Improvement of Tourists Satisfaction According to Their Non-Verbal Preferences Using Computational Intelligence
Abstract
:1. Introduction
2. Related Works
3. Research Methodology
Data Collection
4. Client Segmentation by Clustering
- (a)
- The k-Prototypes algorithm [51]. Parameters: Number of clusters: k.
- (b)
- The k-means with similarity functions (KMSF) algorithm [52]. Parameters: Number of clusters: k, Similarity function: 1/HEOM.
- (c)
- The genetic k-means clustering algorithm (AGKA) algorithm [53]. Parameters: Number of clusters: k, Population number np = 25, crossover probability cp = 1.0, mutation probability mp = 0.05, number of iterations: it = 100.
5. Supervised Classification of Clients
5.1. Execution of State-of-the-Art Algorithms
5.2. Customized Naïve Associative Classifier (CNAC)
6. Conclusions and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morgan, R.M.; Hunt, S.D. The commitment-trust theory of relationship marketing. J. Mark. 1994, 58, 20–38. [Google Scholar] [CrossRef]
- Grönroos, C. Relationship marketing: Strategic and tactical implications. Manag. Decis. 1996, 34, 5–14. [Google Scholar] [CrossRef]
- Wang, Y.; Fesenmaier, D.R. Towards understanding members’ general participation in and active contribution to an online travel community. Tour. Manag. 2004, 25, 709–722. [Google Scholar] [CrossRef]
- Goel, V.; Singh, A.; Shrivastava, S. CRM: A winning approach for tourism sector. Int. J. Eng. Manag. Res. Ijemr 2015, 5, 321–325. [Google Scholar]
- Sigala, M. eCRM 2.0 applications and trends: The use and perceptions of Greek tourism firms of social networks and intelligence. Comput. Hum. Behav. 2011, 27, 655–661. [Google Scholar] [CrossRef]
- Lee-Kelley, L.; Gilbert, D.; Mannicom, R. How e-CRM can enhance customer loyalty. Mark. Intell. Plan. 2003, 21, 239–248. [Google Scholar] [CrossRef] [Green Version]
- Mastorakis, G.; Trihas, N.; Perakakis, E.; Kopanakis, I. E-CRM in tourism exploiting emerging information and communication technologies. Anatolia 2015, 26, 32–44. [Google Scholar] [CrossRef]
- Villuendas-Rey, Y.; Rey-Benguría, C.F.; Ferreira-Santiago, Á.; Camacho-Nieto, O.; Yáñez-Márquez, C. The naïve associative classifier (NAC): A novel, simple, transparent, and accurate classification model evaluated on financial data. Neurocomputing 2017, 265, 105–115. [Google Scholar] [CrossRef]
- Ramanathan, V.; Meyyappan, T. Twitter text mining for sentiment analysis on people’s feedback about Oman tourism. In Proceedings of the 2019 4th MEC International Conference on Big Data and Smart City (ICBDSC), Muscat, Oman, 15–16 January 2019; pp. 1–5. [Google Scholar]
- Afzaal, M.; Usman, M.; Fong, A. Tourism mobile app with aspect-based sentiment classification framework for tourist reviews. IEEE Trans. Consum. Electron. 2019, 65, 233–242. [Google Scholar] [CrossRef]
- Alaei, A.R.; Becken, S.; Stantic, B. Sentiment analysis in tourism: Capitalizing on big data. J. Travel Res. 2019, 58, 175–191. [Google Scholar] [CrossRef]
- Fu, Y.; Hao, J.-X.; Li, X.; Hsu, C.H. Predictive accuracy of sentiment analytics for tourism: A metalearning perspective on Chinese travel news. J. Travel Res. 2019, 58, 666–679. [Google Scholar] [CrossRef]
- Grljević, O.; Bošnjak, Z.; Bošnjak, S. Contemporary data analysis techniques for online reputation management in hospitality and tourism. Facta Univ. Ser. Econ. Organ. 2019, 16, 59–73. [Google Scholar] [CrossRef]
