Concentrate Apple Juice Industry: Aroma and Pomace Valuation as Food Ingredients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Volatile Compounds Analysis by Headspace–Solid Phase Microextraction Gas Chromatography Combined with Quadrupole Mass Spectrometry (HS–SPME/GC–qMS)
2.3. Volatile Compounds Extraction by Simultaneous Distillation Extraction (SDE) and Analysis by GC–qMS
2.4. Volatile Compounds Analysis of Dried Apple Pomace and Infusions by HS–SPME/GC–qMS
2.5. Data Processing
3. Results and Discussion
3.1. Volatile Composition of Industrial Apple Aroma
Industrial Apple Aroma Volatile Compounds Quality Assessment
3.2. Volatile Composition of Apple Pomace Hydrodistillate
3.3. Volatile Composition of Dried Apple Pomace and Its Infusions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- O’hea, N.; Arendt, E.K.; Gallagher, E. Dietary fibre and phytochemical characteristics of fruit and vegetable by-products and their recent applications as novel ingredients in food products. Innov. Food Sci. Emerg. Technol. 2012, 16, 1–10. [Google Scholar] [CrossRef]
- Karlsson, H.O.E.; Trägårdh, G. Aroma Recovery during Beverage Processing. J. Food Eng. 1997, 34, 159–178. [Google Scholar] [CrossRef]
- Elss, S.; Preston, C.; Appel, M.; Heckel, F.; Schreier, P. Influence of technological processing on apple aroma analysed by high resolution gas chromatography-mass spectrometry and on-line gas chromatography-combustion/pyrolysis-isotope ratio mass spectrometry. Food Chem. 2006, 98, 269–276. [Google Scholar] [CrossRef]
- Sancho, M.F.; Rao, M.A.; Downing, D.L. Infinite Dilution Activity Coefficients of Apple Juice Aroma Compounds. J. Food Eng. 1997, 34, 145–158. [Google Scholar] [CrossRef]
- She, M.; Hwang, S.T. Recovery of key components from real flavor concentrates by pervaporation. J. Membr. Sci. 2006, 279, 86–93. [Google Scholar] [CrossRef]
- Fernandes, P.A.R.; Ferreira, S.S.; Bastos, R.; Ferreira, I.; Cruz, M.T.; Pinto, A.; Coelho, E.; Passos, C.P.; Coimbra, M.A.; Cardoso, S.M.; et al. Apple pomace extract as a sustainable food ingredient. Antioxidants 2019, 8, 189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhushan, S.; Kalia, K.; Sharma, M.; Singh, B.; Ahuja, P.S. Processing of Apple Pomace for Bioactive Molecules. Crit. Rev. Biotechnol. 2008, 28, 285–296. [Google Scholar] [CrossRef]
- Dhillon, G.S.; Kaur, S.; Brar, S.K. Perspective of apple processing wastes as low-cost substrates for bioproduction of high value products: A review. Renew. Sustain. Energy Rev. 2013, 27, 789–805. [Google Scholar] [CrossRef]
- Yates, M.; Gomez, M.R.; Martin-Luengo, M.A.; Ibañez, V.Z.; Martinez Serrano, A.M. Multivalorization of apple pomace towards materials and chemicals. Waste to wealth. J. Clean. Prod. 2017, 143, 847–853. [Google Scholar] [CrossRef] [Green Version]
- Dhillon, G.S.; Brar, S.K.; Verma, M.; Tyagi, R.D. Apple pomace ultrafiltration sludge—A novel substrate for fungal bioproduction of citric acid: Optimisation studies. Food Chem. 2011, 128, 864–871. [Google Scholar] [CrossRef]
- Cruz, M.G.; Bastos, R.; Pinto, M.; Ferreira, J.M.; Santos, J.F.; Wessel, D.F.; Coelho, E.; Coimbra, M.A. Waste mitigation: From an effluent of apple juice concentrate industry to a valuable ingredient for food and feed applications. J. Clean. Prod. 2018, 193, 652–660. [Google Scholar] [CrossRef]
