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Featured Application: Real-time measurement of amplitude, phase, frequency and rate of change
of frequency (ROCOF) of current and voltage AC signals in power transmission and distribu-
tion systems.

Abstract: The Interpolated Discrete Fourier Transform (IpDFT) is one of the most popular algorithms
for Phasor Measurement Units (PMUs), due to its quite low computational complexity and its good
accuracy in various operating conditions. However, the basic IpDFT algorithm can be used also
as a preliminary estimator of the amplitude, phase, frequency and rate of change of frequency of
voltage or current AC waveforms at times synchronized to the Universal Coordinated Time (UTC).
Indeed, another cascaded algorithm can be used to refine the waveform parameters estimation. In
this context, the main novelty of this work is a fair and extensive performance comparison of three
different state-of-the-art IpDFT-tuned estimation algorithms for PMUs. The three algorithms are:
(i) the so-called corrected IpDFT (IpDFTc), which is conceived to compensate for the effect of both
the image of the fundamental tone and second-order harmonic; (ii) a frequency-tuned version of
the Taylor Weighted Least-Squares (TWLS) algorithm, and (iii) the frequency Down-Conversion
and low-pass Filtering (DCF) technique described also in the IEEE/IEC Standard 60255-118-1:2018.
The simulation results obtained in the P Class and M Class testing conditions specified in the same
Standard show that the IpDFTc algorithm is generally preferable under the effect of steady-state
disturbances. On the contrary, the tuned TWLS estimator is usually the best solution when dynamic
changes of amplitude, phase or frequency occur. In transient conditions (i.e., under the effect of
amplitude or phase steps), the IpDFTc and the tuned TWLS algorithms do not clearly outperform one
another. The DCF approach generally returns the worst results. However, its actual performances
heavily depend on the adopted low-pass filter.

Keywords: Phasor Measurement Unit (PMU); Interpolated Discrete Fourier Transform; digital signal
processing in power systems; power systems monitoring

1. Introduction

The Phasor Measurement Units (PMUs) are instruments designed to measure ampli-
tude, phase, frequency, and Rate Of Change Of Frequency (ROCOF) of voltage and current
AC signals in crucial locations of transmission and distribution systems [1]. While up to
a few years ago PMUs were mainly conceived to detect anomalous operating conditions
in transmission systems [2], nowadays they are regarded as essential devices to monitor
the actual operating conditions of smart distribution grids in real-time, e.g., for island
maneuvering [3], faulted line detection and identification [4], short-term voltage stability
monitoring [5], and state estimation [6–9].

The key features of PMUs compared with other measurement devices for power
system applications are:
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• the capability to measure all quantities at times synchronized with the Universal
Coordinated Time (UTC);

• the capability to stream real-time data to the so-called Phasor Data Concentrators
(PDCs) with reporting rates ranging between about 10 frame/s and 100 frame/s;

• high measurement accuracy, as specified in the IEEE/IEC Standard 60255-118-1:2018,
in the following simply referred to as the “Standard” for the sake of brevity [10];

• fast responsiveness (in the order of a few power line cycles) in order to trigger adequate
protection schemes when severe phasor magnitude or phase changes occur due to
faults or grid topology changes [11]. In this respect, the IEEE/IEC Standard classifies
PMUs as protection-oriented (P Class) or measurement-oriented (M Class) devices.
The former ones can indeed be less accurate than the latter, but of course they must be
considerably faster.

Quite importantly, in the case of active distribution systems, the maximum Total
Vector Error (TVE) of PMU measurements has to be even smaller than the Standard limits,
i.e., in the order of 0.1% [12], and with phase uncertainty contributions not greater than a
few mrad [13].

The need to meet the specifications shortly summarized above required remarkable
research efforts in the area of signal processing and metrology. In particular, both flex-
ible testbeds for PMU algorithm characterization [14], and new PMU calibrators were
developed [15,16].

Among the many estimation algorithms for PMUs proposed over the last few years,
the Interpolated Discrete Fourier Transform (IpDFT) is definitely one of the most popular,
due to its low computational complexity and its good capability to compensate for the
effect of off-nominal frequency deviations [17]. Such deviations might otherwise heavily
affect the waveform parameter estimation based on the classic Discrete Fourier Transform
(DFT) [18]. Even if the use of the IpDFT in signal processing is well established (e.g., for
multi-tone parameter estimation [19]), its use in power systems monitoring applications
was proposed only a few years ago. Since then, a number of IpDFT variants and multi-
step algorithms based on the IpDFT stage have been developed to overcome the inherent
limitation of the basic algorithm. In particular, the classic IpDFT algorithm can be used to
obtain a preliminary estimate of some quantities of interest (most notably the fundamental
frequency of the analyzed signal) prior to applying a further algorithm to return more
accurate estimates of synchrophasor amplitude, phase, frequency, and ROCOF.

For instance, in [20], a three-point IpDFT algorithm is proposed to compensate for
the infiltration of the spectral image of the fundamental component on the estimated
parameters. However, this algorithm returns only a frequency estimate. This is indeed
the most common case [21–23], although a dynamic ROCOF estimator based on IpDFT
and Kalman filtering has been recently presented in [24]. The same idea also underlies
the so-called enhanced IpDFT [25], which mitigates the detrimental effect of the image
component on the estimated synchrophasor parameters by applying the IpDFT iteratively.
In [26] this approach is further extended to compensate for the effect of harmonics and
inter-harmonic components. The so-called corrected IpDFT (IpDFTc) consists of a two-step
IpDFT designed to remove the spectral leakage due to both the image of the fundamental
tone and the second-order harmonic [27]. In fact, these steady-state components are often
the most critical ones for synchrophasor estimation, especially over short observation
intervals. Quite importantly, the IpDFTc algorithm is not iterative. Therefore, it requires a
lower computational burden than the estimator proposed in [26].

In [28] and [29] the fundamental frequency estimated through a classic IpDFT is used
to tune the matrix coefficients of real-valued weighted least-squares estimators obtained
from the Taylor’s series expansion of the dynamic synchrophasor model. In the original
version of such estimators, the matrix coefficients are computed at the nominal frequency.
As a consequence, the estimates are significantly affected by off-nominal frequency devi-
ations. The IpDFT-based frequency tuning instead significantly improves the estimation
accuracy of both the so-called Taylor-Fourier filter (which does not include the harmonics
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in the signal model) [30], and the Taylor-Fourier Transform (that instead includes a number
of harmonics in the signal model) [31].

The preliminary fundamental frequency estimation based on the IpDFT can be also
used to perform a better direct down-conversion of the voltage or current waveforms,
before extracting synchrophasor amplitude and phase through low-pass filtering [32].

To the best of the Authors’ knowledge, the three IpDFT-tuned algorithms described
above are among those that exhibit excellent performance in terms of both accuracy and
computational complexity. Unfortunately, the results reported in the scientific literature
do not allow a fair and easy comparison of their actual performances because different
observation interval lengths or testing conditions are considered. Thus, this paper aims at
presenting a thorough performance comparison of the IpDFTc estimator [27], the tuned
Taylor Weighted Least Squares (TWLS) algorithm [28], and a tuned implementation of the
frequency down-conversion and low-pass filtering (DCF) technique [32].

The rest of the paper is structured as follows. In Section 2, the theoretical background
of the algorithms considered is briefly presented. In Section 3, the simulation results
achieved in the steady-state, dynamic and transient testing conditions described in the
IEEE/IEC Standard 60255-118-1:2018 are shown and commented on. Section 4 presents
some final comments on the considered IpDFT-tuned algorithm compliance, advantages
and disadvantages. Section 5 presents some further experimental results in borderline
operating conditions compliant with the Standard EN 50160:2010 [33]. Finally, Section 6
concludes the paper.

2. Theoretical Background

In this Section, firstly a brief overview of the signal model used for synchrophasor,
frequency, and ROCOF estimation is described. Then, the basic IpDFT algorithm used
as a preliminary stage of all the techniques under test is recalled. Finally, the theoretical
background of the three IpDFT-tuned estimators introduced in Section 1 is presented in a
common framework.

2.1. Signal Model and Basic IpDFT Algorithm

Since the current or voltage AC waveform parameters change with time, a general
AC waveform model is:

y(t) = s(t) + η(t) = a1(t) cos(2π f1(t)t + φ1(t)) + η(t) (1)

where s(t) = a1(t) cos(2π f1t + φ1(t)) is the fundamental sinewave (with amplitude, phase,
and frequency at a given time t represented by a1(t), φ1(t), and f 1(t), respectively) and η(t)
includes all possible disturbances, such as harmonics, inter-harmonics, and wideband noise.