- García, A.; Gaines, S.; Linaza, M.T. A lexicon based sentiment analysis retrieval system for tourism domain. eRev. Tour. Res. 2012, 10, 35–38. [Google Scholar]
- González-Rodríguez, M.R.; Martínez-Torres, R.; Toral, S. Post-visit and pre-visit tourist destination image through eWOM sentiment analysis and perceived helpfulness. Int. J. Contemp. Hosp. Manag. 2016, 28, 2609–2627. [Google Scholar] [CrossRef]
- Zeng, C.; Nakatoh, T.; Hirokawa, S.; Eguchi, M. Text mining of tourism preference in a multilingual site. IEEJ Trans. Electr. Electron. Eng. 2019, 14, 590–596. [Google Scholar] [CrossRef]
- Yu, C.; Zhu, X.; Feng, B.; Cai, L.; An, L. Sentiment analysis of Japanese tourism online reviews. J. Data Inf. Sci. 2019, 4, 89–113. [Google Scholar] [CrossRef] [Green Version]
- Law, R.; Li, G.; Fong, D.K.C.; Han, X. Tourism demand forecasting: A deep learning approach. Ann. Tour. Res. 2019, 75, 410–423. [Google Scholar] [CrossRef]
- Sun, S.; Wei, Y.; Tsui, K.-L.; Wang, S. Forecasting tourist arrivals with machine learning and internet search index. Tour. Manag. 2019, 70, 1–10. [Google Scholar] [CrossRef]
- Zhang, F.; Jiang, Q.; Wang, Z. Forecasting mode of sports tourism demand based on support vector machine. In Proceedings of the 5th International Conference on Frontiers of Educational Technologies, Beijing, China, 1–3 June 2019; pp. 154–158. [Google Scholar]
- Zhang, X.; Wang, B. Design of estimation algorithm of island intelligent tourist volume based on data mining. J. Coast. Res. 2020, 95, 985–990. [Google Scholar] [CrossRef]
- Qi, T.; Xu, Y.; Ling, H. Tourism scene classification based on multi-stage transfer learning model. Neural Comput. Appl. 2019, 31, 4341–4352. [Google Scholar] [CrossRef]
- Saito, N.; Ogawa, T.; Asamizu, S.; Haseyama, M. Classification of tourism categories based on heterogeneous features considering existence of reliable results. In Proceedings of the International Workshop on Advanced Image Technology (IWAIT), Singapore, 6–9 January 2019; p. 1104905. [Google Scholar]
- Giglio, S.; Bertacchini, F.; Bilotta, E.; Pantano, P. Using social media to identify tourism attractiveness in six Italian cities. Tour. Manag. 2019, 72, 306–312. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, Y.; Li, C. Discovering the tourists’ behaviors and perceptions in a tourism destination by analyzing photos’ visual content with a computer deep learning model: The case of Beijing. Tour. Manag. 2019, 75, 595–608. [Google Scholar] [CrossRef]
- Giglio, S.; Bertacchini, F.; Bilotta, E.; Pantano, P. Machine learning and points of interest: Typical tourist Italian cities. Curr. Issues Tour. 2019. [Google Scholar] [CrossRef]
- Pantano, E.; Dennis, C. Store buildings as tourist attractions: Mining retail meaning of store building pictures through a machine learning approach. J. Retail. Consum. Serv. 2019, 51, 304–310. [Google Scholar] [CrossRef]
- Banan, A.; Nasiri, A.; Taheri-Garavand, A. Deep learning-based appearance features extraction for automated carp species identification. Aquac. Eng. 2020, 89, 102053. [Google Scholar] [CrossRef]
- Fan, Y.; Xu, K.; Wu, H.; Zheng, Y.; Tao, B. Spatiotemporal modeling for nonlinear distributed thermal processes based on KL decomposition, MLP and LSTM network. IEEE Access 2020, 8, 25111–25121. [Google Scholar] [CrossRef]
