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Abstract: Lately, 3D imaging techniques have achieved a lot of progress due to recent developments
in 3D sensor technologies. This leads to a great interest regarding 3D image feature extraction and
classification techniques. As pointed out in literature, one of the most important and discriminative
features in images is the textural content. Within this context, we propose a texture feature extraction
technique for volumetric images with improved discrimination power. The method could be used
in textured volumetric data classification tasks. To achieve this, we fuse two complementary pieces
of information, feature vectors derived from Local Binary Patterns (LBP) and the Gray-Level Co-
occurrence Matrix-based methods. They provide information regarding the image pattern and the
contrast, homogeneity and local anisotropy in the volumetric data, respectively. The performance of
the proposed technique was evaluated on a public dataset consisting of volumetric textured images
affected by several transformations. The classifiers used are the Support Vector Machine, k-Nearest
Neighbours and Random Forest. Our method outperforms other handcrafted 3D or 2D texture
feature extraction methods and typical deep-learning networks. The proposed technique improves
the discrimination power and achieves promising results even if the number of images per class is
relatively small.

Keywords: 3D feature extraction; volumetric texture classification; LBP; GLCM; 3D co-occurrence
matrix

1. Introduction

The image classification domain has received a lot of interest from researchers due
to its significant contribution and successful implementation in different applications
from the biomedical domain, remote sensing, industry and many more. The task of image
classification involves the prediction of a class from a set of predefined categories for a given
input image by taking into consideration its visual content [1]. Even if the components
of an image classification system depend on the specific application in which the system
is used, two processes are always needed in any supervised machine-learning image
classification task: training and testing. The training step uses a training set of images
for which the categories to which they belong are known. These images are analysed by
using a feature extraction technique, which is used to provide the most important and
discriminative features in an image (stored as a feature vector). In the testing step, as input
for the classification system, a new image is used, and the goal of this step is to predict
the membership class of that image [2]. The same feature extraction method is used to
determine the feature vector for the new image. At this point, a classification operation is
used to compare this feature vector with the ones obtained in the training phase and to
assign the new image to the nearest class based on a specific criterion.

The feature extraction step is the most important in such a task since the machine-
learning algorithm operates on the extracted features [3]. The image analysis process is
used to obtain a reduced representation of the images by keeping only the most important
information. If the features are not sufficiently relevant and discriminative, even the
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most powerful machine-learning algorithm cannot achieve a good performance. The
discrimination power is gained by descriptors that provide low intra-class variability and
high variability between different classes [4]. The image classification task is a challenging
one because images are exposed to different illumination conditions, can be affected
by noise and can suffer different transformations. That is why the extracted features
should provide invariance and robustness to these conditions in order to achieve a good
classification performance.

One of the most important characteristics of images is the texture. This is true espe-
cially for medical images where the textural features and the statistical indicators (such
as kurtosis, entropy) are the most relevant for the detection of several diseases, such as
breast cancer [5]. The textural description of images was implied in many feature extraction
techniques proposed in literature. Most of them were mainly focused on 2D textured
images. Volumetric image analysis and classification is of interest nowadays due to the
progress gained concerning 3D sensor technologies and imaging techniques [6]. In the
medical domain, 3D images are widely used in computer-aided diagnostic systems that are
based on images acquired, for example, by magnetic resonance imaging (MRI), computed
tomography (CT) and ultrasound techniques. Such volumetric images are represented as
data cubes, so feature extraction methods should be adapted to deal with this type of data.
Since texture is a very important feature of medical images, powerful and discriminative
texture feature extraction methods are needed to achieve a reliable classification of such
images, taking into consideration that for volumetric images, the computation complexity
is a challenging problem.

Due to the progress gained in the 3D imaging domain, the interest regarding volumet-
ric texture feature analysis methods increased. Even if 2D feature extraction methods can
still be applied on slices of 3D images, this strategy would disregard the relations between
slices. The disadvantage of such an approach is the information loss in the propagation
of texture along the neighbouring slices. The 3D feature extraction field is significantly
less developed than the 2D one. Most of the 3D feature analysis methods are extensions of
efficient and popular 2D descriptors. Such descriptors include the Local Binary Patterns
operator [7], which was extended to 3D in [8]. If, in the 2D formulation, each pixel is
compared to its neighbours located on a circular neighbourhood, in the 3D extension of
LBP addressed in [3], the authors define neighbours on a sphere. Since the dimensionality
is a problem in the 3D space, a uniformity criterion is used to reduce the number of possible
patterns. In the 2D case, this criterion involves the usage of patterns with at most two
bitwise transitions in the pattern. We refer to the original publication, [7], for further
details. For volumetric images, the authors propose relaxing the criterion to allow up to
three transitions. A 2D LBP-derived operator, the Extended Local Binary Patterns (ELBP),
was adapted to deal with volumetric images in [9]. A rotation invariant 3D extension
based on the LBP descriptor was introduced in [10] where the authors considered using
precomputed 2-patterns.

Another efficient texture descriptor besides LBP is the Gray-Level Co-occurrence
Matrix (GLCM) which is used as a tool in order to derive second-order statistics from 2D
textured images. An extension of GLCM to volumetric images is proposed in [11]. This
method is similar to its 2D variant, but the displacement vector is defined by using three
coordinates and a higher number of orientations. Another extension to 3D involves the
volumetric run-length matrix from which several texture features are used to describe 3D
data [12].

Application of volumetric texture analysis methods in the medical domain has become
more and more prevalent in recent years. The magnetic resonance imaging (MRI) technique
is very important for the medical domain, being a tool used in diagnostic systems. Thus,
there is a high interest to develop powerful feature extraction and classification algorithms
adapted to this type of images in order to make the distinction between healthy and
non-healthy tissue. In [13], the authors propose a feature extraction technique for the
classification of magnetic resonance images involving malignant or benign breast lesions.
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For segmentation of lesions, a fuzzy c-means clustering-based method is used. The features
are extracted from a nondirectional GLCM which is obtained by summing all directional
GLCMs for all 13 independent directions. In [14], magnetic resonance images of the brain
are classified using as feature descriptor multi-sort co-occurrence matrices. This implies
considering several axes and combining different features in a multidimensional matrix.
In [15], MRI images of knees are analysed by considering a sub-band filtering method.
For reducing the size of the feature vector, a feature selection algorithm based on the
Bhattacharyya distance measure is proposed. Lately, for the classification of MRI images,
different deep-learning-based methods have been proposed in literature, such as [16],
where the authors compare three different types of Convolutional Neural Networks (CNN)
for the classification of brain MRI images. Another example of brain tumour classification
performed on MRI images is [17], where the authors propose a new CNN architecture that
can be used to help medical experts to carry out a diagnostic.

