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Abstract: This article presents a research approach that enables the assessment of the technical
condition of complex technical objects. The main emphasis is placed on the load-carrying structures of
these objects. The procedure applying experimental research techniques and computer computations
using the finite element method is described. The combination of the two techniques assesses the
technical condition of the structure. The described approach is presented using the example of
two objects.
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1. Introduction

The issue of assessing the technical condition of industrial facilities is a problem that
has been discussed in the academic community for years, where numerous approaches
developed by scientists are implemented in industry [1–18]. There are many reasons for the
need to assess the technical condition of machines. The two main reasons are operational
safety and operational economic considerations. The first is often related to legal acts aimed
at ensuring the safety of employees at workstations, and the second is an individual issue
for each user entity.

Because of the ongoing global transformation, the economic aspect is more often
connected with the ecological aspect. Increasing ecological demands require companies to
modernize their production processes or completely change their business profile. Some
branches of the extractive industries, which are characterized by a high initial investment
cost and a long amortization time, are an example. New ecological trends and the related
uncertainties regarding the prospects for further operation of some enterprises make the
analysis of the profitability of replacing fatigued technical objects with new ones, for possi-
bly a short service life, of extraordinary importance. A gradual economic transformation
takes time. During this period, the plants must continue to function regularly, but the
purchase of new facilities may be economically unprofitable. For these reasons, the aim
is to use existing facilities for as long and as safely as possible. This requires periodic
assessment of the technical condition based on which steps are taken to ensure the safety
of their operation [19,20].

The assessment of technical condition is a complicated and time-consuming process;
in the case of fatigued and old (often more than 20 years) load-carrying structures, it
is additionally difficult. The reasons for complications include: the need to verify the
current geometry of the object, considering numerous damages and structural changes
that occurred during the operation period, and dealing with missing elements of technical
documentation. The objects of investigation often operate in difficult conditions (dynamic
loads, heat loads, and aggressive corrosion environments), making it challenging to carry
out the verification [21–23].

Based on the assessment of the technical condition, a renovation policy is established,
which extends the service life of the facilities. Such activities may lead to modernization; an
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example is the bucket wheel [12]. The methods of extending the service of technical objects
include efficiency improvements [24], reduction in the dynamic loads’ impact [25,26], and
work safety improvements [27–29].

The following sections present the necessary steps to verify the technical condition of
fatigued load-carrying structures. Each of the stages is described based on two different
objects operating in a mineral processing plant. Such a plant is characterized by difficult
operating conditions (destructive weather, chemical environment accelerating corrosion,
and additional heat loads).

2. Step I—Inspection

The first stage in assessing the technical condition of a structure is conducting a visual
inspection. The purpose of this stage is to detect structural deficiencies and identify areas
that require further investigation.

The stage should be preceded by getting acquainted with the technical documentation
of the structure to make researchers aware of the type and its specificity before the on-site
visit. Knowledge of the operation history (failures, modernizations, etc.) also provides an
important reference in assessing the technical condition. Then, the structure is inspected to
identify any irregularities. These irregularities are:

(a) manufactural,
(b) operational, and
(c) mixed.

Manufactural irregularities are primarily related to deviations between the technical
documentation and the state of the structure (Figure 1) [30]. Operational irregularities are
linked to fatigue processes and manifest in the form of fatigue cracks (Figure 2) and plastic
structure deformations (Figure 3). The mixed nature is associated with post-production and
operational irregularities, where the observed defect may be the reason for both production
or operation, but due to the long-term operations and ongoing fatigue processes, it is
impossible to identify the source. These defects include: deficiencies and disintegration
of structural joints (Figure 4), damage to the paint coating, and corrosion of the structure
(Figure 5), as well as severe vibrations and displacements (Figure 6).
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3. Step II—Technical Conditions Examination

The technical condition examination stage is crucial for the correctness of the tech-
nical condition assessment. At this stage, the key is to define the research area and the
appropriate selection of measurement techniques [31–40]. Practice shows that for economic
reasons, in-depth studies of all defects are not carried out and the research area is narrowed
down to the most severe irregularities. The severity of the defects depends on how much
they affect the current condition and further functioning of the structure and is related to
the importance (places of occurrence) and the extent (number and size of occurrences) of
the anomalies. When designating the area of research, a cause–effect analysis should be
carried out to define the cause of the problems and their effects. The area of research should
focus primarily on examining the causes of the problems to prevent them from arising in
the future. Elimination of the effects is meaningful for the current state of the structure,
while the elimination of the causes of problems is of key importance, as it determines its
future state. The set of research and scope is an individual matter for each technical object.
Examples of research for two diverse objects are presented in the following subsections.
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3.1. Mineral Materials Processing Installation