- Alibas, I.; Zia, M.P.; Yilmaz, A.; Asik, B.B. Drying kinetics and quality characteristics of green apple peel (Mallus communis L. var. “Granny Smith”) used in herbal tea production. J. Food Process. Preserv. 2020; 44, e14332. [Google Scholar] [CrossRef]
- Dixon, J.; Hewett, E.W. Factors affecting apple aroma/flavour volatile concentration: A review. N. Z. J. Crop. Hortic. Sci. 2000, 28, 155–173. [Google Scholar] [CrossRef] [Green Version]
- Leffingwell, J.C.; Leffingwell, D. GRAS Flavor Chemicals—Detection Thresholds. Perfum. Flavorist 1991, 16, 2–19. [Google Scholar]
- Paillard, N.M.M. The flavour of apples, pears and quinces. Dev. Food Sci. 1990, 3, 1–41. [Google Scholar]
- Pino, J.A.; Quijano, C.E. Study of the volatile compounds from plum (Prunus domestica L. cv. horvin) and estimation of their contribution to the fruit aroma. Cienc. E Tecnol. Aliment. 2012, 32, 76–83. [Google Scholar] [CrossRef] [Green Version]
- Czerny, M.; Christlbauer, M.; Christlbauer, M.; Fischer, A.; Granvogl, M.; Hammer, M.; Hartl, C.; Hernandez, N.M.; Schieberle, P. Re-investigation on odour thresholds of key food aroma compounds and development of an aroma language based on odour qualities of defined aqueous odorant solutions. Eur. Food Res. Technol. 2008, 228, 265–273. [Google Scholar] [CrossRef]
- Nunes, C.; Coimbra, M.A.; Saraiva, J.; Rocha, S.M. Study of the volatile components of a candied plum and estimation of their contribution to the aroma. Food Chem. 2008, 111, 897–905. [Google Scholar] [CrossRef]
- Jeszka-Skowron, M.; Zgoła-Grześkowiak, A. Analysis of Antioxidant Activity, Chlorogenic Acid, and Rutin Content of Camellia sinensis Infusions Using Response Surface Methodology Optimization. Food Anal. Methods 2014, 7, 2033–2041. [Google Scholar] [CrossRef] [Green Version]
- Górecki, T.; Pawliszyn, J. Effect of sample volume on quantitative analysis by solid-phase microextraction: Part 1. Theoretical considerations. Analyst 1997, 122, 1079–1086. [Google Scholar] [CrossRef]
- Lee, J.; Chambers, D.H.; Chambers Iv, E.; Adhikari, K.; Yoon, Y. Volatile aroma compounds in various brewed green teas. Molecules 2013, 18, 10024–10041. [Google Scholar] [CrossRef]
- Niu, Y.; Wang, R.; Xiao, Z.; Zhu, J.; Sun, X.; Wang, P. Characterization of ester odorants of apple juice by gas chromatography-olfactometry, quantitative measurements, odour threshold, aroma intensity and electronic nose. Food Res. Int. 2019, 120, 92–101. [Google Scholar] [CrossRef]
- Schumacher, K.; Asche, S.; Heil, M.; Mittelstädt, F.; Dietrich, H.; Mosandl, A. Methyl-Branched Flavor Compounds in Fresh and Processed Apples. J. Agric. Food Chem. 1998, 46, 4496–4500. [Google Scholar] [CrossRef]
- Kebede, B.; Ting, V.; Eyres, G.; Oey, I. Volatile changes during storage of shelf stable apple juice: Integrating GC-MS fingerprinting and chemometrics. Foods 2020, 9, 165. [Google Scholar] [CrossRef] [Green Version]
- Rocha, S.M.; Rodrigues, F.; Coutinho, P.; Delgadillo, I.; Coimbra, M.A. Volatile composition of Baga red wine: Assessment of the identification of the would-be impact odourants. Anal. Chim. Acta 2004, 513, 257–262. [Google Scholar] [CrossRef]
- Ferreira, V. Volatile aroma compounds and wine sensory attributes. In Managing Wine Quality: Viticulture and Wine Quality; Reynolds, A.G., Ed.; CRC Press LLC: Boca Raton, FL, USA, 2010; pp. 3–28. [Google Scholar] [CrossRef]
- VDI 3882, Part 1: Olfactometry. Determination of Odour Intensity; Verlag des Vereins Deutscher Ingenieure: Düsseldorf, Germany, 1992.