The sine-wave dynamic phasor is defined as p(t) def
= a1(t)ejφ1(t). It is called a synchrophasor

when it is referred to timestamped UTC instants. If waveform (1) is sampled by a PMU at
a rate fs and an odd number of samples M = 2Nh + 1 is acquired, the reference time tr for
synchrophasor estimation (with r being integer) can be chosen exactly in the middle of the
r-th digitized data record, which is given by:

yr(m) = a1(rL + m) cos
(

2π
f1(rL + m)

fs
(rL + m) + φ1(rL + m)

)
+ η(rL + m) (2)

for m = −Nh, . . . , 0, . . . , Nh, where L is the distance (in samples) between subsequent data
records. Note that, in order to ensure a continuous data acquisition, L can range from 1
(if the observation intervals shift by 1 sample at a time) to M (when consecutive disjoint
observation intervals are considered).

Thus, the objective of the estimation algorithms for PMUs is to determine the values
of parameters a1(tr), φ1(tr) and f 1(tr) and d f1(t)

dt

∣∣∣
tr

at the chosen UTC reference time within

the data record (2). Such data have to be transferred to the PDC at a given Reporting Rate
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RR. For this reason, in practice it is often reasonable to choose L = fs
RR . In the following,

the waveform parameters of interest within the r-th data record will be shortly denoted as
a1,r, φ1,r f 1,r and ROCOF1,r, respectively.

The ratio between the fundamental AC frequency f 1,r and the sampling rate fs can be
expressed as:

f1,r

fs
=

ν1,r

M
=

J1 + δ1,r

M
, (3)

where ν1,r = J1 + δ1,r is the sinewave frequency expressed in bins, i.e., the number of
acquired waveform cycles. Expression (3) results from the sum of an integer part J1 and a
fractional part δ1,r (with −0.5 ≤ δ1,r < 0.5). While J1 typically does not change from record
to record, the value of δ1,r changes as a function of time due to frequency fluctuations, and
becomes zero only if coherent sampling is performed. The sampling rate is selected so that
the following condition is fulfilled:

fn

fs
=

J1

M− 1
. (4)

where fn is the nominal sinewave frequency (i.e., 50 Hz or 60 Hz). Notice that the value of
J1 coincides also with the number of cycles acquired at the nominal frequency.

In practice, a sinewave is usually sampled non-coherently (i.e., δ1,r 6= 0). Therefore,
the discrete spectrum of the acquired signal is affected by the spectral leakage due to
the finite duration of the considered observation interval. The Maximum Sidelobe Decay
(MSD) windows are often employed to reduce the impact of leakage on the estimated
parameters [34,35]. The expression of a generic MSD window is:

w(m) =
1

22H−2

[
CH−1

2H−2 cos
(

2π

M
m
)
+ 2

H−1

∑
h=1

CH−h−1
2H−2 cos

(
2πh
M

m
)]

, m = −Nh, . . . , 0, . . . , Nh (5)

where H ≥ 2 is the number of window terms and Cq
n = n !

(n−q) ! q ! . In particular, the 2-term
MSD (or Hann) window will be used in this paper. Since the DFT of the r-th windowed
data record is given by

Yr,w(k)
def
=

Nh

∑
m=−Nh

yr(m)·w(m)e−j 2π
M km, (6)

the preliminary estimates of the sine-wave parameters ν1, a1, and φ1 returned by the IpDFT
algorithm are based on the DFT sample Yr,w(J1) and the larger of its two adjacent spectral
samples, i.e., Yr,w(J1 − 1) or Yr,w(J1 + 1). In particular, it can be shown that [17]:

ν̂10,r = J1 + δ̂10,r (7)

with

δ̂10,r =
(H − 1 + i)α1,r − H + i

α1,r + 1
(8)

in which α1,r = |Yr,w(J1+i)|
|Yr,w(J1+i−1)| with i = 0 if |Yr,w(J1 − 1)| > |Yr,w(J1 + 1)| or i = 1 if

|Yr,w(J1 − 1)| < |Yr,w(J1 + 1)| and

â10,r =
2|Yr,w(J1)|
W
(
δ̂10,r

) , φ̂10,r = angle{Yr,w(J1)}. (9)
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Note that in the estimator â10,r, the DTFT of the window sequence (5) for M >> 1 and
|λ| << M, is given with high accuracy by [36]

W(λ)
def
=

Nh

∑
m=−Nh

w(m)e−j2π λ
M m =

M sin(πλ)

22H−2πλ

(2H − 2) !

∏H−1
h=1 (h2 − λ2)

. (10)

which is a real-valued function due to the window even symmetry.

2.2. IpDFTc Algorithm

The IpDFTc estimator improves the performance of the basic IpDFT algorithm as
it greatly reduces the effect on the estimated parameters of the spectral leakage due to
both the image of the fundamental component and the second-order harmonic [27]. In the
IpDFTc algorithm, the estimator of the number of observed signal cycles at the reference
time within the r-th collected record is:

ν̂1,r = ν̂10,r − ∆cν1,r, (11)

where ν̂10,r is returned by (8) and the term ∆cν1,r is given by [27]:

∆cν1,r =∆cδ1,r=
(

H + (−1)i δ̂10,r

)[ (−1)i2ν̂10,r

2ν̂10,r − δ̂10,r + (−1)i+1H

W
(
2ν̂10,r − δ̂10,r

)
W
(
δ̂10,r

) cos (2φ̂10,r)+

(−1)i(ν̂20,r − ν̂10,r)

ν̂20,r − ν̂10,r + δ̂10,r + (−1)iH

â20,r

â10,r

W
(
ν̂20,r − ν̂10,r + δ̂10,r

)
W
(
δ̂10,r

) cos(φ̂20,r − φ̂10,r)

]
.

(12)

In (12) the values of â10,r, φ̂10,r result from (9), namely from the preliminary IpDFT,
whereas â20,r and φ̂20,r are the amplitude and the phase estimators of the possible second-
order harmonic at the same reference time tr. Let ỹr(·) be the residual signal obtained from
(2) after subtracting the fundamental sinewave reconstructed by using the IpDFT estimated
parameters, i.e.,

ỹr(m) = yr(m)− â10,r cos
(

2π
ν̂10,r

M
(rL + m) + φ̂10,r

)
, m = −Nh, . . . , 0, . . . , Nh. (13)

If Ỹr,w(·) is the windowed DFT of (13) obtained using the H-term MSD window
[i.e., ỹr,w(m) = ỹr(m)·w(m)], the amplitude and phase estimators of the second-order
harmonic are obtained by applying the IpDFT algorithm to (13), that is:

â20,r =
2
∣∣∣Ỹr,w(J2)

∣∣∣
W
(
δ̂20,r

) , φ̂20,r = angle
{

Ỹr,w(J2)
}

. (14)

In (14), J2 denotes the integer part of the number of second harmonic cycles, while
δ̂20,r =

(H−1+i)α2,r−H+i
α2,r+1 is the corresponding off-nominal frequency deviation estimator

expressed in bins. Note that in α2,r =
|Ỹr,w(J2+i)|
|Ỹr,w(J2+i−1)| the index i is equal to 0 if

∣∣∣Ỹr,w(J2 − 1)
∣∣∣ >∣∣∣Ỹr,w(J2 + 1)

∣∣∣ or it is equal to 1 if
∣∣∣Ỹr,w(J2 − 1)

∣∣∣ < ∣∣∣Ỹr,w(J2 + 1)
∣∣∣. Therefore, the second

harmonic frequency, expressed in bins, is given by ν̂20,r = J2 + δ̂20,r. In order to compensate
for the effect of the spectral leakage caused by both the fundamental image component
and the second harmonic, the following expression is applied to estimate the sine-wave
amplitude at time tr:

â1,r = â10c,r − ∆ca1,r (15)

where
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• â10c,r = 2|Yr,w(J1)|
W(δ̂10,r−∆cδ1,r)

(with δ̂10,r and ∆cδ1,r given by (8) and (12), respectively) is

the amplitude estimator of the fundamental sinewave after compensating for the
fundamental frequency estimation bias due to the second harmonic and

• ∆ca1,r = â10,r
W(2ν̂10,r−δ̂10,r)

W(δ̂10,r)
cos
(
2φ̂10,r

)
+ â20,r

W(ν̂20,r−ν̂10,r+δ̂10,r)
W(δ̂10,r)

cos
(
φ̂20,r − φ̂10,r

)
is the

amplitude correction term [27].

Similarly, the IpDTFc synchrophasor phase estimator at time tr is

φ̂1,r = φ̂10,r − ∆cφ1,r, (16)

where ∆cφ1,r = −
W(2ν̂10,r−δ̂10,r)

W(δ̂10,r)
sin
(
2φ̂10,r

)
+

â20,r
â10,r

W(ν̂20,r−ν̂10,r+δ̂10,r)
W(δ̂10,r)

sin
(
φ̂20,r − φ̂10,r

)
and φ̂10,r

results from (10).
Finally, the fundamental frequencies and the ROCOF are estimated respectively as:

f̂1,r = fn +
fs

M
δ̂1,r. (17)

and
ˆROCOF1,r =

∣∣∣ f̂1,r − f̂1,r−1

∣∣∣· fs

L
, (18)

in which if f̂1,r and f̂1,r−1 are the fundamental frequency estimates in two subsequent data
records and L/f s represents the time interval between the corresponding UTC reference
times.