Other methods used for volumetric image texture feature extraction include using
Locally Oriented Wavelet Transforms as in [18]. The three-dimensional Gaussian Markov
Random Fields are employed in [19] for the detection of COPD (chronic obstructive pul-
monary disease) by considering a dataset containing images of lungs acquired by the
computer tomography imaging technique. Another paper that uses Gaussian Markov
Random Fields for the analysis of volumetric textures performs the discrimination of soft
tissue from abdomen CT images [20].

The paper is structured as follows. Section 2 reviews the original LBP operator along
with an improved variant and the 2D and 3D versions of the GLCM feature extraction
technique. Section 3 describes the proposed method, a 3D texture feature extraction
technique for the analysis of volumetric images. Section 4 describes the experimental setup,
Section 5 presents the obtained results, while the conclusions are given in Section 6.

The proposed approach fuses two complementary feature vectors: a feature vector
derived from the 3D version of the Block Matching and 3D Filtering Extended Local Binary
Patterns (BM3DELBP_3D) operator and a feature vector generated by the Improved 3D
Gray-Level Co-occurrence Matrix (IGLCM_3D). BM3DELBP_3D provides features that are
robust to Gaussian noise and have good invariance properties. The extracted features are
based on the sign of the difference between pixels, but the magnitude of the difference is
not taken into consideration. This type of information is generated by the complementary
feature vector given by the Improved 3D Gray-Level Co-occurrence Matrix. This method
computes co-occurrence matrices based both on image intensity information and on the
gradient image.

2. Background
2.1. Local Binary Patterns (LBP)

The Local Binary Patterns (LBP) operator is a texture descriptor that is widely used
in literature in many computer vision applications due to its efficiency in describing
local texture structures, simplicity, speed of computation and robustness to illumination
variations [7]. The LBP operator provides a local representation of textured images which
is obtained by computing differences between neighbouring pixels. By considering a
neighbourhood around each pixel, an LBP code is computed for each image spatial location.
The feature vector is obtained by computing the histogram of all LBP codes. The improved
LBP variant proposed in [7] (based on the original formulation [21]) considers circular
neighbourhoods of variable sizes which allows the generation of texture features at different
scales. By adopting a multi-resolution approach as proposed in the same paper, a degree of
invariance to the change of the observation scale can also be attained. The multi-resolution
strategy implies the concatenation of feature vectors obtained at different scales. The
authors also propose a uniformity criterion in order to improve the rotation invariance
of the extracted features. The uniform patterns are the ones with at most two bitwise
transitions in the pattern. As pointed out in [7], if there is a large number of spatial
transitions in the pattern, it is more likely that the pattern will change to a different one
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during rotation. The uniformity criterion improves the rotation invariance, but also reduces
the size of the feature vector. Moreover, a noisy pattern creates fluctuations below or above
the value of the central pixel due to the random character of the noise which results
in many transitions in the pattern. By considering the uniformity criterion, the noisy
patterns are considered as non-uniform and are discarded instead of being interpreted as a
strong contrast between the central pixel and its neighbours. The number of transitions
is expressed by a uniformity function, U. The uniform rotation invariant LBP (riu2) is
computed using:

LBPriu2
R,P (x c) =


P−1
∑

n=0
s(x c− xR,P,n), if U(LBP R,P) ≤ 2

P + 1, otherwise
(1)

where xc is the central pixel, s(x) is the sign function given in (2), xR,P,n is the nth neighbour
pixel from a neighbourhood having P neighbours and a radius R and U is the unifor-
mity function;

s(x) =
{

0, if x < 0
1, if x ≥ 0

(2)

In a neighbourhood with P neighbours, there are exactly P + 1 uniform patterns.
Each uniform pattern is labelled separately depending on the number of bits of 1 in the
pattern, but all non-uniform patterns are labelled together under the mixed label P + 1.
The histogram corresponding to the obtained LBP codes has a number of P + 2 bins. The
non-uniform patterns can be discarded and thus, the final feature vector is of size P + 1 [7].

2.2. Block Matching and 3D Filtering Extended Local Binary Patterns (BM3DELBP)

Even if the LBP operator is efficient in many texture classification problems, it has
a great disadvantage: the noise sensitivity. In order to handle this issue and to increase
the discrimination power of the LBP, we proposed in a previous work [22], the Block
Matching and 3D Filtering Extended Local Binary Patterns (BM3DELBP) operator which
was inspired by the Median Robust Extended Local Binary Patterns formalism [23]. Instead
of considering raw pixel values like LBP, BM3DELBP introduces a filtering step in the
feature extraction operation and considers responses to a state-of-the-art filter, the Block
Matching and 3D Filtering (BM3D) [24]. Thus, the vulnerability to noise is addressed
by using this denoising technique, which is able to attenuate high levels of Gaussian
noise without altering the texture structures for particular choices of the set of parameters.
This is done by performing the denoising in the transform domain. In the first step, a
grouping by block-matching is performed: 2D blocks that are similar to a reference block
are stacked together in a 3D group. By considering a 3D transform, the signal is represented
sparsely in the transform domain due to the similarity between the blocks that compose
a group. In the 3D transform domain, a second step is performed: collaborative filtering.
In this phase, the noise is eliminated by shrinking the transform coefficients, the textural
features being still preserved. We refer to the original publication for more details regarding
BM3D [24]. Despite recent developments addressing the use of deep-learning techniques
in the image filtering domain, the BM3D collaborative approach remains one of the most
performant [25].

The feature space of this operator is built by considering two types of features as
in the Extended Local Binary Patterns [26]: pixel intensities and differences between
pixel intensities. The first category includes two components: The central pixel intensity
operator labelled BM3DELBP_CI and the neighbours’ intensities component denoted by
BM3DELBP_NIriu2

R, P:
BM3DELBP_CI(x c) = s(x c−CI) (3)
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where CI is the mean value of the entire input image, s(x) is the sign function given in (2)
and xc is the central pixel;

BM3DELBP_NIriu2
R, P(x c) =


P−1
∑

n=0
s(x R,P,n−uR), if U(BM3DELBP_NI) ≤ 2

P + 1, otherwise
(4)

where uR is the mean value of the neighbouring pixels, being given in (5), xR,P,n is the
nth neighbour pixel from a neighbourhood having P neighbours and a radius R, U is the
uniformity function and the superscript riu2 indicates the use of uniform rotation invariant
patterns that have U ≤ 2;

uR =
1
P
×

P−1

∑
n=0

xR,P,n (5)

The second category contains one component based on differences between pixel
intensities, the radial difference operator which is denoted by BM3DELBP_RDriu2

R, P:

BM3DELBP_RDriu2
R, P(x c) =


P−1
∑

n=0
s(x R,P,n−xR−1,P,n), if U(BM3DELBP_RD) ≤ 2

P + 1, otherwise
(6)

where R and R − 1 are the radii of two circles on which the considered pixels are located.
Figure 1 shows the diagram which describes the BM3DELBP feature extraction process.