- Ruijten, M.W.M.M.; van Doorn, R.; Harreveld, A.P. Assessment of Odour Annoyance in Chemical Emergency Management; RIVM—National Institute for Public Health and the Environment: Bilthoven, The Netherlands, 2009. [Google Scholar]
- Flath, R.A.; Black, D.R.; Guadagni, D.G.; McFadden, W.H.; Schultz, T.H. Identification and Organoleptic Evaluation of Compounds in Delicious Apple Essence. J. Agric. Food Chem. 1967, 15, 29–35. [Google Scholar] [CrossRef]
- Dürr, P.; Schobinger, U. The contribution of some volatiles to the sensory quality of apple and orange juice odour. In Flavour ‘81; Schreier, P., Ed.; De Gruyter: New York, NY, USA, 1981; pp. 179–193. [Google Scholar] [CrossRef]
- Cohen, S.M.; Eisenbrand, G.; Fukushima, S.; Gooderham, N.J.; Guengerich, F.P.; Hecht, S.S.; Rietjens, I.M.C.M.; Rosol, T.J.; Harman, C.; Taylor, S.V. GRAS 29 flavoring substances. Food Technol. 2020, 74, 44–65. [Google Scholar]
- Nikfardjam, M.P.; Maier, D. Development of a headspace trap HRGC/MS method for the assessment of the relevance of certain aroma compounds on the sensorial characteristics of commercial apple juice. Food Chem. 2011, 126, 1926–1933. [Google Scholar] [CrossRef]
- Mao, D.; Liu, H.; Li, Z.; Niu, Y.; Xiao, Z.; Zhang, F.; Zhu, J. Impact of sensory interactions among volatile compounds of juice of Red Delicious apples. Hortic. Environ. Biotechnol. 2020, 61, 197–206. [Google Scholar] [CrossRef]
- Cameleyre, M.; Lytra, G.; Tempere, S.; Barbe, J.C. Olfactory Impact of Higher Alcohols on Red Wine Fruity Ester Aroma Expression in Model Solution. J. Agric. Food Chem. 2015, 63, 9777–9788. [Google Scholar] [CrossRef]
- Karagül-Yüceer, Y.; Vlahovich, K.N.; Drake, M.; Cadwallader, K.R. Characteristic Aroma Components of Rennet Casein. J. Agric. Food Chem. 2003, 51, 6797–6801. [Google Scholar] [CrossRef] [PubMed]
- Schnermann, P.; Schieberle, P. Evaluation of Key Odorants in Milk Chocolate and Cocoa Mass by Aroma Extract Dilution Analyses. J. Agric. Food Chem. 1997, 45, 867–872. [Google Scholar] [CrossRef]
- Fernandes, P.A.R.; Le Bourvellec, C.; Renard, C.M.G.C.; Nunes, F.M.; Bastos, R.; Coelho, E.; Wessel, D.F.; Coimbra, M.A.; Cardoso, S.M. Revisiting the chemistry of apple pomace polyphenols. Food Chem. 2019, 294, 9–18. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, H.; Wang, W.; Jiao, W.; Chen, W.; Zhong, Q.; Yun, Y.H.; Chen, W. Characterization of volatile profiles and marker substances by HS-SPME/GC-MS during the concentration of coconut jam. Foods 2020, 9, 347. [Google Scholar] [CrossRef] [Green Version]