Summarizing, the steps of the IpDFTc estimation algorithm are orderly reported in
Table 1.

Table 1. Steps of the IpDFTc estimation algorithm for PMUs.

Step
1:

Apply the IpDFT algorithm based on the Hann window to the r-th data record yr(·) and
determine the estimators ν̂10,r, â10,r, and φ̂10,r by using (7) and (9).

Step
2:

Compute the residual signal ỹr(·) by removing the estimated sinewave from the acquired
samples yr(·).

Step
3:

Apply the IpDFT algorithm based on the Hann window again to the residual signal ỹr(·)
and determine the second harmonic parameters ν̂20,r, â20,r, and φ̂20,r.

Step
4:

Compute the new sine-wave parameter estimates ν̂1,r, â1,r, and φ̂1,r by using (11), (15), and
(16).

Step
5:

Compute f1,r and ˆROCOF1,r by using (17) and (18).

Step
6:

Return the estimated parameters.

2.3. Tuned Real-Valued TWLS Algorithm

The fundamental component of (1) can be rewritten as:

s(t) = a1(t) cos(2π f1t + φ1(t)) = c1(t) cos(2π f1t)− s1(t) sin(2π f1t), (19)

where c1(t) = a1(t) cos φ1(t) and s1(t) = a1(t) sin φ1(t). To implement the real-valued TWLS
algorithm [28], the two quadrature components c1(t) and s1(t) are approximated by their
respective Taylor’s series about the reference time tr truncated to the K-th order term
(K ≥ 2). As a result,

c1(t) ∼= c1(tr) + c(1)1 (tr)∆t +
c(2)1 (tr)

2!
∆t2 + . . . +

c(K)1 (tr)

K!
∆tK (20)
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and

s1(t) ∼= s1(tr) + s(1)1 (tr)∆t +
s(2)1 (tr)

2!
∆t2 + . . . +

s(K)1 (tr)

K!
∆tK (21)

where ∆t = t − tr and c(k)1 (tr), s(k)1 (tr), k = 1, 2, . . . , K, are the k-th order derivatives of
c1(t) and s1(t), respectively, evaluated at the time instant tr. The original Taylor-based
weighted approach described in [30] assumes that the sinewave frequency coincides with
the nominal one, i.e., f 1 = fn in (19). However, possible off-nominal frequency deviations
may significantly affect the accuracy of the estimation results. This is why a preliminary
IpDFT-based fundamental frequency estimation is recommended in [29].

Let us consider the r-th data record collected in the observation interval
[

rL−Nh
fs

, rL+Nh
fs

]
centered at the reference time tr =

rL
fs

. If (20) and (21) are replaced into (19) and the resulting
expression is evaluated and equated to each sample of the data record, a linear system
of M = 2Nh + 1 equations with 2K unknowns and coefficients c1(tr) = c(0)1,r , c(k)1 (tr) =(

k! f k
s

)
c(k)1,r , s1(tr) = s(0)1,r , s(k)1 (tr) =

(
k! f k

s

)
s(k)1,r , for k = 1, 2, . . . , K, can be built. If the

unknown variables are gathered into vector Pr ,
[
c(K)1,r . . . c(1)1,r c(0)1,r − s(0)1,r − s(1)1,r . . .− s(K)1,r

]T

and f̂10,r = ν̂10,r
fs
M [with ν̂10,r being given by (7)] is used to estimate f 1 in (19), the coefficients

of the linear system can be arranged into a matrix VK,r whose elements are [28]

(vK,1)lq = (l − Nh)
K+1−q cos(2πν̂10,r(Nh − l)), l = 1, . . . , Nh, q = 1, . . . , K + 1

(vK,2)lq = lK+1−q cos(2πν̂10,rl), l = 1, . . . , Nh, q = 1, . . . , K + 1

(vK,3)lq = −(l − Nh)
q−1 sin(2πν̂10,r(Nh − l)), l = 1, . . . , Nh, q = 1, . . . , K + 1

(vK,4)lq = lq−1 sin(2πν̂10,rl), l = 1, . . . , Nh, q = 1, . . . , K + 1

(22)

Thus, the weighted least squares approach returns the following estimate of vector Pr:

P̂r =
(

VT
K,rW

TWVK,r

)−1
VT

K,rW
TWyr (23)

where yr represents the column vector including the samples of the r-th data record (2)
and W is a M ×M diagonal matrix. The nonzero elements of W are the coefficients of the
window function w(·) that is used to smooth the approximation error near the ends of each
observation interval. It is worth recalling that if K = 2 the coefficients of P̂r can be estimated
not only in the time domain, but also in the frequency domain, as summarized in Appendix
A. Due to the preliminary fundamental frequency tuning, the elements of VK,r have to
be recomputed for every new record of collected data. For this reason, the complexity
of the tuned-TWLS algorithm is generally greater than the computational burden of the
IpDFTc estimator.

If the pairs of the real and the imaginary parts of the elements of vector P̂r returned
by (23) are combined into complex numbers (i.e., p̂k,r = ĉ(k)1,r + jŝ(k)1,r for k = 0, 1, 2), the
synchrophasor magnitude and phase as well as the fundamental frequency and the ROCOF
evaluated at time tr can be obtained respectively as

â1 = | p̂0,r|, φ̂1 = angle{ p̂0,r}, (24)

f̂1,r = fn +
fs

2π

Im
{

p̂1,r p̂∗0,r

}
| p̂0,r|2

and (25)

ˆROCOF1,r =
f 2
s

π

 Im
{

p̂2,r p̂∗0,r

}
| p̂0,r|2

−
Re
{

p̂1,r p̂∗0,r

}
Im
{

p̂1,r p̂∗0,r

}
| p̂0,r|4

. (26)
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Ultimately, the steps of the tuned real-valued TWLS estimation algorithm are orderly
reported in Table 2.

Table 2. Steps of the tuned real-valued TWLS estimation algorithm for PMUs.

Step
1:

Apply the IpDFT algorithm based on the Hann window to the r-th data record yr(·) and
determine the estimator ν̂10,r from (7).

Step
2:

Compute the elements of the vector P̂r through (23).

Step
3:

Compute the estimators â1,r and φ̂1,r by (24), and the estimators of f̂1,r and ˆROCOF1,r with
(25) and (26), respectively.

Step
4:

Return the estimated parameters.

2.4. Tuned Frequency Down-Conversion and Low-Pass Filtering (DCF)

As briefly outlined in the Introduction, the DCF approach is one of the most classic
techniques for synchrophasor estimation. Indeed, it was mentioned in past editions
of the Standard, too. The underlying idea is quite simple and it is very similar to the
direct frequency down-conversion technique implemented in many radio receivers. If the
samples of the r-th data record (2) are mixed with two digital quadrature sinewaves of unit
amplitude and frequency f 1,r, the following in-phase (I) and quadrature (Q) components of
the input signal are obtained from the prosthaphaeresis formulas:

yI
r(m) =yr(m) cos

(
2π

f1,r

fs
m
)
=

=
a1(rL + m)

2

[
cos(φ1(rL + m)) + cos

(
4π

f1,r

fs
m + φ1(rL + m)

)]
+η I(rL + m)

yQ
r (m) =−yr(m) sin

(
2π

f1,r

fs
m
)
=

=
a1(rL + m)

2

[
sin(φ1(rL + m)) + sin

(
4π

f1,r

fs
m + φ1(rL + m)

)]
+ηQ(rL + m)

(27)

where η I(·) and ηQ(·) are the contributions due to harmonics, inter-harmonics and wide-
band noise resulting from the frequency down-conversion of term η(·) in (2). Expression
(27) shows clearly that, as a result of mixing, the power of the fundamental sinewave is
evenly split into two components: one at DC, and another around 2f 1,r. Similarly, every
harmonic and inter-harmonic component is split into pairs of contributions shifted by
±f 1,r with respect to their respective original frequency. It is worth emphasizing that
the frequency of the digital quadrature oscillators can be hardly set exactly equal to the
fundamental frequency f 1,r. Therefore, in practice, either it is set equal to the nominal
value fn (as suggested in the Standard) or it is extracted from the input signal. This can be
done, for instance, by estimating f 1,r with a phase-locked loop or with a preliminary IpDFT
algorithm, as done in this paper [32].