A textured image is used as input for the feature extraction system. Then, the input image
is filtered using BM3D for reducing the noise. The multi-resolution strategy is used for
providing a degree of invariance to the observation scale: the features extracted from each
scale of interest are concatenated. The considered scales are the ones having the radii 2,
4, 6 and 8. They were chosen by trial and error such that the computed operator is able
to discriminate features at smaller scales (R = 2 and R = 4) but also at larger scales (R = 6
and R = 8). For each scale, the three operators given in (3), (4) and (6) are computed and
the resulting codes are fused together into a joint histogram. The histogram of the central
pixel intensity operator has 2 bins and the histograms corresponding to the other two
operators have P + 2 bins, but only P + 1 bins correspond to uniform patterns. Thus, the
joint histogram is of size (P + 1) × (P + 1) × 2. The final histogram, which is used as
texture descriptor of the input image, is obtained by concatenating all joint histograms for
all considered scales.

2.3. 2D Gray-Level Co-Occurrence Matrix (2D GLCM)

The Gray-Level Co-Occurrence Matrix (GLCM) is a classical texture feature extraction
technique proposed in 1973 by Haralick [27]. To make the article self-contained and for a
better understanding, we briefly review below how the 2D GLCM is built.

GLCM is a statistical method that takes into account the spatial relationship between
pixels. This matrix is not the feature vector itself, is rather a tool for obtaining second-
order statistics.

The GLCM expresses the frequency of appearance of pairs of pixels which are situated
at a certain distance and orientation to each other and which have certain grey-level
intensities. The two elements that characterize the spatial relationship between pixels
define the displacement vector:

d = (d x, dy
)

(7)

Generally, the orientation for 2D GLCM is considered for four independent directions
which are given in Figure 2. Table 1 shows the corresponding displacement vectors.
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Figure 1. The functional block scheme of the BM3DELBP operator.

Figure 2. The four independent directions used to compute the 2D GLCM.

Table 1. Displacement vectors for 2D GLCM.

Direction Displacement Vector

0◦ (distance 1, 0)
45◦ (distance, distance)
90◦ (0, distance)
135◦ (−distance, distance)

1 the distance between pixels in a pair = number of pixels moved in a certain direction.

The GLCM is a square matrix, having Nq rows and Nq columns (Nq is the number
of different pixel values in the input image). The input image can be scaled in order to
reduce the number of grey-levels. Generally, the GLCM is built on images that have 8, 16,
32 or 64 quantization levels. This is done for providing statistical confidence: the matrix
must contain a reasonably non-sparse representation. Additionally, a smaller number of
quantization levels implies reducing the computation time.
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The coefficients of the GLCM are expressed in terms of probabilities rather than in
number of appearances by performing normalization: the terms are divided by the total
number of possible combinations (the sum of the matrix values). The normalized GLCM is
given in (8):

GLCM_2Dn(i, j) =
GLCM_2D(i, j)

∑
Nq

i=1 ∑
Nq

j=1 GLCM_2D(i, j)
(8)

where GLCM_2Dn is the normalized version of GLCM_2D which is given in (9):

GLCM_2Ddx,dy(i, j) =
m

∑
x=1

n

∑
y=1

{
1, if I(x, y) = i and I

(
x + dx,y + dy

)
= j

0, otherwise
(9)

where I is the input image of size m× n.
The feature vector is obtained by computing the Haralick indicators [27] from the

obtained normalized GLCM. We refer to [27] for a complete description of these statisti-
cal indicators.

2.4. 3D Gray-Level Co-Occurrence Matrix (3D GLCM)

The 2D GLCM was extended to 3D [11] in order to be able to capture information be-
tween different slices of a volumetric image. The displacement vector has three components
as defined in (10):

d = (d x, dy, dz
)

(10)

In this case, the orientation is defined for 13 independent directions. Table 2 shows
the 13 corresponding displacement vectors.

Table 2. Displacement vectors for 3D GLCM.

Displacement Vector

(distance 1, 0, distance)
(distance, 0, 0)

(distance,0, −distance)
(distance, distance, distance)

(distance, distance, 0)
(distance, distance, −distance)

(0, distance, distance)
(0, distance, 0)

(0, distance, −distance)
(−distance, distance, distance)

(−distance, distance, 0)
(−distance, distance, −distance)

(0, 0, distance)
1 the distance between pixels in a pair = number of pixels moved in a certain direction.

Let I be an input volumetric image of size m× n× p voxels. The 3D GLCM of I is
given in (11) and its normalized version in (12):

GLCM_3Ddx,dy,dz(i, j) =
n

∑
x=1

m

∑
y=1

p

∑
z=1

{
1, if I(x, y, z) = i and I

(
x + dx, y + dy, z + dz

)
= j

0, otherwise
(11)

GLCM_3Dn(i, j) =
GLCM_3D(i, j)

∑
Nq

i=1 ∑
Nq

j=1 GLCM_3D(i, j)
(12)

where GLCM_3Dn is the normalized version of GLCM_3D.
We also had prior contributions in this thematic area by proposing a 3D version of the

BM3DLEBP operator and a more discriminative 3D GLCM based on which we built the
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proposed method. We describe the two proposed methods and the feature vectors’ fusion
in the subsequent section.

3. The Proposed Method

The proposed method covered in the article extends our prior contributions validated
in the two conference papers [28] and [29] by fusing the two results and provides a complex
means of feature description in 3D. In [28], we proposed the 3D version of BM3DELBP
(BM3DELBP_3D) whose feature space is constructed based on the signs of differences
between neighbouring pixels without any information regarding the amount of difference
such as the contrast or degree of homogeneity in the analysed image. This knowledge is
captured by the Improved 3D Gray-Level Co-Occurrence Matrix (IGLCM_3D) introduced
by us in [29]. Following, the proposed approach described by the current paper aims at
the combination of the two types of texture features in order to increase the discrimination
power. Figure 3 summarizes the feature extraction process of the proposed technique.