- Shamshirband, S.; Rabczuk, T.; Chau, K.W. A survey of deep learning techniques: Application in wind and solar energy resources. IEEE Access 2019, 7, 164650–164666. [Google Scholar] [CrossRef]
- Estebsari, A.; Rajabi, R. Single residential load forecasting using deep learning and image encoding techniques. Electronics 2020, 9, 68. [Google Scholar] [CrossRef] [Green Version]
- Fu, M.; Fan, T.; Ding, Z.A.; Salih, S.Q.; Al-Ansari, N.; Yaseen, Z.M. Deep learning data-intelligence model based on adjusted forecasting window scale: Application in daily streamflow simulation. IEEE Access 2020, 8, 32632–32651. [Google Scholar] [CrossRef]
- Faizollahzadeh Ardabili, S.; Najafi, B.; Shamshirband, S.; Minaei Bidgoli, B.; Deo, R.C.; Chau, K.W. Computational intelligence approach for modeling hydrogen production: A review. Eng. Appl. Comput. Fluid Mech. 2018, 12, 438–458. [Google Scholar] [CrossRef]
- Chi, O.H.; Gursoy, D.; Chi, C.G. Tourists’ attitudes toward the use of artificially intelligent (AI) devices in tourism service delivery: Moderating role of service value seeking. J. Travel Res. 2020. [Google Scholar] [CrossRef]
- Leung, R. Hospitality technology progress towards intelligent buildings: A perspective article. Tour. Rev. 2020, 76, 69–73. [Google Scholar] [CrossRef]
- Wei, C.; Wang, Q.; Liu, C. Research on construction of a cloud platform for tourism information intelligent service based on blockchain technology. Wirel. Commun. Mob. Comput. 2020, 2020. [Google Scholar] [CrossRef]
- Yang, L.; Henthorne, T.L.; George, B. Artificial intelligence and robotics technology in the hospitality industry: Current applications and future trends. In Digital Transformation in Business and Society; Springer: Cham, Switzerland, 2020; pp. 211–228. [Google Scholar]
- Li, D.; Deng, L.; Cai, Z. Statistical analysis of tourist flow in tourist spots based on big data platform and DA-HKRVM algorithms. Pers. Ubiquitous Comput. 2020, 24, 87–101. [Google Scholar] [CrossRef]
- Zhang, J.; Dong, L. Image monitoring and management of hot tourism destination based on data mining technology in big data environment. Microprocess. Microsyst. 2020, 80, 103515. [Google Scholar] [CrossRef]
- Sigalat-Signes, E.; Calvo-Palomares, R.; Roig-Merino, B.; García-Adán, I. Transition towards a tourist innovation model: The smart tourism destination: Reality or territorial marketing? J. Innov. Knowl. 2020, 5, 96–104. [Google Scholar] [CrossRef]
- Wahyono, I.D.; Asfani, K.; Mohamad, M.M.; Aripriharta, A.; Wibawa, A.P.; Wibisono, W. New smart map for tourism using artificial intelligence. In Proceedings of the 2020 10th Electrical Power, Electronics, Communications, Controls and Informatics Seminar (EECCIS), Malang, Indonesia, 26–28 August 2020; pp. 213–216. [Google Scholar]
- Ortega, J.L.C.; Malcolm, C.D. Touristic stakeholders’ perceptions about the smart tourism destination concept in Puerto Vallarta, Jalisco, Mexico. Sustainability 2020, 12, 1741. [Google Scholar] [CrossRef] [Green Version]
- Sari, I.U.; Sergi, D.; Ozkan, B. Customer segmentation using RFM analysis: Real case application on a fuel company. In Application of Big Data and Business Analytics; Emerald Publishing Limited: Bingley, UK, 2020. [Google Scholar]
- Gabbott, M.; Hogg, G. The role of non-verbal communication in service encounters: A conceptual framework. J. Mark. Manag. 2001, 17, 5–26. [Google Scholar] [CrossRef]