The first example is mineral materials’ processing cyclone installation. An inspection
of the structure revealed several defects. Numerous corrosion centers, plastic deformations
of the structure, cracks, and repairs were discovered. The working conditions and the type
of damages determine the selection of measuring techniques. The presence of corrosion
centers made it necessary to verify the current thickness of the elements of the structure
and compare it with design thickness. This is important because as the cross-section area
decreases, the stress level and buckling susceptibility increases. An ultrasonic thickness
gauge was used for verification purposes (Figure 7). The thickness measurement results
are presented in Figure 8. The measured values were compared with the design values and
the percentage loss of the profile thickness is presented. Maximum losses reached as much
as 36%, which posed a serious threat to the stability of the structure.
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Figure 7. Ultrasonic thickness measurements.

The assessment of the technical condition of the object of investigation was necessary
due to the numerous repairs already carried out. An example of such a process is shown in
Figure 9. For years, renovation management involved local repairs, without looking for
the causes of problems. Recurring defects made it necessary to perform a comprehensive
assessment of the technical condition.

The structure, apart from numerous corrosion spots and cracks, suffered numerous
plastic deformations. At the initial stage of the technical condition assessment, it was as-
sumed that they were the result of buckling. Therefore, numerous thickness measurements
were carried out (Figure 8). An example of the deformation is presented in Figure 10.
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Figure 10. Buckling deformation of the side wall.

Based on the study of technical documentation and operating conditions, the negative
influence of the corrosive environment on the condition of the metal surfaces and thermal
loads was assumed to be the cause of the problems. For this reason, a thermographic
camera was used as a part of the technical condition measurements. The purpose was to
acquire thermal operating conditions data and detect any internal damage to the insulating
layer. Figure 11 presents a thermogram in which part of the insulation layer is damaged.
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3.2. Loose Material Conveyor

The on-site inspection of the discussed object revealed many irregularities. These
irregularities included defects in the form of numerous fatigue cracks, missing and disinte-
grations in structural joints, as well as deformations and severe vibrations of the structure.
To check the degree of deformation, the structure was subjected to 3D scanning with the
use of a laser scanner (Figure 12). The measurements confirmed the presence of anomalies
in the geometry and allowed for their quantification. The top of the conveyor support was
tilted 30 mm relative to the foundation (Figure 13).
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Since strong vibrations of the structure were discovered during the local inspection,
it was subjected to vibration measurements using acceleration sensors. Piezoelectric
accelerometers (Figure 14) were used for the measurements. The conducted tests confirmed
the occurrence of excessive vibrations. Due to the fast Fourier transform implementation,
a significant amplitude of vibrations were detected for the frequencies 1.2, 3.9, and 9.0
Hz (Figure 15). These vibrations coincided with the excitation frequencies from the drive
system, which potentially indicated that the structure operated in the frequency range
of eigenfrequency. This led to resonance and a significantly accelerated rate of structure
degradation that was manifested by the disintegration of the connections and the formation
of fatigue cracks.
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4. Step III—Technical Conditions Assessment

At this stage, it is necessary to verify the impact of the measured irregularities on the
structure. This verification is usually based on computer-aided calculations [39,40]. In
the case of the assessment of the technical condition of the load-carrying structures, the
most-used calculation approach is based on the finite element method. This method is
widely used for its versatility and the possibility of conducting various types of analysis as
well as the relatively high accuracy of the results.

Considering the possibilities offered by computer-aided calculations, numerical calcu-
lations are the key stage in technical condition assessment. They make it possible to analyze
the influence of the observed and measured defects on the condition of the structure. Based
on the experimental research and the results of numerical analysis, the technical condition
of the facility was assessed.

4.1. Finite Element Model Boundary Conditions

The use of numerical techniques allows determining the impact of the detected defects
and non-conformities on the condition of the structure. However, to obtain representative
results, appropriate boundary conditions consisting of the material model, constraints,
and loads must be applied. The material model depends on the characteristics of the
construction material and the type of analysis. Constraints depend on the foundation and
fastening methods implemented in a structure, whereas loads depend primarily on the
type of structure, its purpose, and specific operating conditions.
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In the case of mineral materials processing installation, the structure was divided into
two substructures: the first was responsible for material processing and the second for
carrying the general loads and integrity. The structure’s health issues were associated with
the material processing part and it became the primary role of the investigation while the
analysis of the second substructure was omitted. This approach provides valid results if the
boundary conditions reflect the constraints of the object. This was achieved by applying the
constraints to the material processing at the fastening spots within the second substructure.
In the case of the conveyor, the whole structure was highly integrated and the approach
could not be implemented. The finite model was constrained at the spots where the steel
structure fastened to its foundations.