Figure 3. The block scheme of the proposed feature extraction technique.

3.1. The Extension of BM3DELBP to 3D (BM3DELBP_3D)

We proposed in [28] the extension of the BM3DELBP operator to volumetric tex-
ture feature extraction. Figure 4 illustrates the functional block scheme describing the
computation of this operator by considering only one observation scale.

Figure 4. Block scheme of the 3D version of BM3DELBP for a single scale (© [2020] IEEE. Reprinted [adapted], with
permission, from [28]).
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For each 3D input image, the BM3DELBP codes are extracted separately from each
of the three orthogonal planes XY, XZ and YZ. As the input image is a cube, for each
plane, there are several image slices. The BM3DELBP operator is thus applied separately
on each slice of each plane. For each slice, the BM3D denoising technique is applied
and then, by considering the responses to the applied filter, the three components of the
BM3DELBP operator are computed: BM3DELBP_CI, BM3DELBP_NI and BM3DELBP_RD.
The feature vector corresponding to one orthogonal plane results from the concatenation
of the histograms obtained for each volumetric component. A multiresolution strategy is
used to attain a degree of invariance to the change of the observation scale based on the
same strategy described in Section 2.2. Two scales were considered given by their radius:
R = 2 and R = 4, respectively. In [22], four scales were used for 2D image classification.
Since we deal with volumetric images and the computation complexity is challenging, we
proposed reducing the number of scales to two in order to minimize the feature vector size
and to avoid the classic curse of dimensionality problem. Figure 5 presents the considered
multiresolution strategy for the 3D case.

Figure 5. The multi-resolution strategy for BM3DELBP_3D (© [2020] IEEE. Reprinted [adapted], with
permission, from [28]).

The operations involved are the ones from Figure 4 and they are considered for both
scales of interest, the resulting feature vector being obtained by concatenation.

3.2. The Improved 3D Gray-Level Co-Occurrence Matrix (IGLCM_3D)
3.2.1. Definition and Method Overview

We proposed in the preliminary work [29] an improved version of the 3D GLCM, the
IGLCM_3D. The functional diagram is given in Figure 6.

As shown in Figure 6, the feature extraction process is based on the computation of
4 types of co-occurrence matrices. The first one is the 3D standard GLCM defined in (12),
which is computed directly from the input image intensities. The other three types of
3D co-occurrence matrices are based on the gradient image information. This can depict
the distribution of strong or weak edges and the degree of uniformity of the input image.
The matrix based on the gradient magnitude information is labelled Gradient Magnitude
Co-Occurrence Matrix (GMCM) and is given in (13) for an input image I of size m× n× p.

GMCMdx,dy,dz(i, j) =
m

∑
x=1

n

∑
y=1

p

∑
z=1

{
1, if M(x, y, z) = i and M

(
x + dx, y + dy, z + dz

)
= j

0, otherwise
(13)

where M =
√

GX
2+GY

2+GZ
2 is the gradient magnitude and GX, GY and GZ are the

components of the gradient vector in the three directions.
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Figure 6. The IGLCM_3D block scheme (© [2020] IEEE. Reprinted [adapted], with permission, from [29]). 1 Gradient
Magnitude Co-Occurrence Matrix; 2 Azimuth Angle Co-Occurrence Matrix; 3 Elevation Angle Co-Occurrence Matrix.

The other two 3D co-occurrence matrices are based on the gradient orientation, which
offers additional information about the local anisotropy for the considered textured images.
The two matrices are labelled Azimuth Angle Co-Occurrence Matrix (AACM) and Elevation
Angle Co-Occurrence Matrix (EACM), given in (14) and (15), respectively:

AACMdx,dy,dz(i, j) =
m

∑
x=1

n

∑
y=1

p

∑
z=1

{
1, if θ(x, y, z) = i and θ

(
x + dx, y + dy, z + dz

)
= j

0, otherwise
(14)

where θ = tan−1
(

GY
GX

)
is the azimuth angle.

EACMdx,dy,dz(i, j) =
m

∑
x=1

n

∑
y=1

p

∑
z=1

{
1, if Φ(x, y, z) = i and Φ

(
x + dx, y + dy, z + dz

)
= j

0, otherwise
(15)

where Φ = tan−1
(

GZ√
GX

2+GY
2
) is the elevation angle.

3.2.2. Computation of the Haralick Feature Vector

The 3D GLCM is computed from the quantized image by considering the image
intensities information of the input volumetric cube. The number of quantization levels is
Nq = 32, chosen as a trade-off between time efficiency and loss of data. The considered di-
rections are all 13 independent directions provided in Table 2 and the considered distances
are: 1 voxel and 2 voxels, respectively. The GLCM matrix is generated for all considered
orientations and distances, resulting 26 matrices (13 directions × 2 distances). All matrices
are normalized. The computed GLCM does not constitute the feature vector, it is just a
tool used to compute different statistical indicators. For the GLCM matrix, 14 Haralick
indicators [27] are determined: energy, entropy, correlation, contrast, homogeneity, vari-
ance, sum average, sum entropy, sum variance, difference entropy, difference variance,
information measures of correlation 1 and 2 and the maximal correlation coefficient. They
are computed for each of the 26 obtained matrices. The Haralick feature vector (GLCM
feature vector) is obtained by considering the block scheme from Figure 7.
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Figure 7. Feature vector computation from Haralick indicators.

For each distance, there are 14 Haralick indicators calculated for each of the 13 direc-
tions. For each Haralick indicator, the average and standard deviation are computed for all
directions in order to gain a degree of invariance to rotation. By concatenating the features
obtained for the two considered distances, a degree of invariance to the observation scale
is also obtained. The final Haralick feature vector contains 56 characteristics as detailed in
the Appendix A.

3.2.3. Computation of the Three Gradient-Based Matrices and the Corresponding
Feature Vectors

Figure 8 illustrates the block diagram describing the computation of the gradient-
based matrices.

The following four steps are considered: noise reduction, computation of the gradient
image, computation of GMCM, AACM and EACM matrices and of the feature vectors.