- Gabbott, M.; Hogg, G. An empirical investigation of the impact of non-verbal communication on service evaluation. Eur. J. Mark. 2000, 34, 384–398. [Google Scholar] [CrossRef]
- Puccinelli, N.M.; Andrzejewski, S.A.; Markos, E.; Noga, T.; Motyka, S. The value of knowing what customers really want: The impact of salesperson ability to read non-verbal cues of affect on service quality. J. Mark. Manag. 2013, 29, 356–373. [Google Scholar] [CrossRef]
- Rey-Benguría, C.F. Pedagogical Model for the Formation of the Non-Verbal Subsystem of the Communicative Competence of Preschool Teachers (in Spanish, Modelo Pedagógico Para la Formación del Subsistema no Verbal de la Competencia Comunicativa de los Docentes de la Educación Preescolar). Ph.D. Thesis, Center for studies and research for educational development, Universidad de Ciencias Pedagógicas “José Martí”, Camagüey, Cuba, 2006. [Google Scholar]
- Phutela, D. The importance of non-verbal communication. IUP J. Soft Ski. 2015, 9, 43–49. [Google Scholar]
- Barroso-Cubas, E. Experimental Evaluation of Restricted Clustering Algorithms for Mixed and Incomplete Data (Evaluación Experimental de Algoritmos de Agrupamiento Restringidos para Datos Mezclados e Incompletos, in Spanish). Bachelor’s Thesis, Department of Computer Sciences, University of Ciego de Ávila, Ciego de Ávila, Cuba, 2012. [Google Scholar]
- González-Patiño, D. Bioinspired Classification Model and Its Application to Medical Diagnosis. Ph.D. Thesis, Centro de Investigación en Computación, Instituto Politécnico Nacional, Mexico City, Mexico, 2020. [Google Scholar]
- Huang, Z. Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Min. Knowl. Discov. 1998, 2, 283–304. [Google Scholar] [CrossRef]
- García-Serrano, J.R.; Martínez-Trinidad, J.F. Extension to c-means algorithm for the use of similarity functions. In Proceedings of the European Conference on Principles of Data Mining and Knowledge Discovery, Prague, Czech Republic, 15–18 September 1999; pp. 354–359. [Google Scholar]
- Roy, D.K.; Sharma, L.K. Genetic k-means clustering algorithm for mixed numeric and categorical data sets. Int. J. Artif. Intell. Appl. 2010, 1, 23–28. [Google Scholar]
- Cabrera-Venegas, J.F.; Villuendas-Rey, Y.; Chávez-Castilla, Y. Integrated experimenter environment for unsupervised classification. In Proceedings of the UCIENCIA, La Habana, Cuba, 10–12 April 2014; pp. 18–28. [Google Scholar]
- Brun, M.; Sima, C.; Hua, J.; Lowey, J.; Carroll, B.; Suh, E.; Dougherty, E.R. Model-based evaluation of clustering validation measures. Pattern Recognit. 2007, 40, 807–824. [Google Scholar] [CrossRef]
- Wilson, D.R.; Martinez, T.R. Improved heterogeneous distance functions. J. Artif. Intell. Res. 1997, 6, 1–34. [Google Scholar] [CrossRef]
- Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef] [Green Version]
- Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [Google Scholar] [CrossRef]
- John, G.H.; Langley, P. Estimating continuous distributions in Bayesian classifiers. In Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, Montreal, QU, Canada, 18–20 August 1995; pp. 338–345. [Google Scholar]
- Quinlan, J.R. C4. 5: Programs for Machine Learning; Morgan Kaufman: Burlington, MA, USA, 1993. [Google Scholar]