The selection of analysis type and loads application is an individual matter for a
given structure and depends on whether or not it is subject to industrial regulations. In
the case of structures that are subject to standards and legal regulations, instructions on
the load conditions and analysis type can often be found in regulatory documents. If the
analyzed structure is subject to this class of documentation, it is necessary to read them
and apply any stated commands. In their absence, determining the load conditions and
the type of analysis to be processed is an individual matter. The standards and regulations
approach is correct when designing new objects and structures; however, it may not be
suitable for fatigued ones. Structures facing health issues often suffer from factors (e.g.,
constant amplitude loads, random loads, heat loads, corrosion, etc.) that are not covered by
regulation considerations, but still need to be identified and eliminated. This often requires
out-of-the-box approaches resulting in an individual set of loads and analysis cases.

Considering the detected defects and the structures under investigation, individual
sets of loads and analysis cases were established for each. In Tables 1 and 2, load and anal-
ysis cases are presented for materials processing installation and loose material conveyor,
respectively.

Table 1. External forces included in the FEM (Finite Element Method) analysis—mineral materials processing installation.

Load Case (LC)

Loads

Dead, Live and
Extraordinary Loads

Dipping Tubes and
Thimbles Weights

Under Pressure
Loads

Temperature
Loads

Storm Wind
Loads

Dead weight + + – + –

LC1 horizontal wind + + + + +

LC1 vertical wind + + + + +

LC2 – – + + –

Table 2. External forces included in the FEM analysis—mineral materials processing installation.

Load Case

Loads

Dead
Loads

Active and
Reactive Forces in
the Conveyor Belt

Nominal
Drive Torque

Peak Drive
Torque

Displacement
Load at the
Conveyer

Supporting
Structure

Active and Reactive Forces,
and Peak Drive Torque
Considered as Constant

Amplitude Time Variable,
Gravity and Displacement

Considered Static

Drive system at
nominal power + + + – – –

Drive system at
overload + + – + – –

Displacement of
the supporting

mast
+ + – + + –

Modal Frequency
Response + – – – + +
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As part of the finite element method, simulations, boundary conditions, material
models, and their properties should be defined. Generally, we can distinguish isotropic,
anisotropic, and orthotropic material models and their behavior as linear elastic, nonlinear
elastoplastic, or plastic. Choosing a representative material model and its behavior is vital
for correct FEA (Finite Element Method) results and depends on both the material of which
the structure is made and the type of analysis. In this research example, both structures
were composed of S235 structural steel, with a minimum yield strength rated at 235 MPa.
The specific characteristics of the material properties used in FEA are presented in Table 3.
Since the macroscopic properties of steel alloys are generally considered isotropic and the
FEA considerations of presented structures were within slight displacements of less than
5%, an isotropic linear elastic material model was implemented.

Table 3. Material properties used in FEA.

Material Yield Strength
(MPa)

Youngs Module
(GPa) Poisson’s Ratio Thermal Expansion

Coefficient (µm/m·K)
Thermal Conductivity

(W/m·K)

S235 235 210 0.3 12 42.5

An important aspect associated with finite element analysis is the interpretation of
the results. It is particularly important in cases with multiaxial loading conditions and
resulting multiaxial stresses, which were dealt with in the presented structures. For ductile
materials, such as structural steel, the Huber–Mises stress theory identifies critical regions
of the structure subjected to complex load conditions and compares the results directly to
tensile yield stress, which enables the assessment of the safety margin of those regions. The
presented stress distributions represent the stresses according to the Huber–Mises theory.

4.2. Mineral Materials Processing Installation

From the measurements of the identified irregularities alone, it was impossible to
assess the condition of the structure. It was necessary to implement a verification method
like a computer-aided finite element analysis. This method accounts for anomalies like
local changes in the thickness of the structure elements, which diagnoses if a critical stress
value has been exceeded. The results for the analysis of unfavorable operating conditions
are presented in Figure 16. The FEA revealed that for the current thickness, the permissible
stress value was exceeded. Detected areas should be urgently repaired as the probability
of plastic deformation and/or fatigue cracks initiation, which may lead to failure, is
exceptionally high. Another example of the use of numerical methods is considering the
detected insulation issues that cause the formation of hotspots. The analysis accounts for
the local temperature increase in the area where the insulating layer is damaged, which
results in the formation of secondary thermal stresses and material weakening. The stress
pattern for such a case is presented in Figure 17, where the analysis revealed the local
exceeding of the permissible limit.