- Lavelli, V.; Corti, S. Phloridzin and other phytochemicals in apple pomace: Stability evaluation upon dehydration and storage of dried product. Food Chem. 2011, 129, 1578–1583. [Google Scholar] [CrossRef]
- Yu, H.; Xie, T.; Xie, J.; Chen, C.; Ai, L.; Tian, H. Aroma perceptual interactions of benzaldehyde, furfural, and vanillin and their effects on the descriptor intensities of Huangjiu. Food Res. Int. 2020, 129. [Google Scholar] [CrossRef]
- King, B.M.; Arents, P.; Bouter, N.; Duineveld, C.A.A.; Meyners, M.; Schroff, S.I.; Soekhai, S.T. Sweetener/Sweetness-Induced Changes in Flavor Perception and Flavor Release of Fruity and Green Character in Beverages. J. Agric. Food Chem. 2006, 54, 2671–2677. [Google Scholar] [CrossRef] [PubMed]
- Robinson, A.L.; Ebeler, S.E.; Heymann, H.; Boss, P.K.; Solomon, P.S.; Trengove, R.D. Interactions between Wine Volatile Compounds and Grape and Wine Matrix Components Influence Aroma Compound Headspace Partitioning. J. Agric. Food Chem. 2009, 57, 10313–10322. [Google Scholar] [CrossRef]
- Friel, E.N.; Linforth, R.S.T.; Taylor, A.J. An empirical model to predict the headspace concentration of volatile compounds above solutions containing sucrose. Food Chem. 2000, 71, 309–317. [Google Scholar] [CrossRef]
- Nunes, C.; Maricato, É.; Cunha, Â.; Rocha, M.A.M.; Santos, S.; Ferreira, P.; Silva, M.A.; Rodrigues, A.; Amado, O.; Coimbra, J.; et al. Chitosan-genipin film, a sustainable methodology for wine preservation. Green Chem. 2016, 18, 5331–5341. [Google Scholar] [CrossRef]
- Pan, X.; Wu, J.; Zhang, W.; Liu, J.; Yang, X.; Liao, X.; Hu, X.; Lao, F. Effects of sugar matrices on the release of key aroma compounds in fresh and high hydrostatic pressure processed Tainong mango juices. Food Chem. 2021, 338, 128117. [Google Scholar] [CrossRef]
Compound | Retention Time (min) | Chromatographic Peak Area (10−7) | Aroma Descriptor 1 | Odor Threshold (ppb) 1 | |||
---|---|---|---|---|---|---|---|
Storage Temperature | Mean (n = 6) | SD | |||||
4 °C (n = 3) | 20 °C (n = 3) | ||||||
Acids | |||||||
Nonanoic acid | 37.7 | 0.01 | 0.03 | 0.02 | 0.01 | Green, Fat | 3000 |
Alcohols | |||||||
Ethanol | 3.7 | 0.40 | 0.49 | 0.44 | 0.07 | Slight, Sweet | 100,000 |
1-Butanol | 10.5 | 0.43 | 0.66 | 0.55 | 0.16 | Sweet, Malty, Solvent-like | 500 |
2-Methyl-1-butanol | 13.8 | 0.28 | 0.47 | 0.38 | 0.11 | Highly diluted–pleasant, Malty | 300 |