The three co-occurrence matrices are based on the gradient image. In order to prevent
the detection of false edges caused by noise, we employ a 3D Gaussian smoothing filter. The
considered parameters for this filter were chosen as a trade-off between noise elimination
and attenuation of edges: the size of the kernel is of 5 × 5 × 5, the mean of the 3D Gaussian
function is 0 and the standard deviation is σ = 2. For preventing illumination changes, a
normalization is performed at the end of this step.
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Figure 8. The calculation of the GMCM, AACM and EACM matrices (© [2020] IEEE. Reprinted [adapted], with permission,
from [29]).

For computing the gradient image, the 3D Sobel operator is used since it offers noise
robustness and computational efficiency. The considered 3D Sobel masks are the ones
provided by Matlab [30].

After the computation of the gradient image, three parameters are obtained: the
gradient magnitude given in (13), gradient azimuth angle given in (14) and gradient
elevation angle given in (15). They are quantized using 32 levels and used for construct-
ing the GMCM, AACM and EACM matrices. The three matrices are computed for all
13 independent directions and two distances (1 voxel and 2 voxels) and are normalized
after computation.

In the last step, three feature vectors are computed: the GMCM feature vector (gradient
magnitude-based feature vector), the AACM feature vector (azimuth-based feature vector)
and the EACM feature vector (elevation-based feature vector).

The gradient magnitude-based feature vector is extracted from the GMCM matrix. As
gradient-based indicators, we proposed in [29] the following measures:

• Quantity of strong edges (Q):

Q =
Nq

∑
i=1

Nq

∑
j=1

(i− j)2×GMCMn(i, j) (16)

where GMCMn is the normalized version of GMCM.
A high value for Q indicates that there are many strong edges. This indicator favours

substantial gradient changes for neighbouring voxels in the considered image.

• Slightly textured image indicator (STI):

STI =
Nq

∑
i=1

Nq

∑
j=1

1

1 + (i− j)2×GMCMn(i, j) (17)

This indicator favours voxel pairs situated near the principal diagonal and implies
that the encountered edges are weak, so the considered input image is slightly textured.

• Uniformity (U):

U =
Nq

∑
i=1

Nq

∑
j=1

(GMCM n(i, j))2 (18)
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A large value for U means that there are high values in the GMCM matrix. Since this
matrix is normalized and its terms are expressed as probabilities, this implies that there are
only a few high values. This leads to the conclusion that there are few edges and the image
presents textural uniformity.

• Strong edges indicator (S):

S =
Nq

∑
i=1

Nq

∑
j=1

i2× GMCMn(i, j) (19)

S favours large gradients, a high value indicating that there are many strong edges in
the analysed textured image.

These indicators are computed for each GMCM matrix. The gradient magnitude-based
feature vector is obtained by considering the same strategy used for the Haralick features
as described in Figure 7. The final gradient magnitude-based feature vector contains
16 characteristics as detailed in appendix A.

The azimuth-based feature vector is computed from the AACM matrix by considering
the entropy indicator:

Entropy_1 = −
Nq

∑
i=1

Nq

∑
j=1

AACMn(i, j)× log(AACMn(i, j)), for AACMn(i, j) 6= 0 (20)

The elevation-based feature vector is computed from the EACM matrix. The same
indicator is used, the entropy:

Entropy_2 = −
Nq

∑
i=1

Nq

∑
j=1

AACMn(i, j)× log(EACMn(i, j)), for EACMn(i, j) 6= 0 (21)

A high value for the entropy indicator is obtained for heterogeneous input textures
and a low value for coherent textured images since the entropy describes the degree
of randomness. In this context, the entropy is used to depict differences regarding the
local anisotropy.

For building the two orientation-based feature vectors, this entropy indicator is com-
puted for all AACM and EACM matrices and the same fusion strategy as for GLCM is
used. The final azimuth-based feature vector contains four characteristics and the same is
valid for the elevation-based feature vector.

3.2.4. Final Feature Vector Computation

Figure 9 describes the computation of the final feature vector of the IGLCM_3D. The
Haralick feature vector, the gradient magnitude-based feature vector, the azimuth-based
feature vector and the elevation-based feature vector are fused together by concatenation
in order to form the final feature vector.

Figure 9. Final feature vector computation.

3.3. Fusion of the BM3DELBP_3D and IGLCM_3D Complementary Features

From (3), (4) and (6), we can see that the three components that define the feature space
of the BM3DELBP_3D are based on the sign of the difference between pixels: between the
central pixel and the mean of an entire slice, between the neighbouring pixels and their
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mean value and between the neighbouring pixels located on two circles with different radii.
This means that only the sign of the difference is taken into account and no information
regarding the amount of difference is considered. The BM3DELBP_3D operator does not
provide any data related to the contrast of an image, to the degree of homogeneity, number
of strong or weak edges and their quantity. This information is discarded completely. How-
ever, this type of information is actually generated by the IGLCM_3D matrix. Therefore,
the supplementary knowledge gained by fusing the feature vectors of the two methods can
be helpful in increasing the discrimination power.

3.4. Invariance Properties of the Proposed Method

The feature vector generated by our approach provides a degree of invariance to the
change of the observation scale, to rotation and illumination conditions. Improved proper-
ties of scale invariance are obtained by considering four different circular neighbourhoods
in the BM3DELBP_3D case and two distances for IGLCM_3D. The invariance to rotation
is achieved by using the uniform rotation invariant coding strategy for BM3DELBP_3D.
The disadvantage of IGLCM_3D is the fact that it is not inherently invariant to rotation.
However, a degree of invariance to this transformation can be obtained by computing
the mean and standard deviation across several directions. The illumination invariance is
provided by BM3DELBP_3D since this is a key property of the original LBP. However, in
the IGLCM_3D case, only the azimuth and elevation-based features are invariant to linear
transformations of the illumination, as explained in detail in [29].

4. Experimental Setup
4.1. Dataset

In order to evaluate the proposed feature extraction technique, we used the RFAI
dataset [31] which is publicly available. It is composed of volumetric synthetic textures of
size 64× 64× 64 voxels. The authors in [31] considered several techniques for obtaining
the 3D images: an interpolation strategy, a method based on the Fourier Transform, a
random distribution of geometric shapes and a combination of all these methods. The first
experiment was carried out by using the images built using the interpolation approach for
which we selected 9 texture classes which are detailed in Table 3.

Table 3. Texture classes for the first experiment.