Now, let h(m) be the impulse response of a digital low-pass filter with a a null phase
response and with magnitude response

∣∣H(ejω)∣∣ close to 2 in the passband (assuming a
cutoff frequency ω < 2π

fn
fs

), and to 0 in the stopband, respectively. If this filter is applied

in parallel to both yI
r(m) and yQ

r (m), it follows that

ỹI
r(m) = yI

r(m)~ h(m) = a1(rL + m) cos(φ1(rL + m)) + eI
r(m)

ỹQ
r (m) = yI

r(m)~ h(m) = a1(rL + m) sin(φ1(rL + m)) + eQ
r (m).

(28)
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In (28) ~ denotes the convolution operator, while eI
r(m) and eQ

r (m) are the error terms
affecting the baseband I/Q components due to the filter non-idealities. These are due
to (i) the frequency fluctuations of the quadrature sinewaves generated by the internal
digital oscillator used for frequency down-conversion; (ii) the ripples affecting the gain of
the low-pass filter in the passband; and (iii) the imperfect attenuation of both the double-
frequency terms and all the disturbances lying in the stopband. However, if the filter is
suitably designed, such error terms can be kept under control. Thus, from (28), it follows
that synchrophasor magnitude and phase at time tr can be easily estimated as

â1,r =
∣∣∣ỹI

r(m) + jỹQ
r (m)

∣∣∣, φ̂1,r = atan2
(

ỹQ
r (m), ỹI

r(m)
)

(29)

where atan2(y,x) computes the principal value of the phase of a complex number x + jy
between [−π, π]. Moreover, the sinewave fundamental frequency and its ROCOF can be
estimated by applying the first-order and second-order backward Euler differences over
subsequent data records, i.e.,

f̂1,r =
(
φ̂1,r − φ̂1,r−1

) fs
2πL

(30)

and
ˆROCOF1,r =

f 2
s

2πL2

(
φ̂1,r − 2φ̂1,r−1 + φ̂1,r−2

)
. (31)

Of course, the performances of the DCF approach strongly depend on the features
of the adopted low-pass filter as well as on the accuracy of the frequency tuning of the
sinewave used for down-conversion. In fact, if the signal nominal frequency fn rather than
the estimated value of f 1,r is used for down-conversion, the overall estimation accuracy
can be heavily affected by possible off-nominal frequency deviations of the acquired signal,
unless the filter passband is enlarged accordingly [37]. On the contrary, the frequency
tracking of the fundamental component can be exploited to place the zeros of the filter
frequency response at harmonic frequencies to mitigate their influence [32]. A custom
approach to design optimal differentiator filters for PMUs is presented for instance in [38],
but it is applied to the Taylor-Fourier Transform and not to the DCF method.

In the next Section, the results obtained with two alternative low-pass filters are
reported. The steps of the tuned DCF estimation technique are instead summarized in
Table 3.

Table 3. Steps of the tuned DCF estimation algorithm for PMUs.

Step
1:

Apply the IpDFT algorithm based on the Hann window to the r-th data record yr(·) and
determine the estimator ν̂10,r from (7).

Step
2:

Mix the samples of the data record yr(·) with two quadrature sinewaves of unit amplitude
and frequency f̂1,r = ν̂10,r· fs/M to obtain the I/Q components of the collected signal.

Step
3:

Apply a suitable low-pass filter to the I/Q components to remove disturbances and the
double-frequency terms.

Step
4:

Compute the estimators â1,r and φ̂1,r by (29), and the estimators f̂1,r and ˆROCOF1,r with (30)
and (31), respectively.

Step
5:

Return the estimated parameters.

3. Estimation Results and Performance Analysis

In this Section, the performances of the IpDFT-tuned algorithms presented in Section 2
are compared under multiple testing conditions. In particular, the maximum values of the
following parameters are computed, i.e.,

• the Total Vector Errors (TVEs), namely the magnitude of the error vectors of the esti-
mated synchrophasor relative to the actual synchrophasor values at the same UTC
reference times;
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• the Frequency Errors (FE), i.e., the differences between the estimated fundamental
frequencies and the actual ones and

• the Rate of change of Frequency Errors (RFEs) namely the differences between the esti-
mated ROCOF values and the actual ones.

Such parameters are estimated assuming L = 120 and a reporting rate RR = 50 read-
ings/s. This is the largest mandatory rate reported in the Standard [10]. To this purpose,
the results of the IpDFT-tuned estimation algorithms under study are compared over
1000 data records in the P Class and M Class steady-state and dynamic testing conditions
specified in [10]. The initial phase values of all possible disturbances (e.g., harmonics,
inter-harmonics or modulating tones) are varied randomly with a uniform probability
density function in the range [0, 2π]. Then, the TVE, |FE| and |RFE| response times as
well as the corresponding delay times and the maximum overshoots due to amplitude or
phase steps in the worst-case P Class and M Class simulated transient conditions reported
in [10] are summarized. All the simulated P Class and M Class tests are performed assuming
the following common settings, i.e., nominal fundamental frequency fn = 50 Hz, sampling
frequency fs = 6 kHz and observation interval length ranging from J1 = 2 or 4 nominal
power line cycles for P Class tests to J1 = 6 or 8 nominal power line cycles for M Class tests.

Such observation interval values were chosen as they provide a good trade-off between
estimation accuracy and responsiveness, although with actual performances that may differ
considerably from case to case. The preliminary IpDFT stage (common to all algorithms) is
based on the 2-term MSD (or Hann) window defined in [35] with two DFT interpolation
points [17]. Quite importantly, the TVE, |FE|, and |RFE| values achievable with the
IpDFTc algorithm in steady-state tests with off-nominal frequency and harmonics are much
lower than those obtained with the classic IpDFT estimator, as confirmed by Figure 1.
In the other testing conditions instead, the results of the IpDFTc and the IpDFT almost
coincide. Therefore, in the rest of this paper the latter ones are omitted for the sake of
brevity. In Figure 1 the curves with different line styles and colors refer to the maximum
TVE, |FE| and |RFE| values returned by the classic IpDFT and the IpDFTc estimators
as a function of the off-nominal frequency deviation. Such maxima are computed over
1000 6-cycle-long or 8-cycle-long records, assuming that the first 50 harmonics (all of them
with amplitude equal to 10% of the fundamental component) affect the collected waveform.
The benefits of the compensation of the leakage due to both the second-order harmonic
and the fundamental image component are evident (particularly in the 6-cycle case) and
justify the adoption of the IpDFTc approach in the following analysis. Further results (not
shown for the sake of brevity) confirm that the IpDFTc algorithm can meet the P Class
limits reported in the Standard even over 3-cycle observation intervals, whereas the classic
IpDFT estimator cannot.

3.1. P Class and M Class Steady-State and Dynamic Testing Conditions

The main P Class and M Class steady-state and dynamic testing conditions specified
in [10] are briefly recalled below.

• Fundamental frequency off-nominal static deviations within ±2 Hz (P Class) or ±5 Hz
(M Class);

• Harmonics from the 2nd to the 50th (taken one at a time) with amplitude set to 1%
(P Class) or 10% (M Class) of the fundamental with the same off-nominal frequency
deviations mentioned above;

• Amplitude modulation (AM) or phase modulation (PM) with modulation indexes
equal to ka = 0.1 or kp = 0.1 rad, respectively, and frequency of the modulating tones
equal to fa = fp = 2 Hz (P Class) or 5 Hz (M Class);

• Linear increment/decrement of the fundamental frequency at rates of ±1 Hz/s within
±2 Hz (P Class) or ±5 Hz (M Class);

• White zero-mean Gaussian noise with variance such that the Signal-to-Noise Ratio
(SNR) is 60 dB (this testing condition is not mentioned in the IEEE/IEC Standard,
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but it has a high practical relevance due to the strong impact of wideband noise on
frequency and above all ROCOF estimation [39]);

• Finally, in the M Class case only, a single inter-harmonic tone of amplitude equal to 10%
of the fundamental and frequency changing within the bands [10 Hz, 25 Hz] or [75 Hz,
100 Hz] is generated for testing, assuming that the off-nominal fundamental frequency
deviations are comprised within [−2.5 Hz, 2.5 Hz] and that RR = 50 readings/s.
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Figure 1. Maximum TVE, |FE|, and |RFE| values over 1000 records of 6-cycle and 8-cycle ob-
servation intervals obtained with the classic IpDFT and the IpDFTc estimators as a function of the
off-nominal frequency deviations assuming that the first 50 harmonics of amplitude equal to 10% of
the fundamental component affect the collected waveform.

