, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Eisenstein, A.; Carroll, S.H.; Johnston-Cox, H.; Farb, M.G.; Gokce, N.; Ravid, K. An Adenosine Receptor-Krüppel-like Factor 4 Protein Axis Inhibits Adipogenesis. J. Biol. Chem. 2014, 289, 21071–21081. [Google Scholar] [CrossRef] [Green Version]
- Rivo, J.; Zeira, E.; Galun, E.; Einav, S.; Linden, J.; Matot, I. Attenuation of reperfusion lung injury and apoptosis by A2A adenosine receptor activation is associated with modulation of bcl-2 and bax expression and activation of extracellular signal-regulated kinases. Shock 2007, 27, 266–273. [Google Scholar] [CrossRef]
- Haddad, M. Adenosine Receptors Machinery and Purinergic Receptors in Rat Primary Skeletal Muscle Cells. Biomed. Pharmacol. J. 2014, 7, 383–398. [Google Scholar] [CrossRef]
- Haddad, M. mRNA Expression of GPCRs in Rat Skeletal Muscle Tissues. Int. J. Biol. Pharm. Allied Sci. 2014, 3, 2506–2536. [Google Scholar]
- Tang, L.M.; Wang, Y.P.; Wang, K.; Pu, L.Y.; Zhang, F.; Li, X.C.; Kong, L.B.; Sun, B.C.; Li, G.Q.; Wang, X.H. Protective effect of adenosine A2A receptor activation in small-for-size liver transplantation. Transpl. Int. 2007, 20, 93–101. [Google Scholar] [CrossRef]
- Haddad, M. Do CB1 Cannabinoid Receptors Regulate Insulin Signalling in Rat Primary Skeletal Muscle Cells? J. Phys. Pharm. Adv. 2013, 3, 277–291. [Google Scholar]
- Haddad, M. Adenosine A2B Receptors—Mediated Induction of Interleukin-6 in Skeletal Muscle Cells. Turk. J. Pharm. Sci. 2017, 14, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Haddad, M. The Impact of Adenosine A2B Receptors Modulation on Nuclear Receptors (NR4A) Gene Expression. Biomed. Pharmacol. J. 2016, 9, 177–185. [Google Scholar] [CrossRef]
- Haddad, M. The effect of NECA, CGS 21680, PSB 603 on fatty acid transport and oxidation in skeletal muscle cells. Int. J. Pharm. Sci. Res. 2016, 7, 4827–4838. [Google Scholar]
- Haddad, M. The impact of adenosine A2B receptors on glycolysis and insulin resistance in skeletal muscle. Int. J. Pharm. Sci. Res. 2016, 7, 4917–4926. [Google Scholar]
- Haddad, M. The impact of adenosine A2B receptors modulation on peroxisome proliferator-activated receptor gamma co-activator 1-alpha and transcription factors. Int. J. Pharm. Sci. Res. 2016, 7, 4762–4776. [Google Scholar]
- Ramirez, S.H.; Fan, S.; Maguire, C.A.; Perry, S.; Hardiek, K.; Ramkumar, V.; Gelbard, H.A.; Dewhurst, S.; Maggirwar, S.B. Activation of adenosine A2A receptor protects sympathetic neurons against nerve growth factor withdrawal. J. Neurosci. Res. 2004, 77, 258–269. [Google Scholar] [CrossRef] [PubMed]
- Klotz, K.N. Adenosine receptors and their ligands. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2000, 362, 382–391. [Google Scholar] [CrossRef] [PubMed]
- Borrmann, T.; Hinz, S.; Bertarelli, D.C.; Li, W.; Florin, N.C.; Scheiff, A.B.; Muller, C.E. 1-alkyl-8-(piperazine-1-sulfonyl)phenylxanthines: Development and characterization of adenosine A2B receptor antagonists and a new radioligand with subnanomolar affinity and subtype specificity. J. Med. Chem. 2009, 52, 3994–4006. [Google Scholar] [CrossRef]