Texture Class Name The Number of Texture Samples Per Class

Blobs 40
Blocks 40

PerlinAmp 40
PerlinNoise 40

RidgedPerlin 40
SinusSynthesis 40

Stone 40
Uwari 40
Veins 40

As in [32], we opt to use the images constructed by interpolation and the nine texture
categories. As shown in the original publication, those classes are more similar to biological
tissue. We considered 40 texture samples per class: 10 regular images that are not affected
by any transformation, 10 smoothed samples upon which the Gaussian blur was applied,
10 noisy textures altered by Gaussian noise and 10 textures affected by a subsampling
distortion. Figure 10 illustrates a regular sample for each of the nine categories.
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Figure 10. Examples of normal texture images from each considered category: (a) Blobs (b) Blocks (c) PerlinAmp (d)
PerlinNoise (e) RidgedPerlin (f) SinusSynthesis (g) Stone (h) Uwari (i) Veins.

Figure 11 presents some texture samples from category Blocks in order to exem-plify
the applied transformations.

For better observing the fact that the images constructed by interpolation are true 3D
volumes, we show in Figure 12 a regular image sample from class SinusSynthesis. We
can see that the 2D pattern is not translated along the depth axis since the slices of the 3D
images are not identical.

In the second experiment, we considered using all images from the RFAI database [31]:
images built by interpolation, by using the Fourier Transform, by considering a random
distribution of geometric shapes and a combination of all these methods. In total, there
are 4745 images and 95 image categories. Figure 13 shows examples of images built by
considering also the other strategies.
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Figure 11. Examples of textures from category Blocks: (a) normal (b) noisy (c) smoothed (d) subsampled.

Figure 12. Example of a regular image represented in slice view (slices 1, 32 and 64).
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Figure 13. Examples of images constructed by: (a) using the Fourier Transform (b) consider-
ing a random distribution of geometric shapes (c,d) using a combination of all these methods
including interpolation.

4.2. Considered Methods in the Experimental Configuration

We considered as classifiers the Support Vector Machine (SVM), the k-Nearest Neigh-
bours (kNN) and the Random Forest (RF) techniques. The parameters used are detailed in
the Appendix A.

The considered texture feature extraction techniques are: the 3D GLCM reviewed
in Section 2.4., the IGLCM_3D described in Section 3.2., the LBP_2D operator [8], the
3D version of the BM3DELBP operator described in Section 3.1., a typical Convolutional
Neural Network (CNN) and the proposed method.

LBP_2D is the uniform rotation invariant Local Binary Pattern operator defined in
(1). This descriptor was used for 3D images by computing the LBP codes for each slice
of the XY plane. The final feature vector represents the concatenation of the histograms
corresponding to each plane. The same approach was used in [8] to compute the LBP_2D
for the same database.

We also considered a deep-learning technique to compare our proposed method to.
We built a typical CNN, which is used as an end-to-end method, acting both as feature
descriptor and classifier. The network architecture was constructed by trial and error
in order to obtain the best classification performance in a time efficient manner, being
detailed in Appendix A. The complexity of the network can be increased by adding more
convolutional layers and filters, but this would come with a major disadvantage: increased
processing times.

5. Results and Discussion

We compared the results obtained using the proposed method with the approaches
in [8,11]. In the first experiment, we considered nine image classes built using an inter-
polation approach. Tables 4–6 show the obtained average accuracy and macro-averaging
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precision for each considered approach for the first experiment. The macro-averaging
recall is identical to the average accuracy for the considered database (because the number
of samples is the same for each category). For each image class, 75% of the image sam-
ples were used for training and 25% for testing. All parameters used in the experimental
configuration are given in Appendix A.

Table 4. Classification results for the first experiment with the SVM classifier [%].

Metric/Operator
Average Accuracy and
Associated Standard

Deviation

Macro-Averaging Precision
and Associated Standard

Deviation

3D GLCM [11] 74.01 ± 4.36 75.27 ± 4.5
IGLCM_3D [29] 86.44 ± 3.09 87.4 ± 3.24

LBP_2D [8] 78.02 ± 7.54 81.1 ± 6.6
BM3DELBP_3D [28] 94.2 ± 2.66 94.76 ± 2.32

Typical CNN 92.88 ± 3.1 93 ± 1.72
Proposed method 99.63 ± 0.63 99.67 ± 0.56

The results are averaged over 100 random partitions of the train and test sets.

Table 5. Classification results for the first experiment with the kNN classifier [%].

Metric/Operator
Average Accuracy and

Associated
Standard Deviation

Macro-Averaging Precision
and Associated Standard

Deviation

3D GLCM [11] 67.73 ± 4.26 68.52 ± 4.80
IGLCM_3D [29] 73.24 ± 4.35 74.57 ± 4.37

LBP_2D [8] 75.36 ± 7.61 79.39 ± 6.24
BM3DELBP_3D [28] 77.29 ± 4.47 80.04 ± 4.45

Proposed method 89.20 ± 3.10 89.73 ± 3.31
The results are averaged over 100 random partitions of the train and test sets.

Table 6. Classification results for the first experiment with the RF classifier [%].

Metric/Operator
Average Accuracy and
Associated Standard

Deviation

Macro-Averaging Precision
and Associated Standard

Deviation

3D GLCM [11] 70.53 ± 4.63 71.83 ± 5.12
IGLCM_3D [29] 79.93 ± 4.27 80.97 ± 4.46

LBP_2D [8] 69.36 ± 8.41 74.73 ± 7.27
BM3DELBP_3D [28] 87.44 ± 3.35 88.33 ± 3.38

Proposed method 96.44 ± 1.96 96.72 ± 1.88
The results are averaged over 100 random partitions of the train and test sets.

From the obtained results, we can see that the SVM classifier achieved the best per-
formance for all considered methods. The results show that IGLCM_3D surpasses the 3D
GLCM. This proves that the additional information provided by the gradient image is dis-
criminative, being able to increase the classification performance. The proposed indicators
based on the gradient magnitude and the gradient orientation are able to offer important
information regarding the distribution of strong and weak edges and the local anisotropy in
the considered textures. The 2D version of LBP achieves a poor classification performance.
This happens because it does not take into consideration the relations between different
slices in a volumetric image as the BM3DELBP_3D does. The BM3DELBP_3D operator
surpasses the GLCM-based methods and the 2D LBP since it offers a good robustness to
noise and an increased discrimination power. In [8], the 2D LBP method and their proposed
3D version of LBP achieve a similar performance on noisy and normal images from the
same database.