Table 4a,b shows the maximum values of TVE, |FE| and |RFE| (over 1000 records)
defined as reported in the Standard and obtained over 2-cycle (a) or 4-cycle (b) observation
intervals in the P Class testing conditions summarized above. The P Class limits mentioned
in the Standard (when defined) are also reported. The values exceeding such limits are
highlighted in bold, whereas the cells containing the best results obtained in each test are
shaded. In the case study considered, both the IpDFTc and the tuned TWLS algorithm rely
on the Hann window. In the DCF case instead, two different sets of results obtained using
two different filters are shown. The first set of DCF results is obtained with 2-cycle-long
and 4-cycle-long linear-phase Finite Impulse Response (FIR) filters designed by minimizing
the least-squares errors with respect to the frequency response of an ideal low-pass filter.
These filters will be shortly labeled as Least-Squares Filters (LSF) in the following. The
second set of DCF results is obtained instead with the simple filter suggested in Annex
D of the Standard [10], i.e., a filter with a triangular impulse response denoted simply as
standard (STD) P Class filter in the rest of this manuscript. Quite importantly, also the
classic equiripple FIR filters resulting from Parks and McClellan minimax optimization
were considered in the analysis. However, they led to worse performances in almost all
testing conditions. Therefore, the results obtained with such filters are omitted for the
sake of brevity. This is probably due to the fact that, unlike the LSF and STD filters, the
constant ripple magnitude in the stopband cannot be further reduced unless the order of
the filter is increased. As a consequence, possible crucial disturbances (e.g., large high-order
harmonics) with frequencies close to the position of the peaks of the stopband ripples are
not attenuated enough.
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Table 4. Maximum TVE, |FE|, and |RFE| values obtained with the estimation algorithms for PMUs described in Section 2 over 2-cycle (a) or 4-cycle (b) observation intervals. All the
testing conditions, except the one with the additive wideband noise, are specified in the IEEE/IEC Standard 60255-118-1:2018 for P Class PMUs [10]. The limits mentioned in the Standard
(when defined) are also reported. The values exceeding such limits are highlighted in bold, whereas the cells containing the best results obtained in each test are shaded.

(a)

Test Type

TVEmax (%) |FE|max (mHz) |RFE|max (Hz/s)

Lim. IpDFTc Tuned
TWLS

DCF
Lim. IpDFTc Tuned

TWLS

DCF
Lim. IpDFTc Tuned

TWLS

DCF

LSF STD LSF STD LSF STD
Freq. dev. only (±2 Hz) 1 0.01 0.00 0.38 0.17 5 8.9 17.7 13.5 7.2 0.4 0.2 0.0 8.1 4.2

Freq. dev.+ 1% harmonics 1 0.01 0.74 0.38 0.17 5 10.6 141 14.1 7.5 0.4 0.3 54.7 8.4 4.8
AM (fa = 2 Hz, ka = 10%) 3 0.04 0.00 0.36 0.05 60 8.0 0.0 0.0 0.0 2.3 0.1 0.0 0.0 0.0

PM (fp = 2 Hz, kp = 0.1 rad) 3 0.04 0.00 0.37 0.03 60 1.8 0.5 1.6 0.7 2.3 0.0 0.0 0.6 0.0
Freq. ramp 1 (±2 Hz @ ±1 Hz/s) 1 0.02 0.00 0.40 0.19 10 5.4 10.8 13.9 7.2 0.4 0.1 0.0 8.0 4.2

AWGN (SNR = 60 dB) - 0.03 0.04 0.36 0.03 - 14.1 24.3 2.7 2.5 - 0.6 1.4 0.3 0.3
(b)

Test Type

TVEmax (%) |FE|max (mHz) |RFE|max (Hz/s)

Lim. IpDFTc Tuned
TWLS

DCF
Lim. IpDFTc Tuned

TWLS

DCF
Lim. IpDFTc Tuned

TWLS

DCF

LSF STD LSF STD LSF STD
Freq. dev. only (±2 Hz) 1 0.00 0.03 0.06 0.16 5 0.1 0.1 0.4 6.3 0.4 0.0 0.0 0.3 3.8

Freq. dev.+ 1% harmonics 1 0.00 0.01 0.06 0.16 5 0.1 1.4 0.4 6.5 0.4 0.0 0.3 0.3 4.0
AM (fa = 2 Hz, ka = 10%) 3 0.15 0.00 0.09 0.15 60 14.3 0.0 0.0 0.1 2.3 0.2 0.0 0.0 0.3

PM (fp = 2 Hz, kp = 0.1 rad) 3 0.16 0.00 0.06 0.12 60 2.1 1.8 0.4 2.0 2.3 0.0 0.0 0.0 0.0
Freq. ramp 1 (±2 Hz @ ±1 Hz/s) 1 0.07 0.03 0.06 0.21 10 0.1 0.1 0.5 6.3 0.4 0.0 0.0 0.4 3.8

AWGN (SNR = 60 dB) - 0.02 0.03 0.09 0.02 - 2.9 3.5 2.9 2.2 - 0.2 0.3 0.3 0.1
1 Results obtained considering an exclusion interval of 40 ms (i.e., twice the maximum mandatory reporting period at 50 Hz) at the beginning and at the end of the frequency ramp.
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The results in Table 4a,b can be summarized as follows.

• As far as synchrophasor estimation is concerned, all algorithms return maximum TVE
values compliant with the Standard even over observation intervals so short as two
nominal power line cycles. However, the IpDFTc and the tuned-TWLS algorithms pro-
vide the lowest TVE values. In particular, the IpDFTc algorithm is generally preferable
in steady-state testing conditions and in the presence of wideband noise, whereas the
tuned TWLS estimator is superior when dynamic disturbances (i.e., modulations and
frequency ramps) are considered.

• The estimation of the fundamental frequency is quite problematic. If just two cycles
are observed, no estimator is able to meet the P Class |FE| limits reported in the
Standard in all the testing conditions. In fact, further simulations showed that at least
3-cycle observation intervals are needed. In this scenario, the DCF approach with the
STD filter seems to be globally preferable. If 4-cycle observation intervals are used, all
estimators return results compliant with the Standard. The |FE| values are indeed
comparable in most cases. However, the tuned TWLS approach appears slightly better
than the others (and particularly much better than the IpDFTc under the effect of
modulations).

• Finally, as far as ROCOF estimation is concerned, the IpDFTc estimator is the only
one that is able to meet the P Class |RFE| limits reported in the Standard by using
both 2-cycle and 4-cycle observation intervals. The tuned TWLS approach over 2-
cycle intervals returns accurate results in most cases, but it is strongly affected by
the presence of harmonics. On the other hand, if 4-cycle observation intervals are
used, the IpDFTc, the tuned TWLS, and the DCF approach with the LSF filter exhibit
comparable performances.

Table 5a,b shows the maximum values of TVE, |FE| and |RFE| (computed over
1000 records) obtained over 6-cycle (a) or 8-cycle (b) observation intervals in the M Class
testing conditions listed at the beginning of this Section. In this case, longer observation
intervals are considered as they are needed to ensure a higher measurement accuracy. The
M Class limits mentioned in the Standard (when defined) are also shown. The values
exceeding such limits are highlighted in bold, whereas the cells containing the best results
obtained in each test are shaded. Again, both the IpDFTc and the tuned TWLS algorithm
rely on a Hann window. The LSF FIR filters used with the DCF approach is again based on
least-squares frequency response error minimization assuming 6-cycle-long and 8-cycle-
long impulse responses, respectively. On the contrary, the M Class STD filter suggested
in Annex D of the Standard does no longer exhibit a triangular impulse response. In fact,
it results from the classic window design method: the non-causal sinc-shaped impulse
response of the ideal low-pass filter is indeed modulated by a Hamming window.
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Table 5. Maximum TVE, |FE| and |RFE| values obtained with the estimation algorithms for PMUs described in Section 2 over 6-cycle (a) and 8-cycle (b) observation intervals. All the
testing conditions, except the one with the additive wideband noise, are specified in the IEEE/IEC Standard 60255-118-1:2018 for M Class PMUs [10]. The limits mentioned in the Standard
(when defined) are also reported. The values exceeding such limits are highlighted in bold, whereas the cells containing the best results obtained in each test are shaded.