1-Hexanol | 22.7 | 9.50 * | 11.74 * | 10.62 | 1.38 | Herbaceous, Green, Fruity, Slightly fatty odor | 500 |
Trans-2-hexenol | 25.2 | 1.14 | 1.31 | 1.23 | 0.10 | Green, Leaf, Walnut | 400 |
1-Octanol | 30.1 | 0.08 | 0.12 | 0.10 | 0.03 | Chemical, Metal, Burnt | 110 |
1-Nonanol | 31.9 | 0.03 | 0.03 | 0.03 | 0.01 | Fat, Green | 50 |
Aldehydes | |||||||
Acetaldehyde | 1.9 | 0.08 | 0.11 | 0.09 | 0.03 | Green, Sweat, Fruity, Pungent | 17 |
Hexanal | 7.2 | 2.12 | 2.78 | 2.45 | 0.55 | Green, Grass | 11 |
Trans-2-hexenal | 13.9 | 4.73 | 5.52 | 5.12 | 0.55 | Green, Apple | 17 |
Benzaldehyde | 29.4 | 0.15 | 0.15 | 0.15 | 0.02 | Bitter almond, Green almond, Burnt sugar | 350 |
Esters | |||||||
Ethyl acetate | 2.9 | 2.06 | 2.15 | 2.11 | 0.30 | Ethereal–Fruity, Pleasant | 13,500 |
Ethyl propionate | 3.8 | 0.13 | 0.22 | 0.18 | 0.09 | Sweet, Apple | 10 |
Propyl acetate | 4.1 | 0.15 | 0.22 | 0.18 | 0.05 | Pear, Raspberry | 2000 |
Methyl butanoate | 4.3 | 0.08 | 0.08 | 0.00 | Apple, Fruity, Sweet | 59 | |
Ethyl butanoate | 5.6 | 1.91 | 2.42 | 2.17 | 0.37 | Fruity, Apple | 1 |
Ethyl 2-methylbutanoate | 6.1 | 2.44 | 3.15 | 2.80 | 0.58 | Sweet, Fruity, Strawberry, Blackberry, Green apple | 0.006 |
Butyl acetate | 6.9 | 7.24 * | 8.47 * | 7.85 | 1.12 | Red apple aroma | 66 |
2-Methylbutyl acetate | 8.7 | 4.84 * | 5.89 * | 5.37 | 0.86 | Fruity | 11 |
Butyl propanoate | 9.5 | 0.35 | 0.35 | 0.09 | Sweet, Fruity | 25 | |
Pentyl acetate | 11.3 | 0.25 | 0.34 | 0.30 | 0.07 | Fruity, Apple | 43 |
Butyl 2-methylbutanoate | 14.3 | 0.70 | 0.87 | 0.78 | 0.21 | Fruity, Apple | 17 |
Ethyl hexanoate | 14.5 | 0.58 | 0.75 | 0.66 | 0.23 | Fruity, Apple peel | 1 |
Hexyl acetate | 17.1 | 10.29 * | 11.84 * | 11.07 | 1.06 | Herbaceous, Fruity | 2 |
(E)-2-Hexenyl acetate | 20.3 | 0.61 | 0.69 | 0.65 | 0.05 | Green, Fruity, Sweet | 320 |
Butyl hexanoate | 25.4 | 0.10 | 0.11 | 0.11 | 0.01 | Green apple, Fruity | 700 |
Hexyl butanoate | 25.6 | 0.24 | 0.28 | 0.26 | 0.02 | Apple, Fruity | 6400 |
Hexyl 2-methylbutanoate | 26.2 | 0.92 | 0.82 | 0.87 | 0.08 | Strawberry, Fruity, Fresh green | 6 |
Benzyl Acetate | 33.0 | 0.01 | 0.01 | 0.01 | 0.00 | Menthol, Woody, Honey, Rain, Pear | 364 |
2-phenylethyl acetate | 34.1 | 0.01 | 0.01 | 0.01 | 0.00 | Sweet, Pipe tobacco, Roses, Honey | 480 |
(E,Z)-2,4-Ethyl decadienoate | 35.2 | 0.04 | 0.04 | 0.01 | Pear | 100 | |
Phenols | |||||||
Estragole | 32.0 | 0.50 | 0.41 | 0.46 | 0.08 | Licorice, Anise | 16 |
Trans-anethole | 33.0 | 0.03 | 0.02 | 0.02 | 0.01 | Anise-like | 73 |
Phenol | 36.2 | 0.002 | 0.002 | 0.001 | Phenol | 5900 | |