Numerical methods additionally allow for the performance of the buckling analysis.
In the case of the examined structure, it was vital to verify whether the material thickness
loss caused by the corrosion made the structure unstable and susceptible to buckling. The
result of the buckling analysis is presented in Figure 18. The findings revealed that in
the case of the most unfavorable operating conditions, the structure will buckle (buckling
coefficient 0.71, calculated in the FEM analysis). The results concern the condition of the
structure using the measured data acquired during the technical condition measurements.
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4.3. Loose Material Conveyor

At the technical condition measurements stage, two important key irregularities were
identified: deformations (Figure 6) and excessive vibrations of the structure. To check the
causes of deformation, calculations were performed to check if it was possible to plasticize
the structure, which is synonymous with its deformation, under the loads from the drive
system with the conveyor operating at nominal power. Calculations showed this could not
have happened. The further step in the analysis was to examine the structure’s response to
the loads caused by overloading the drive system. Overloading the structure did not cause
observed deformation (Figure 6). Another attempt to detect the causes of deformation was
the analysis of the influence of the displacement of the supporting mast structure on which
the boom rests. 3D scanning revealed a discrepancy between the design and geometry
of the supports (Figure 13). Considering the geometry of the supports in the numerical
analysis caused the displacement of the structure in accordance with the measurement
results (Figure 19).
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To determine the causes of the severe vibrations of the structure, which were the
source of the fatigue cracks, joint disintegration, and an accelerated degradation rate, an
analysis of the dynamic response of the structure subjected to the drive system loads was
performed. Figure 21 presents the amplitude–frequency spectrum of the dynamic response
of the structure. The colors of the curves represent the displacements at different points of
the structure in the function of the load excitation frequency. These points are presented
in Figure 20 (orange points along the conveyor boom). The Figure 21 analysis results
showed a high vibration amplitude for frequencies 2.9, 9.2, 5.0, and 3.3 Hz, which are
close to the measurement results. Calculations revealed that the structure worked under
resonance frequency that caused high displacement magnitude, resulting in its premature
wear. Figure 20 presents a 2.9 Hz vibration mode of the structure.
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5. Summary and Conclusions

The paper presented the process of assessing the technical condition of two fatigued
structures: the mineral materials processing installation and the loose material conveyor.
There were significant differences between the objects regarding: their purpose (processing
of materials, transporting), structure (thin-walled, frame), destructive factors (corrosion,
vibrations), and the dominant symptoms of failure (buckling, fatigue cracks). Despite the
differences, the process of assessing the technical condition consisted of the same steps
of evaluation: preliminary visual inspection aimed at detecting irregularities, examining
the technical condition quantifying the detected defects, and numerical calculations to
establish their impact. These steps were necessary to assess the technical conditions of
the structure.

In the case of the mineral materials installation, calculation of the linear statics and
buckling was carried out, both considering thermal loads. The conveyor, linear static anal-
ysis accounting forces, and displacements loads were considered. The dynamic response
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of the system was also analyzed, and the amplitude–frequency vibration spectrum of the
structure was established. Besides the differences in the measurement tools and analysis
types implemented, the procedure was similar for both objects.

An important step in the assessment of the technical condition is the stage of numerical
calculations, but it is crucial to consider the results of research conducted on real objects
that are identified with the on-site visual inspection and technical conditions examination
stages. This approach considers many design features of a tested object during numerical
calculations, which would not be considered without the previous steps. As an example,
local losses in the thickness of the material, local areas of increased temperature resulting
from damage to the insulation layers, and design discrepancies compared with the tech-
nical documentation were considered. As a result, numerical calculations showed that
regions with a high buckling potential (Figure 18) were possible to identify by considering
the local irregularities in thickness found in the measurements and including them in
the simulations.

The combination of presented procedures verified the level of operational safety of
the structures and detected the dangers related to the further operation of the structures
(e.g., buckling) before their occurrence. The results can be used to analyze various issues,
for instance, selecting places that are exceptionally vulnerable to failure that should be
subjected to constant monitoring and/or scheduling a maintenance policy. The economic
assessment of the profitability of further exploitation is also a crucial issue and might be
one of the key factors for industries that will have to undergo considerable transformation
due to altering environmental regulations.
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