(a)

Test Type

TVEmax (%) |FE|max (mHz) |RFE|max (Hz/s)

Lim. IpDFTc Tuned
TWLS

DCF
Lim. IpDFTc Tuned

TWLS

DCF
Lim. IpDFTc Tuned

TWLS

DCF

LSF STD LSF STD LSF STD
Freq. dev. only (±5 Hz) 1 0.00 0.00 0.33 0.13 5 0.0 0.0 17.0 8.4 0.4 0.0 0.0 9.8 4.7

Freq. dev.+ 10% harmonics 1 0.00 0.02 0.34 0.13 5 0.1 0.2 21.1 10.2 0.4 0.0 0.3 12.1 6.5
AM (fa = 5 Hz, ka = 10%) 3 2.36 0.07 0.49 0.89 300 140 5.2 1.5 2.3 14 4.2 0.1 3.4 8.1

PM (fp = 5 Hz, kp = 0.1 rad) 3 2.12 0.07 0.32 0.69 300 70.4 59.0 9.6 36.4 14 2.1 1.7 1.5 1.9
Freq. ramp 1 (±5 Hz @ ±1 Hz/s) 1 0.15 0.00 0.29 0.20 10 0.0 0.1 1.2 9.0 0.4 0.0 0.0 0.1 4.0

AWGN (SNR = 60 dB) - 0.02 0.03 0.33 0.02 - 1.3 1.6 14.1 1.0 - 0.1 0.1 9.1 0.1
10% inter-harmonics 1.3 0.08 2.32 0.57 0.54 10 25.5 100 57.6 70.9 - 2.5 23.6 12.6 12.3

(b)

Test Type

TVEmax (%) |FE|max (mHz) |RFE|max (Hz/s)

Lim. IpDFTc Tuned
TWLS

DCF
Lim. IpDFTc Tuned

TWLS

DCF
Lim. IpDFTc Tuned

TWLS

DCF

LSF STD LSF STD LSF STD
Freq. dev. only (±5 Hz) 1 0.00 0.00 0.34 0.11 5 0.0 0.00 0.7 9.9 0.4 0.0 0.0 0.4 5.7

Freq. dev.+ 10% harmonics 1 0.00 0.00 0.34 0.12 5 0.0 0.2 0.7 11.4 0.4 0.0 0.0 0.4 6.5
AM (fa = 5 Hz, ka = 10%) 3 3.92 0.21 0.43 1.46 300 164.7 9.9 0.5 4.2 14 4.9 0.1 2.2 17.8

PM (fp = 5 Hz, kp = 0.1 rad) 3 3.51 0.20 0.35 1.21 300 119.2 100.3 4.1 59.9 14 3.6 2.8 0.2 2.4
Freq. ramp 1 (±5 Hz @ ±1 Hz/s) 1 0.26 0.00 0.37 0.20 10 0.1 0.1 1.2 9.9 0.4 0.0 0.0 0.4 5.8

AWGN (SNR = 60 dB) - 0.02 0.02 0.35 0.20 - 0.9 1.2 0.8 0.7 - 0.1 0.1 0.5 0.0
10% inter-harmonics 1.3 0.02 0.02 0.38 0.12 10 3.6 6.5 7.7 7.8 - 0.4 0.3 1.3 3.0

1 Results obtained considering an exclusion interval of 140 ms (i.e., 7 times the maximum mandatory reporting period at 50 Hz) at the beginning and at the end of the ramp.



Appl. Sci. 2021, 11, 2318 15 of 24

The results in Table 5a,b can be summarized as follows.

• As far as synchrophasor estimation is concerned, the maximum TVE values basically
confirm the conclusions drawn in the P Class case. The IpDFTc algorithm is gener-
ally preferable in steady-state testing conditions and in the presence of wideband
noise, whereas the tuned TWLS estimator is superior when dynamic disturbances
(i.e., modulations and frequency ramps) are considered. However, in the M Class case,
such differences are exacerbated. The tuned TWLS approach is not able to meet the
Standard limits in the presence of out-of-band inter-harmonics over 6-cycle intervals,
but it meets the Standard requirements over 8-cycle intervals. Quite interestingly, the
accuracy of the tuned TWLS algorithm over longer intervals under dynamic condi-
tions slightly degrades due to the larger Taylor’s series approximation errors of the
phasor model at the edges of the observation intervals [29]. The IpDFTc estimator is
not able to meet the Standard limits over 8-cycle intervals when amplitude or phase os-
cillations perturb the fundamental component. Only the DCF approach is able to meet
the Standard limits with both interval lengths, although in some testing conditions it
exhibits a slightly worse accuracy than the other algorithms.

• The |FE| values exhibit a trend similar to the TVE ones. The main difference is in the
case of the DCF approach whose behavior is more heterogeneous. In this case, ensuring
compliance with the Standard requirements is much more challenging. Indeed, no
estimator is able to meet the Standard limits in the case of inter-harmonic interference
over 6-cycle intervals. Over 8-cycle intervals instead, the IpDFTc estimator returns
generally the best results except in the case of amplitude and phase modulations,
which are more effectively mitigated by the DCF approach with the LSF filter.

• Finally, in the case of ROCOF estimation, almost all algorithms except the DCF ap-
proach with the STD filter exhibit good results. They are indeed compliant with the
limits reported in the Standard (when defined). Globally, the IpDFTc estimator is
preferable over 6-cycle intervals, whereas the tuned TWLS algorithm is better over
8-cycle intervals in accordance with the TVE trend.

3.2. Results in Transient Conditions

To compare the behavior of the three considered IpDFT-tuned estimation algorithms
in transient conditions, both the response times associated with synchrophasor, frequency
and ROCOF estimation, and the measurement delay times are computed in the worst-case
conditions specified in the Standard [10]. In this case, the testing conditions are: either
amplitude step changes equal to ±10% of the nominal amplitude or phase step changes of
±10◦. It is worth recalling that the response times are defined as the temporal intervals
between the instants at which, as a result of a step input change, the measured values of
synchrophasor, frequency or ROCOF exceed a specified TVE, |FE| or |RFE| threshold
(i.e., 1%, 5 mHz or 0.4 Hz/s, respectively, in the case of P Class PMUs, or 1%, 5 mHz or
0.1 Hz/s in the case of M Class PMUs) and the times after which the measured values
steadily remain under such thresholds.

During the transients, the maximum over- or undershoots affecting amplitude or
phase estimates (depending on the type of applied input step) are also of interest, as they
are required to be smaller than 5% or 10% of the input step size for P Class and M Class
PMUs, respectively.

The measurement delay time is defined as “the time interval between the instant
that a step change is applied to the input of a PMU and the measurement time when
the stepped parameter achieves a value that is half-way between the initial and final
steady-state values” [10].

In the present study, the P Class and M Class maximum response times and the
maximum measurement delay times (obtained by shifting sample-by-sample the instants
at which the steps occur) are shown in Table 6a,b over 2-cycle and 4-cycle observation
intervals and in Table 7a,b over 6-cycle and 8-cycle observation intervals, respectively.
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Table 6. Maximum response times (expressed in nominal power line cycles) associated with synchrophasor, frequency and ROCOF estimation (a) and maximum delay times (b), under the
influence of the worst-case amplitude or phase step changes specified in the IEEE/IEC Standard 60255-118-1:2018 for P Class PMUs using 2-cycle or 4-cycle observation intervals. The
limits specified in the Standard are also shown. The values exceeding the limits are highlighted in bold, whereas the cells containing the best results obtained in each test are shaded.

(a)

Test Type

Obs.
Inter.

Length
[cycles]

Synchrophasor Resp. Time
(cycles) Frequency Resp. Time (cycles) ROCOF Resp. Time (cycles)

Lim IpDFTc Tuned
TWLS

DCF
Lim. IpDFTc Tuned

TWLS
DCF

Lim. IpDFTc Tuned
TWLS

DCF

LSF STD LSF STD LSF STD
±10%

amp. step
2 2 1.05 0.56 1.23 1.18 4.5 1.84 1.88 9.15 2.76 6 2.89 1.80 9.32 2.98
4 2 1.99 0.94 1.04 2.29 4.5 3.56 3.66 2.73 4.45 6 4.68 3.43 7.97 4.91

±10◦ phase
step

2 2 1.25 1.00 1.35 1.43 4.5 1.85 1.88 9.25 2.88 6 2.88 1.84 9.35 2.99
4 2 2.35 1.10 1.20 2.68 4.5 3.47 3.61 4.33 4.74 6 4.64 3.58 8.18 4.98

(b)

Test Type Obs. Inter.
[cycles]

|Delay Time| (ms)

Lim. IpDFTc Tuned TWLS
DCF

LSF STD

±10% amp. step
2 5 1.50 1.67 3.00 1.80
4 5 1.50 1.50 1.80 1.80

±10◦ phase step
2 5 1.83 2.00 4.70 2.80
4 5 1.83 1.83 2.00 2.50
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Table 7. Maximum response times (expressed in nominal power line cycles) associated with synchrophasor, frequency and ROCOF estimation (a) and maximum delay times (b), under the
influence of the worst-case amplitude or phase step changes specified in the IEEE/IEC Standard 60255-118-1:2018 for M Class PMUs using 6-cycle or 8-cycle observation intervals. The
limits specified in the Standard are also shown. The values exceeding the limits are highlighted in bold, whereas the cells containing the best results obtained in each test are shaded.

(a)

Test Type

Obs.
Inter.