Methyleugenol | 36.3 | 0.01 | 0.01 | 0.00 | Clove, Spice | 820 | |
Terpenoids | |||||||
Geranylacetone | 34.5 | 0.05 | 0.05 | 0.05 | 0.01 | Fresh-floral, Light, Sweet-rosy | 60 |
Compound | Retention Time (min) | Concentration (mg/L) 1 | Aroma Descriptor 2 | Odor Threshold (ppb) 2 |
---|---|---|---|---|
Acids | ||||
Hexanoic acid | 42.0 | 25.4 | Sour, Fatty, Sweat, Cheese | 3000 |
Octanoic acid | 46.5 | 5.1 | Rancid, Harsh, Sweaty | 3000 |
Alcohols | ||||
2-methylpropanol | 11.2 | 17.8 | Chemical | 250 |
1-Butanol | 15.6 | 548.8 | Sweet, Malty, Solventlike | 500 |
2-Methyl-1-butanol | 19.3 | 488.8 | Highly diluted–pleasant, Malty | 300 |
1-Pentanol | 22.1 | 30.5 | Fusel, Sweet, Fruity | 4000 |
1-Hexanol | 27.8 | 1426.5 | Herbaceous, Green, Fruity, Slightly fatty odor | 500 |
Cis-3-hexenol | 28.8 | 17.9 | Grass | 70 |
Trans-2-hexenol | 29.7 | 280.4 | Green, Leaf, Walnut | 400 |
Aldehydes | ||||
Hexanal | 10.1 | 26.5 | Green, Grass | 11 |
Trans-2-hexenal | 17.8 | 111.6 | Green, Apple | 17 |
Benzaldehyde | 33.3 | 5.3 | Bitter almond, Green almond, Burnt sugar | 350 |
Esters | ||||
Ethyl-2-methylbutanoate | 8.8 | 13.6 | Sweet, Fruity, Strawberry, Blackberry, Green apple | 0.006 |
Butyl acetate | 9.7 | 59.4 | Red apple aroma | 66 |
2-Methylbutyl acetate | 12.0 | 21.4 | Fruity | 11 |
Hexyl acetate | 20.2 | 20.7 | Herbaceous, Fruity | 2 |
Phenols | ||||
Estragole | 37.3 | 1.8 | Licorice, Anise | 16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coelho, E.; Pinto, M.; Bastos, R.; Cruz, M.; Nunes, C.; Rocha, S.M.; Coimbra, M.A. Concentrate Apple Juice Industry: Aroma and Pomace Valuation as Food Ingredients. Appl. Sci. 2021, 11, 2443. https://doi.org/10.3390/app11052443
Coelho E, Pinto M, Bastos R, Cruz M, Nunes C, Rocha SM, Coimbra MA. Concentrate Apple Juice Industry: Aroma and Pomace Valuation as Food Ingredients. Applied Sciences. 2021; 11(5):2443. https://doi.org/10.3390/app11052443
Chicago/Turabian StyleCoelho, Elisabete, Mariana Pinto, Rita Bastos, Marco Cruz, Cláudia Nunes, Sílvia M. Rocha, and Manuel A. Coimbra. 2021. "Concentrate Apple Juice Industry: Aroma and Pomace Valuation as Food Ingredients" Applied Sciences 11, no. 5: 2443. https://doi.org/10.3390/app11052443
APA StyleCoelho, E., Pinto, M., Bastos, R., Cruz, M., Nunes, C., Rocha, S. M., & Coimbra, M. A. (2021). Concentrate Apple Juice Industry: Aroma and Pomace Valuation as Food Ingredients. Applied Sciences, 11(5), 2443. https://doi.org/10.3390/app11052443