The CNN approach achieves a good performance. However, the feature vector pro-
vided by BM3DELBP_3D proves to be better in terms of discrimination power for the
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considered database when considering the SVM and RF techniques. Texture analysis
methods based on handcrafted features do not require very large databases to perform
well, as illustrated by the reported results on a relatively small dataset. However, this
is not the case for deep-learning methods such as CNN. They need a large amount of
training images to reach their maximum potential. This remark may contribute to the not
top performance of the CNN method. Moreover, a more complex architecture or a larger
number of epochs could improve the CNN accuracy, but of course, this would lead to
increased processing times.

The obtained classification scores show that the proposed feature extraction approach
achieves the best performance for the considered database. The information gained by
fusing the feature vectors of the BM3DELBP_3D and IGLCM_3D increases the discrimi-
nation power, giving very high classification figures. Our method proves to be superior
also with respect to the results obtained in [32]. The authors in [32] used the same dataset,
the same image classes and the SVM classifier. They compared four feature extractors by
adopting three different experimental setups. They achieved an accuracy ranging from 63%
and 88% in case of the 2D single slice setup, between 66% and 91% for the 3D intra-slice
configuration and between 74% and 86% for the 3D inter-slice approach.

Figure 14 presents the confusion matrix obtained for one random partition of the
training and test sets on the RFAI database by using the proposed feature extraction
method and the SVM classifier.

Figure 14. The confusion matrix obtained by using the proposed method for a random partition.

As shown in Figure 14, only one image from the test set was misclassified on this
run: an image from class 4 (PerlinNoise) was predicted as being of class 8 (Uwari). The
misclassified sample is a smoothed image. We show in Figure 15 the misclassified sample
along with a smoothed training sample from the true class and a smoothed training sample
from the predicted class.

We can observe from Figure 15 that due to the applied Gaussian blur, the texture
structures of the misclassified sample are altered. Visually, the sample in (a) is similar to
the smoothed training samples of another class, Uwari. That is why, in this situation, a
classification error appeared.

In the second experiment, we performed the same tests, but we considered all images
from the RFAI database. Tables 7–9 present the obtained classification results.
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Figure 15. (a) smoothed misclassified sample from class PerlinNoise (b) smoothed training image from class PerlinNoise
(c) smoothed training image from class Uwari.

Table 7. Classification results for the second experiment with the SVM classifier [%].

Metric/Operator
Average Accuracy

and Associated
Standard Deviation

Macro-Averaging
Precision and

Associated Standard
Deviation

Macro-Averaging
Recall and

Associated Standard
Deviation

3D GLCM [11] 93.67 ± 0.57 94.04 ± 0.51 93.67 ± 0.57
IGLCM_3D [29] 95.44 ± 0.43 95.84 ± 0.4 95.44 ± 0.44

LBP_2D [8] 88.84 ± 1.03 89.9 ± 0.89 88.84 ± 1.03
BM3DELBP_3D [28] 96.86 ± 0.47 97.12 ± 0.42 96.86 ± 0.47

Typical CNN 75.04 ± 0.62 79.27 ± 1.02 75.08 ± 0.6
Proposed method 98.34 ± 0.36 98.51 ± 0.31 98.34 ± 0.36

The results are averaged over 100 random partitions of the train and test sets.

Table 8. Classification results for the second experiment with the kNN classifier [%].

Metric/Operator
Average Accuracy

and Associated
Standard Deviation

Macro-Averaging
Precision and

Associated Standard
Deviation

Macro-Averaging
Recall and

Associated Standard
Deviation

3D GLCM [11] 86.61 ± 0.83 86.94 ± 0.96 86.61 ± 0.83
IGLCM_3D [29] 91.61 ± 0.78 92.18 ± 0.72 91.60 ± 0.78

LBP_2D [8] 82.63 ± 1.16 84.42 ± 1.16 82.63 ± 1.16
BM3DELBP_3D [28] 91.57 ± 0.72 92.41 ± 0.72 91.56 ± 0.72

Proposed method 93.98 ± 0.61 94.59 ± 0.60 93.97 ± 0.61
The results are averaged over 100 random partitions of the train and test sets.

Table 9. Classification results for the second experiment with the RF classifier [%].

Metric/Operator

Average Accuracy
and

Associated Standard
Deviation

Macro-Averaging
Precision and

Associated Standard
Deviation

Macro-Averaging
Recall and

Associated Standard
Deviation

3D GLCM [11] 90.21 + −1.21 90.83 + −1.16 90.21 + −1.21
IGLCM_3D [29] 95.35 + −0.59 95.69 + −0.61 95.35 + −0.59

LBP_2D [8] 80.12 + −1.68 82.19 + −1.48 80.12 + −1.68
BM3DELBP_3D [28] 95.01 + −0.63 95.39 + −0.5 95.01 + −0.63

Proposed method 97.30 + −0.48 97.52 + −0.46 97.30 + −0.48
The results are averaged over 100 random partitions of the train and test sets.
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As in the first experiment, SVM proves to be the most performant classifier. The
proposed approach achieves a promising performance even for a high number of image
categories and a relatively small number of samples, providing the best classification results
from all the considered techniques. The CNN-based method is not able to generalize
very well, to adapt to new test images for such a small number of images per class,
while handcrafted features prove to work well even in this situation. IGLCM_3D and
BM3DELBP_3D perform similarly well, better than the volumetric GLCM. The 2D version
of LBP is less discriminative than the 3D variants, as expected.

The first experiment uses only images built by interpolation. We chose this part of the
dataset because it is the most challenging. These images are smoothed, the high frequency
details are reduced and there are not many modifications along the Z axis. We show in
Figure 16 the GLCM and GMCM matrices computed for a sample interpolated image from
class Blobs for a single direction and distance.

Figure 16. (a) GLCM matrix (b) GMCM matrix computed for an image obtained by interpolation.

We can see from Figure 16 the fact that most of the non-zeroes values in the GLCM
matrix are situated near the principal diagonal. This indicates that the variation of the
neighbouring pixels’ intensities is very small and there are more low than high spectral
components. From the GMCM matrix (Figure 16b) we can observe that the non-zero values
are placed again near the principal diagonal which implies that the gradient variation is
very small. Moreover, since the majority of the high values are grouped in the top left
corner, we can deduce that the gradients’ norms are very small. In the second experiment,
the images constructed by considering the other strategies contain more high frequency
details as shown in Figure 13. Due to the nature of the images from the first experiment, the
3D GLCM and the IGLCM_3D provide worse results in the first experiment compared to
the second one. The same applies to LBP_2D which performs worse in the first experiment
as it is not able to capture many details using its unitary radius since the images contain
many relatively homogeneous regions. However, the small difference between results for
the two experiments in case of the BM3DELBP_3D technique (in case of using the SVM
classifier) comes from the fact that this operator is able to capture information from more
slices since it uses four different radii: 2, 4, 6 and 8.