Length
[cycles]

Synchrophasor Resp. Time
(cycles) Frequency Resp. Time (cycles) ROCOF Resp. Time (cycles)

Lim IpDFTc Tuned
TWLS

DCF
Lim. IpDFTc Tuned

TWLS
DCF

Lim. IpDFTc Tuned
TWLS

DCF

LSF STD LSF STD LSF STD

±10% amp.
step

6 7 2.96 1.36 1.68 1.98 14 5.17 5.37 5.78 4.14 14 6.43 4.90 7.33 12.27
8 7 3.93 1.78 1.81 2.60 14 6.71 6.99 4.37 4.96 14 8.09 6.17 8.98 8.91

±10◦ phase
step

6 7 3.49 1.56 1.94 2.32 14 5.13 5.31 7.13 6.36 14 6.36 5.22 7.33 12.28
8 7 4.63 2.04 2.17 3.06 14 6.66 6.96 7.11 7.23 14 8.05 6.78 8.98 8.91

(b)

Test Type Obs. Inter.
[cycles]

|Delay Time| (ms)

Lim. IpDFTc Tuned TWLS
DCF

LSF STD

±10% amp. step
6 5 1.50 1.50 1.50 1.50

8 5 1.50 1.50 2.20 2.00

±10◦ phase step
6 5 1.83 1.83 4.80 4.50

8 5 1.83 1.83 3.00 4.70
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The results in both cases are quite consistent and can be summarized as follows:

• The limits reported in the Standard are met in almost all cases with a few exceptions.
• The maximum synchrophasor and ROCOF response times of the TWLS estimator are

always considerably shorter than those of the IpDFTc estimator. However, the IpDFTc
frequency estimation response times are generally the shortest ones, except under
the effect of amplitude steps when 4-cycle observation intervals are considered. In
fact, this is the sole testing condition in which the DCF approach outperforms the
other estimators. Furthermore, the over- and undershoots obtained with the IpDFTc
estimator are generally smoother than those of the other algorithms. In any case, the
over- and undershoots of all considered algorithms are well below the limits reported
in the Standard. Therefore, they are not reported for the sake of brevity.

• As far as the measurement delay times are concerned, the tuned TWLS and the IpDFTc
estimators exhibit similar performances, quite better than those of the DCF method.
Moreover, they are well below the limits reported in the Standard [10].

4. Discussion

Table 8a,b summarizes the results of the performance analysis in the P Class and
M Class testing conditions reported in Section 3. The estimation algorithms with TVE,
|FE| and |RFE| values and with response times (in the case of amplitude or phase step
changes) below the limits reported in the Standard in all the considered testing conditions
are denoted as Compliant (C). If at least one of the TVE, |FE|, |RFE| or response time
limits is exceeded, an estimator is labeled as Not Compliant (NC). Again, the algorithm
with the best performances in estimating each parameter is highlighted by shading the
corresponding cell in Table 8a,b. The criteria adopted to identify the best estimator of each
parameter for a given observation interval length are the following:

• an algorithm able to return fully compliant TVE, |FE|, |RFE| or response time values
is considered to be better than another one exceeding even a single limit, regardless of
the estimation errors associated with the individual tests;

• if two algorithms exhibit a different number of C and NC tests, the one with a larger
number of compliant results in different tests is considered the better one, regardless
of the estimation errors in the individual tests;

• if two algorithms exhibit the same amount of compliant or non-compliant tests, the
algorithm with a higher number of more accurate results shown in Tables 4–7 is
regarded as the better one;

• if two algorithms exhibit the same amount of compliant or non-compliant tests and
they do not clearly outperform one another (e.g., because results are very similar or
because the number of testing conditions in which they are better is the same), the
estimators are considered to have an equivalent performance.
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Table 8. Overall comparison between the IpDFT-tuned estimation algorithms under study in the
P Class (a) and M Class (b) PMU testing conditions reported in the IEEE/IEC Standard 60255-118-
1:2018. Letter C stands for “full compliance” with all the limits reported in the testing conditions
considered in Section 3 for RR = 50 frame/s, whereas “not compliant” (NC) means that at least one
of the Standard limits is exceeded. The cells related to the best performing algorithm are shaded.

(a)

Estimation
Algorithm

No.
Cycles TVE |FE| |RFE|

Phasor
Resp.
Time

Freq.
Resp.
Time

ROCOF
Resp.
Time

Delay
Time

IpDFTc 2 C NC C C C C C
4 C C C NC C C C

Tuned
TWLS

2 C NC NC C C C C
4 C C C C C C C

DCF with
LSF

2 C NC NC C NC NC C

4 C C C C C NC C

DCF with
STD

2 C NC NC C C C C
4 C NC NC NC NC C C

(b)

Estimation
Algorithm

No.
Cycles TVE |FE| |RFE|

Phasor
Resp.
Time

Freq.
Resp.
Time

ROCOF
Resp.
Time

Delay
Time

IpDFTc 6 C NC C C C C C
8 NC C C C C C C

Tuned
TWLS

6 NC NC C C C C C
8 C C C C C C C

DCF with
LSF

6 C NC NC C C C C

8 C C C C C C C

DCF with
STD

6 C NC NC C C C C
8 C NC NC C C C C

From the analysis of Table 8a it results clearly that in the P-Class testing conditions
full compliance is achieved only with the Tuned TWLS estimator over 4-cycle intervals.
However, this is also the most demanding algorithm from the computational point of view.
The IpDFTc estimator requires a lower computational burden and it is globally the best one
over 2-cycle intervals, although it suffers from excessive |FE| values in steady-state testing
conditions. Over 4-cycle intervals instead, despite its high accuracy, the main problem
of the IpDFTc algorithm is the excessive response time duration affecting synchrophasor
estimation after step changes.

In the M-Class testing conditions summarized in Table 8b the IpDFTc estimator is
globally the best one over 6-cycle observation intervals, but it again suffers from excessive
|FE| values when out-of-band inter-harmonics are considered. On the contrary, the Tuned
TWLS algorithm is confirmed to be both fully compliant and the best estimator over 8-cycle
observation intervals. Quite interestingly, the DCF technique with the LSF filter over
8-cycle intervals ensures full compliance in all tests considered, despite its accuracy and
responsiveness not being excellent in any test.

5. Experimental Results in a Practical Case Study

To validate the simulation-based performance comparison reported above in a case
study of practical interest, 1000 2-cycle, 4-cycle, 6-cycle and 8-cycle data records of a
waveform generated by a function generator Agilent 33220A were collected through a
12-bit data acquisition system (DAQ) NI6023E. Each generated waveform exhibits nominal
normalized amplitude, initial phase chosen at random in the range [0, 2π], fundamental
frequency within [47 Hz, 52 Hz] and a Total Harmonic Distortion (THD) of about 9.4%. The
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THD level purposely slightly exceeds the limit reported in the Standard EN 50160:2010 [33].
In particular, according to that Standard, the range [47 Hz, 52 Hz] shall never be exceeded,
although in practice the system frequency is required to lie within [49.5 Hz, 50.5 Hz]
for 95% of the time of a week. The THD instead must be not greater than 8% with the
first 25 harmonics that have to be smaller than a value ranging from 0.5% to about 6%
of the fundamental, depending on the harmonic order. In the current study, just the
harmonics from the 2nd to the 7th ones are included. Their amplitude is equal to 2%, 5%,
1%, 6%, 0.5% and 5% of the fundamental, respectively. The values of amplitude, phase,
frequency and ROCOF evaluated at the reference times were estimated a posteriori through
a multi-harmonic sine-fitting procedure [40].

The bar diagram in Figure 2 shows the maximum TVE, |FE| and |RFE| values
computed over all data records and associated with the IpDFTc algorithm, the tuned TWLS
estimator and the DCF technique using either the LSF or the STD filter, respectively. Given
that, as shown in Sections 3 and 4, the best results as well as the full compliance of some
algorithms are obtained over 4-cycle intervals in the P Class case and over 8-cycle intervals
in the M Class case, respectively, the results obtained over 2-cycle and 6-cycle intervals are
omitted here for the sake of brevity. Moreover, the TVE, |FE| and |RFE| values obtained
over 2 cycle intervals are very large due to the large spectral leakage caused by the 2nd
and 3rd harmonic.

The results in Figure 2 confirm that, despite the presence of a variety of uncertainty
contributions (most notably the limited spectral purity of the adopted waveform generator,
the limited effective resolution of the DAQ and the uncertainty associated with the recon-
struction of the reference values of amplitude, phase, frequency and ROCOF) the behavior
of the estimation algorithms under test is consistent with the simulation results shown in
Tables 4b and 5b. In particular, it is evident that:

• the IpDFTc estimator exhibits the best accuracy both over 4-cycle and 8-cycle observa-
tion intervals, as expected since it is natively conceived to counteract the effect of the
2nd harmonic;

• the tuned TWLS returns slightly worse results, but it is worth recalling that it behaves
better in dynamic and transient testing conditions;

• the DCF technique is outperformed with either filter although the results obtained
using a 4-cycle-long LSF are not much worse than those achieved with the IpDFTc
and the tuned TWLS estimators. Note that the TVE values of the DCF technique
with the LSF over 8-cycle intervals are quite worse than those over 4 cycle-intervals.
However, this behavior is consistent with the corresponding simulation results shown
in Tables 4b and 5b and this is probably due to the larger bandwidth of the LSF with
an 8-cycle-long impulse response compared with the LSF with a 4-cycle-long impulse
response. Indeed, while the latter filter is conceived for P Class applications, the
former one is optimized not to perturb stronger amplitude and phase oscillations in
the M Class case. Thus, the LSF with an 8-cycle-long impulse response makes the DCF
technique more sensitive to noise (e.g., injected by the experimental tested).