- Jafari Anarkooli, I.; Sankian, M.; Vahedi, F.; Bonakdaran, S.; Varasteh, A.R.; Haghir, H. Evaluation of insulin and ascorbic acid effects on expression of Bcl-2 family proteins and caspase-3 activity in hippocampus of STZ-induced diabetic rats. Cell. Mol. Neurobiol. 2009, 29, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Soleymaninejad, M.; Joursaraei, S.G.; Feizi, F.; Anarkooli, I.J. The Effects of Lycopene and Insulin on Histological Changes and the Expression Level of Bcl-2 Family Genes in the Hippocampus of Streptozotocin-Induced Diabetic Rats. J. Diabetes Res. 2017, 2017, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Peyot, M.-L.; Gadeau, A.-P.; Dandré, F.; Belloc, I.; Dupuch, F.; Desgranges, C. Extracellular Adenosine Induces Apoptosis of Human Arterial Smooth Muscle Cells via A2b-Purinoceptor. Circ. Res. 2000, 86, 76–85. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Wang, R.; Zambraski, E.; Wu, D.; Jacobson, K.A.; Liang, B.T. Protective roles of adenosine A1, A2A, and A3 receptors in skeletal muscle ischemia and reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 2007, 293, H3685–H3691. [Google Scholar] [CrossRef]
- Hinz, S.; Lacher, S.K.; Seibt, B.F.; Müller, C.E. BAY60-6583 Acts as a Partial Agonist at Adenosine A2B Receptors. J. Pharmacol. Exp. Ther. 2014, 349, 427–436. [Google Scholar] [CrossRef]
- Castanon, M.J.; Spevak, W. Functional Coupling of Human Adenosine Receptors to a Ligand-Dependent Reporter Gene System. Biochem. Biophys. Res. Commun. 1994, 198, 626–631. [Google Scholar] [CrossRef] [PubMed]
- Klotz, K.-N.; Hessling, J.; Hegler, J.; Owman, C.; Kull, B.; Fredholm, B.B.; Lohse, M.J. Comparative pharmacology of human adenosine receptor subtypes—Characterization of stably transfected receptors in CHO cells. Naunyn-Schmiedeberg’s Arch. Pharmacol. 1998, 357, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Fredholm, B.B.; Chern, Y.; Franco, R.; Sitkovsky, M. Aspects of the general biology of adenosine A2A signaling. Prog. Neurobiol. 2007, 83, 263–276. [Google Scholar] [CrossRef] [PubMed]
Gene | Sequences (5′→3′) | Amplicon Size (bp) |
---|---|---|
BCL2 | Forward Primer: 5′-TCGCGACTTTGCAGAGATGTCC-3′Reverse Primer: 5′-ACCCCATCCCTGAAGAGTTCCT-3′ | 99 |
TATA-BOX | Forward Primer 5′-TTCGTGCCAGAAATGCTGAA-3′Reverse Primer 5′-GTTCGTGGCTCTCTTATTCTCATG-3′ | 73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haddad, M. Impact of Adenosine A2 Receptor Ligands on BCL2 Expression in Skeletal Muscle Cells. Appl. Sci. 2021, 11, 2272. https://doi.org/10.3390/app11052272
Haddad M. Impact of Adenosine A2 Receptor Ligands on BCL2 Expression in Skeletal Muscle Cells. Applied Sciences. 2021; 11(5):2272. https://doi.org/10.3390/app11052272
Chicago/Turabian StyleHaddad, Mansour. 2021. "Impact of Adenosine A2 Receptor Ligands on BCL2 Expression in Skeletal Muscle Cells" Applied Sciences 11, no. 5: 2272. https://doi.org/10.3390/app11052272
APA StyleHaddad, M. (2021). Impact of Adenosine A2 Receptor Ligands on BCL2 Expression in Skeletal Muscle Cells. Applied Sciences, 11(5), 2272. https://doi.org/10.3390/app11052272