The performance of the CNN technique drops considerably in the second experiment
due to the fact that the number of classes is greatly increased: 95 compared to 9. This
deep-learning method can’t generalize well since there are not enough training samples
compared to the high number of image categories.

The proposed technique performs similarly in the two experiments when considering
the SVM and RF classifiers.
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6. Conclusions

We propose a volumetric feature extraction technique which fuses two types of feature
vectors: one based on the signs of the differences between neighbouring voxels generated
by an LBP-based technique and one that takes into account the magnitude of the differences
between pixels, derived from a GLCM-based feature extraction method. The LBP-based
technique is the 3D version of the BM3DELBP algorithm, which provides invariance to
different image transformations and robustness to Gaussian noise, while the GLCM-based
method is an improved volumetric version of the popular GLCM based on image intensity
and on the gradient image information. In the experimental section, we evaluated the per-
formance of the proposed texture feature extraction method on a public dataset containing
synthetic 3D textures altered by several transformations. We considered two experiments
and, in both cases, the proposed technique achieved a better classification performance
than 2D and 3D versions of LBP and of GLCM, respectively, and also surpassed a standard
end-to-end CNN-based method. By fusing the complementary information provided by
the two operators, the discrimination power is improved, and promising classification
results are obtained for the considered dataset. Potential application of the proposed
approach is in the medical and precision agriculture fields.
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Appendix A. Parameters for the Methods Considered in the Experimental Section

A Z-score normalization is performed before classification for all handcrafted feature
vectors. The SVM parameters are obtained through a grid search to achieve the best
classification accuracy. The only parameter needed to be tuned for the kNN technique
is the number of neighbours which was chosen to be 5 by considering a trial and error
approach. For the RF classifier, we considered 90 trees. As suggested in [33], a range
between 64 and 128 ensures an optimal trade-off between accuracy and processing time.

1. The extension of the BM3DELBP to 3D

This algorithm uses the radii R = 2 and R = 4 chosen as a trade-off between
discrimination power and feature vector size. Additionally, the number of neighbours
is P = 8 for both radii, chosen to minimize the size of the feature vector and implicitly
the computation complexity. The noise standard deviation for the BM3D filter [24] is
m = 18 (this parameter is tuned to obtain the highest classification accuracy) for the first
experiment and m = 17 for the second experiment. The size of the final feature vector is
2 scales × 3 planes × (nr_of_bins_CI + nr_of_bins_NI + nr_of_bins _RD) = 2× 3×
(2 + 9 + 9) = 120 values. The SVM parameters [34] used are: RBF (Radial Basis Function)
kernel, C = 100 and γ = 0.001 for the first experiment and C = 100 and γ = 0.01 for the
second experiment.

2. 3D GLCM

There are used 13 directions and 2 distances: d = 1 voxel and d = 2 voxels. The size
of the final feature vector is: 14 Haralick indicators × 2 distances × 1 mean value = 28
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values and the SVM parameters [34] used are: RBF kernel, C = 1000, γ = 0.0125 for the first
experiment and C = 1000, γ = 0.01 for the second experiment. For providing a degree of
rotation invariance, we consider the average (mean value) of the Haralick features for the
13 directions. The 2 feature vectors obtained for the 2 distances are concatenated.

3. IGLCM_3D

Similar parameters as for the 3D GLCM are used. The Haralick feature vector is of
size 56: 14 Haralick indicators × 2 distances (d = 1 and d = 2) × 2 statistical measures
(mean and standard deviation). The gradient magnitude-based feature vector has 16 values:
4 gradient_based indicators × 2 distances (d = 1 and d = 2) × 2 statistical measures (mean
and standard deviation), while the azimuth and orientation-based feature vectors contain 4
values each: 1 orientation-based indicator × 2 distances (d = 1 and d = 2) × 2 statistical
measures (mean and standard deviation). The size of the final feature vector is, therefore:
56 + 16 + 8 = 80 values. The considered SVM parameters [34] are: RBF kernel, C = 1000,
γ = 0.0125 for the first experiment and C = 100, γ = 0.1 for the second experiment. We
consider the average and standard deviation of all indicators for the 13 directions; the final
feature vector concatenates the obtained characteristics for the 2 considered distances.

4. LBP_2D

This algorithm is the uniform rotation invariant LBP with unitary radius and 8
neighbours. The number of bins computed for a histogram for a single slice is 9 (1 is
non-uniform and is not taken into consideration). The size of the final feature vector is:
9 bins × 64 slices = 576 values. The SVM parameters [34] used are: RBF kernel, C = 100
and γ = 0.001 for the first experiment and C = 100 and γ = 0.01 for the second experiment.

5. CNN approach

We considered a typical CNN approach having the architecture given in Table A1.
The input layer performs a Z-score normalization, the considered solver is the stochastic
gradient descent with momentum, the learning rate is 0.01, the mini-batch size is 15 and
the number of epochs is 15 for the first experiment and 30 for the second one.

Table A1. Architecture of the CNN network.

No. Layer Type
Kernel

Size/Pool
Size/Neurons

Stride Number of
Feature Maps Output Size

1 Input - - - 64 × 64 × 64 × 1
2 Convolutional 1 3 × 3 × 3 × 1 [2 2 2] 8 32 × 32 × 32 × 8
3 Batch normalization - - - 32 × 32 × 32 × 8
4 RELU - - - 32 × 32 × 32 × 8
5 Max pooling 1 2 × 2 × 2 [2 2 2] - 16 × 16 × 16 × 8
6 Convolutional 2 5 × 5 × 5 × 8 [2 2 2] 16 8 × 8 × 8 × 16
7 Batch normalization - - - 8 × 8 × 8 × 16
8 RELU - - - 8 × 8 × 8 × 16
9 Max pooling 2 2 × 2 × 2 [2 2 2] - 4 × 4 × 4 × 16

10 Fully connected number of
classes (9 or 95) - - 1 × 1 × 1 ×

number of classes

11 Soft max - - - 1 × 1 × 1 ×
number of classes

6. Proposed method

The size of the feature vector is 200 (120 values from BM3DELBP_3D + 80 values from
IGLCM_3D) and the SVM parameters [34] used are: RBF kernel, C = 1000 and γ = 10−5 for
the first experiment and C = 1000 and γ = 10−4 for the second one.
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