Appl. Sci. 2021, 11, 2318 21 of 24Appl. Sci. 2020, 10, x FOR PEER REVIEW 18 of 21 

 
Figure 2. Maximum TVE, |FE|, and |RFE| values obtained with the IpDFTc algorithm, the tuned 
TWLS estimator and the DCF technique (using either the LSF or the STD filter), over 1000 
experimental 4-cycle and 8-cycle data records with system frequency in the range [47 Hz, 52 Hz] 
and THD ≈ 9.4%. The THD level slightly exceeds the limits specified in the Standard EN. 

6. Conclusions 
Recent research results have shown that if a preliminary fundamental frequency 

measurement is performed to compensate for the effect of static off-nominal frequency 
deviations, the accuracy of some of the most common estimation algorithms for PMUs 
can be greatly improved. Till now, to the best of Authors’ knowledge, no clear 
performance comparisons between estimation algorithms exploiting the benefits of a 
preliminary frequency measurement have been reported in the scientific literature. In this 
paper, the performances of three alternative techniques for the estimation of AC 
waveform amplitude, phase, frequency and ROCOF based on an a prior 2-point 
Interpolated Discrete Fourier Transform (IpDFT) stage are evaluated in the very same P 
Class or M Class testing conditions specified in the IEEE/IEC Standard 60255-118-1:2018 
and using data records of the same size. The algorithms considered in this study are: the 
corrected IpDFT (IpDFTc), the tuned Taylor Weighted Least Squares (TWLS) estimator, 
and the frequency Down-Conversion and low-pass Filtering (DCF) technique with two 
alternative types of low-pass filter. The performance comparison shows that the IpDFTc 
and the tuned TWLS methods are generally more accurate and exhibit shorter transients 
than the DCF technique, although the latter one still fulfills the Standard requirements in 

IpDFTc Tuned TWLS DCF with LSF DCF with STD
0

0.1

0.2

0.3

0.4

0.5
J1 = 4 cycles (P Class)

J1 = 8 cycles (M Class)

IpDFTc Tuned TWLS DCF with LSF DCF with STD
0

5

10

15

IpDFTc Tuned TWLS DCF with LSF DCF with STD
0

2

4

6

8

10

12

Figure 2. Maximum TVE, |FE|, and |RFE| values obtained with the IpDFTc algorithm, the tuned
TWLS estimator and the DCF technique (using either the LSF or the STD filter), over 1000 experimental
4-cycle and 8-cycle data records with system frequency in the range [47 Hz, 52 Hz] and THD ≈ 9.4%.
The THD level slightly exceeds the limits specified in the Standard EN.

6. Conclusions

Recent research results have shown that if a preliminary fundamental frequency
measurement is performed to compensate for the effect of static off-nominal frequency
deviations, the accuracy of some of the most common estimation algorithms for PMUs
can be greatly improved. Till now, to the best of Authors’ knowledge, no clear perfor-
mance comparisons between estimation algorithms exploiting the benefits of a preliminary
frequency measurement have been reported in the scientific literature. In this paper, the
performances of three alternative techniques for the estimation of AC waveform amplitude,
phase, frequency and ROCOF based on an a prior 2-point Interpolated Discrete Fourier
Transform (IpDFT) stage are evaluated in the very same P Class or M Class testing conditions
specified in the IEEE/IEC Standard 60255-118-1:2018 and using data records of the same
size. The algorithms considered in this study are: the corrected IpDFT (IpDFTc), the tuned
Taylor Weighted Least Squares (TWLS) estimator, and the frequency Down-Conversion and
low-pass Filtering (DCF) technique with two alternative types of low-pass filter. The per-
formance comparison shows that the IpDFTc and the tuned TWLS methods are generally
more accurate and exhibit shorter transients than the DCF technique, although the latter
one still fulfills the Standard requirements in most testing conditions. Quite importantly,
the behavior of the DCF algorithm is strongly affected by the chosen low-pass filter and
it could be further improved by adopting custom optimization strategies for FIR filter
design. The IpDFTc technique is preferable over short intervals and it overcomes the others
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when the analyzed waveform is affected by steady-state harmonic and inter-harmonic
disturbances. However, it is considerably worse than the tuned TWLS estimator in the
presence of amplitude or phase oscillations and it is not able to ensure compliance to the
IEEE/IEC Standard in a few testing conditions. On the contrary, the tuned TWLS estimator
is much more effective in dynamic conditions, it exhibits shorter synchrophasor and RO-
COF response times (although with greater overshoots) and, assuming a reporting rate of
50 readings/s, it returns fully compliant results in the P Class and M Class tests described
in the IEEE/IEC Standard over 4-cycle and 8-cycle observation intervals, respectively.
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Appendix A. Analytical Expressions of the Elements of Vector P̂r in (23)

In [28] it is shown that, if K = 2, the elements of vector P̂r in (23) can be computed
analytically in the frequency domain as follows, i.e.,

ĉ(0)1,r = α33Re{Yr,W2(ν̂10,r)} − α35
2π Re

{
Y(1)

r,W2(ν̂10,r)
}
− α13

4π2 Re
{

Y(2)
r,W2(ν̂10,r)

}
ŝ(0)1,r = α44 Im{Yr,W2(ν̂10,r)}+ α24

2π Im
{

Y(1)
r,W2(ν̂10,r)

}
− α46

4π2 Re
{

Y(2)
r,W2(ν̂10,r)

}
,

ĉ(1)1,r = −α24 Im{Yr,W2(ν̂10,r)} − α22
2π Im

{
Y(1)

r,W2(ν̂10,r)
}
+ α26

4π2 Im
{

Y(2)
r,W2(ν̂10,r)

}
,

ŝ(1)1,r = −α35Re{Yr,W2(ν̂10,r)}+ α55
2π Re

{
Y(1)

r,W2(ν̂10,r)
}
+ α15

4π2 Re
{

Y(2)
r,W2(ν̂10,r)

}
ĉ(2)1,r = α13Re{Yr,W2(ν̂10,r)} − α15

2π Re
{

Y(1)
r,W2(ν̂10,r)

}
− α11

4π2 Re
{

Y(2)
r,W2(ν̂10,r)

}
,

ŝ(2)1,r = α46 Im{Yr,W2(ν̂10,r)}+ α26
2π Im

{
Y(1)

r,W2(ν̂10,r)
}
− α66

4π2 Im
{

Y(2)
r,W2(ν̂10,r)

}
,

(A1)

where Yr,W2(ν)
def
=

Nh
∑

m=−Nh

yr(m)w2(m)e−j2πνm is the DTFT of the r-th data record weighted

by the squared window w2(·), Y(k)
r,W2(ν)

def
= dkYW2(ν)

dνk = (−j2π)k
Nh
∑

m=−Nh

mkyr(m)w2(m)e−j2πνm

is its k-th order derivative, and coefficients αij, with i,j = 1, 2, . . . , 6, are given by: α11 =
c2

1−a0b2
∆1

,

α13 = − c1c3−a2b2
∆1

,α15 = − a2c1−c3a0
∆1

,α22 =
b2

2−b0b4
∆2

,α24 = c1b4−c3b2
∆2

,α26 = − c1b2−b0c3
∆2

,

α33 =
c2

3−a4b2
∆1

,α35 = a4c1−a2c3
∆1

,α44 =
c2

3−a2b4
∆2

,α46 = − c1c3−a2b2
∆2

,α55 =
a2

2−a0a4
∆1

,α66 =
c2

1−b0a2
∆2

, in
which ∆1 = a4c2

1 − 2a2c3c1 + b2a2
2 + a0c2

3 − a0b2a4, ∆2 = b4c2
1 − 2b2c3c1 + a2b2

2 + b0c2
3 −

a2b0b4, where
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a0 =
Nh

∑
m=−Nh

w2(m) cos2(2πν̂10,rm),

a2 =
Nh

∑
m=−Nh

m2w2(m) cos2(2πν̂10,rm),

a4 =
Nh

∑
m=−Nh

m4w2(m) cos2(2πν̂10,rm),

b0 =
Nh

∑
m=−Nh

w2(m) sin2(2πν̂10,rm),

b2 =
Nh

∑
m=−Nh

m2w2(m) sin2(2πν̂10,rm),

b4 =
Nh

∑
m=−Nh

m4w2(m) sin2(2πν̂10,rm),

c1 = 0.5
Nh

∑
m=−Nh

mw2(m) sin(4πν̂10,rm),

c3 = 0.5
Nh

∑
m=−Nh

m3w2(m) sin(4πν̂10,rm).

(A2)
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