- Cohen, W.W. Fast effective rule induction. In Machine Learning Proceedings; Elsevier: Amsterdam, The Netherlands, 1995; pp. 115–123. [Google Scholar]
- Ruiz-Shulcloper, J. Pattern recognition with mixed and incomplete data. Pattern Recognit. Image Anal. 2008, 18, 563–576. [Google Scholar] [CrossRef]
- Villuendas-Rey, Y.; Alanis-Tamez, M.D.; Rey-Benguría, C.; Yáñez-Márquez, C.; Nieto, O.C. Medical diagnosis of chronic diseases based on a novel computational intelligence algorithm. J. UCS 2018, 24, 775–796. [Google Scholar]
- Sonia, O.-Á.; Yenny, V.-R.; Cornelio, Y.-M.; Itzamá, L.-Y.; Oscar, C.-N. Determining electoral preferences in Mexican voters by computational intelligence algorithms. IEEE Lat. Am. Trans. 2020, 18, 704–713. [Google Scholar] [CrossRef]
- Villuendas-Rey, Y.; Yáñez-Márquez, C.; Anton-Vargas, J.A.; López-Yáñez, I. An extension of the gamma associative classifier for dealing with hybrid data. IEEE Access 2019, 7, 64198–64205. [Google Scholar] [CrossRef]
- Serrano-Silva, Y.O.; Villuendas-Rey, Y.; Yáñez-Márquez, C. Automatic feature weighting for improving financial decision support systems. Decis. Support Syst. 2018, 107, 78–87. [Google Scholar] [CrossRef]
- Triguero, I.; González, S.; Moyano, J.M.; García López, S.; Alcalá Fernández, J.; Luengo Martín, J.; Fernández Hilario, A.; Jesús Díaz, M.J.d.; Sánchez, L.; Herrera Triguero, F. KEEL 3.0: An open source software for multi-stage analysis in data mining. Int. J. Comput. Intell. Syst. 2017, 10, 1238–1249. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Castaño, J.A.; Villuendas-Rey, Y.; Camacho-Nieto, O.; Yáñez-Márquez, C. Experimental platform for intelligent computing (EPIC). Computación y Sistemas 2018, 22, 245–253. [Google Scholar] [CrossRef]
- Hernández-Castaño, J.A.; Villuendas-Rey, Y.; Camacho-Nieto, O.; Rey-Benguría, C.F. A New experimentation module for the EPIC Software. Res. Comput. Sci. 2018, 147, 243–252. [Google Scholar] [CrossRef]
- Sokolova, M.; Japkowicz, N.; Szpakowicz, S. Beyond accuracy, F-score and ROC: A family of discriminant measures for performance evaluation. In Proceedings of the Australasian joint conference on artificial intelligence, Hobart, Australia, 4–8 December 2006; pp. 1015–1021. [Google Scholar]
Number | Name | Description | Admissible Values |
---|---|---|---|
1 | Sex | Sex of the client | Male, Female, ? 1 |
2 | Age | Age of the client | 0–100, ? |
3 | Country | Country of the client | United Nations admitted countries, ? |
4 | Returning | If the client is returning | Yes, No, ? |
5 | GImg1 | Handshake | Indifferent, likes, dislikes, ? |
6 | GImg2 | Hug | Indifferent, likes, dislikes, ? |
7 | GImg3 | Kiss | Indifferent, likes, dislikes, ? |
8 | PImg1 | Consent posture | Indifferent, likes, dislikes, ? |
9 | PImg2 | Interest posture | Indifferent, likes, dislikes, ? |
10 | PImg3 | Neutral posture | Indifferent, likes, dislikes, ? |
11 | PImg4 | Reflexive posture | Indifferent, likes, dislikes, ? |
12 | PImg5 | Negative posture | Indifferent, likes, dislikes, ? |
13 | Tense-relaxed | Observed emotional clime. | 1–10, ? (1 is too tense, 10 is too relaxed) |
14 | Authoritative -anarchic | Observed emotional clime | 1–10, ? (1 is too authoritative, 10 is too anarchic) |
15 | Hostile-friendly | Observed emotional clime | 1–10, ? (1 is too hostile, 10 is too friendly) |
16 | TAudio1 | Authoritative | Indifferent, likes, dislikes, ? |
17 | TAudio2 | Sarcastic | Indifferent, likes, dislikes, ? |
18 | TAudio3 | Friendly | Indifferent, likes, dislikes, ? |
19 | QAudio1 | Spitting | Indifferent, likes, dislikes, ? |
20 | QAudio2 | Hum | Indifferent, likes, dislikes, ? |
21 | QAudio3 | Sigh | Indifferent, likes, dislikes, ? |
22 | Proxemic | Physical distance preferred for the client | A, B, C, D, ? (A. intimate: 15–45 cm; B. personal: 46–122 cm; C. social: 123–360 cm; D. public: >360 cm) |
Algorithm | Parameters |
---|---|
ACID | Np = 25, It = 1000, , Dissimilarity: HEOM |
ALVOT | SSS: Typical testors, , , , Decision rule: class with maximum , Similarity: 1/HEOM |
C4.5 | Pruning: No |
EG | Np = 25, It = 1000, , , |
NAC | Np = 25, It = 1000, , |
NB | - |
NN | k = 1, k = 3, Dissimilarity: HEOM |
RIPPER | - |
Algorithm | Balanced Accuracy | Averaged F1 | Training Time 1 | Testing Time 1 |
---|---|---|---|---|
ACID | 0.5316 | 0.5104 | 0.4922 | 0.0020 |
ALVOT | 0.6968 | 0.6502 | 2.4162 | 0.4711 |
C4.5 | 0.4027 | 0.4006 | 0.0658 | 0.0002 |
EG | 0.5125 | 0.4772 | 0.6778 | 0.0020 |
NAC | 0.7181 | 0.6747 | 5.3552 | 0.0001 |
NB | 0.6783 | 0.6549 | 3.1702 | 0.0020 |
NN (k = 1) | 0.6837 | 0.6606 | 0.0003 | 0.0020 |
NN (k = 3) | 0.6252 | 0.6113 | 0.0003 | 0.0020 |
RIPPER | 0.3437 | 0.3721 | 0.0593 | 0.0001 |
Algorithm | Balanced Accuracy | Averaged F1 | Training Time 1 | Testing Time 1 |
---|---|---|---|---|
CNAC | 0.8076 | 0.7653 | 10.47788 | 0.0020 |
NAC | 0.7181 | 0.6747 | 5.3552 | 0.0001 |
Algorithm | User-Provided Similarity Function | Embedded Feature Selection | Embedded Feature Weighting | Complexity 1 | |
---|---|---|---|---|---|
Training 2 | Testing 3 | ||||
ACID | Yes | Yes | Yes | Polynomial | Sub-linear 4 |
ALVOT | Yes | Yes | Yes | Non-polynomial | Linear |
C4.5 | No | Yes | No | Polynomial | Sub-linear 4 |
CNAC | Yes | No | Yes | Polynomial | Linear |
EG | No | Yes | Yes | Polynomial | Linear |
NAC | No | No | Yes | Polynomial | Linear |
NB | No | No | No | Linear | Sub-linear 4 |
NN (k = 1) | Yes | No | No | Unitary | Linear |
NN (k = 3) | Yes | No | No | Unitary | Linear |
RIPPER | No | Yes | No | Polynomial | Sub-linear |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tusell-Rey, C.C.; Tejeida-Padilla, R.; Camacho-Nieto, O.; Villuendas-Rey, Y.; Yáñez-Márquez, C. Improvement of Tourists Satisfaction According to Their Non-Verbal Preferences Using Computational Intelligence. Appl. Sci. 2021, 11, 2491. https://doi.org/10.3390/app11062491
Tusell-Rey CC, Tejeida-Padilla R, Camacho-Nieto O, Villuendas-Rey Y, Yáñez-Márquez C. Improvement of Tourists Satisfaction According to Their Non-Verbal Preferences Using Computational Intelligence. Applied Sciences. 2021; 11(6):2491. https://doi.org/10.3390/app11062491
Chicago/Turabian StyleTusell-Rey, Claudia C., Ricardo Tejeida-Padilla, Oscar Camacho-Nieto, Yenny Villuendas-Rey, and Cornelio Yáñez-Márquez. 2021. "Improvement of Tourists Satisfaction According to Their Non-Verbal Preferences Using Computational Intelligence" Applied Sciences 11, no. 6: 2491. https://doi.org/10.3390/app11062491
APA StyleTusell-Rey, C. C., Tejeida-Padilla, R., Camacho-Nieto, O., Villuendas-Rey, Y., & Yáñez-Márquez, C. (2021). Improvement of Tourists Satisfaction According to Their Non-Verbal Preferences Using Computational Intelligence. Applied Sciences, 11(6), 2491. https://doi.org/10.3390/app11062491