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Abstract: This paper proposes a Dynamic Hybrid Binary Particle Swarm Optimization (DH-BPSO) al-
gorithm to improve the bandwidth of an inverted-F antenna (IFA). The proposed algorithm improves
upon the existing Artificial Immune System (AIS) algorithm by including a weighting factor that
dynamically changes throughout the optimization. DH-BPSO activates or deactivates a 12 × 2 grid
of parasitic patches incorporated between the IFA and ground plane. The DH-BPSO optimized and
conventional IFAs are fabricated and compared while maintaining the same antenna volume. The
measurement results show that the optimized IFAs have characteristics of 58.6% wider bandwidths
and 5.8% higher antenna gain for various ground clearance lengths at Long Term Evolution (LTE)
700 MHz band compared to the conventional IFAs.

Keywords: dynamic hybrid particle swarm optimization; inverted-F antenna; parasitic patches;
antenna optimization; bandwidth enhancement

1. Introduction

For many years, designing broad bandwidth antennas has been of significant interest
to meet ever increasing demand for a high data rate in wireless communication. In theory,
the bandwidth is proportional to the antenna aperture size [1,2]. However, in the mobile
device industry, the allowed antenna volume is often limited by the requirement of mechan-
ical stability and industrial design. For this reason, an inverted-F antenna (IFA) became a
commonly used compact design due to its ease of integration and omnidirectional radiation
characteristic [3,4]. There is still a strong demand to increase bandwidth for a given volume.
Many useful techniques come from the change in antenna geometry [5], ground plane [6],
capacitive loading with several conductive parasitic patches [7], impedance matching
circuit [8], substrate permittivity [9], metal chassis [10], etc. However, little has been done
in designing an IFA to improve bandwidth using an optimization algorithm.

There are many algorithmic methods for optimizing antenna geometries. These
optimization algorithms are mainly classified into three categories—deterministic, meta-
heuristic (or stochastic), and surrogate model-assisted algorithms [11]. The deterministic
algorithms compute each iteration in a search space and find an optimal solution by simply
following a simple line based on the previous iteration of best fitness. For this reason, it
has a high possibility to become stuck in local maxima or minima [12]. By comparison, the
stochastic algorithms utilize random generation of possible solutions at each iteration to
increase the chance of exploring the entire search space. These algorithms are further cate-
gorized as swarm intelligence-based (SI-based) [13,14] or non-swarm intelligence-based
(non-SI-based) [15,16] algorithms. The key factor for success in these algorithms is heavily
dependent on how thoroughly the search space is explored. Finally, the surrogate model-
based algorithms build a substitutional model with multiple pre-simulated data sets to
predict solutions [17]. Examples include space mapping [18], shape-preserving response
prediction [19], and artificial neural network (ANN) [20].
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The SI-based algorithms are bio-inspired evolutionary algorithms and beneficial in
the design case where a traditional mathematical method may fail. The genetic algorithm
(GA), ant colony optimization (ACO), and particle swarm optimization (PSO) are the
mainstream in antenna design. These algorithms utilize a collection of agents traversing
the solution space of a cost function, sometimes called the fitness function. An agent’s
position in the solution space represents a set of parameters in the cost function. An
agent’s cost is the fitness function evaluated at that agent’s position. The objective of GA,
ACO, and PSO is to find the global maximum or (in usual practice) global minimum of
the cost function. GA does this by utilizing the principles of natural biological evolution
and relying on the process of selection, crossover, and mutation [21]. In this process,
only ‘elite chromosomes’ with the lowest costs survive when minimizing. The probability
of survival varies with generation and the number of crossovers and mutations. ACO
and PSO, by comparison, exploit the behavior of biological entities. ACO mimics the
behavior of a colony of foraging ants to seek the path or position that best satisfies the
cost function [22,23]. Some implementations of ACO mimic pheromones to urge agents
towards promising solutions [22]. PSO imitates the behavior of a swarm of flying bees
looking for food [24]. It does not exchange materials with other particles. Instead, a particle
is influenced by its current position, swarm best position, and velocity. The particles are
persistent and are not removed throughout the optimization process.

Recently, PSO has been utilized in a wide variety of applications in the field of antennas
and electromagnetic structures. One such example is the design of novel electromagnetic
materials such as phase-correcting structures [25], artificial magnetic conductors [26],
and dielectric lenses [27]. Of particular note is PSO’s use in antenna gain or return loss
bandwidth enhancement [28–33]. In our study, the −10 dB return loss bandwidth of an IFA
antenna is enhanced by activating or deactivating a set of conductive parasitic patches and
does not depend on the reproductive process of GA’s. Thus, the PSO with binary variables
(so called BPSO [14]) was chosen for this study.

The first BPSO algorithm was developed by the original creators of the PSO, Kennedy
and Eberhart [14]. This method utilizes the same basic process as their original PSO [24],
but the particle velocity probabilistically determines whether each binary variable changes.
This is done by converting the velocity into a probability via the sigmoid function. This
probability determines the likelihood of a bit change in a particle’s position vector. This
algorithm is commonly used in applications where the domain is discretized, and the
degrees of freedom can only assume values of 0 or 1 [31,32,34–36]. Other BPSO algorithms
have also emerged, such as Quantum BPSO (QBPSO) [37] and Artificial Immune System
BPSO (AIS BPSO) [38], which is claimed to produce improved results over the original
version [39]. AIS BPSO is especially attractive because both the position and the velocity of
the particles are represented as strings of binary digits. In the original BPSO, distances are
calculated via arithmetic operations on real numbers. AIS BPSO instead calculates velocities
as the Hamming distance using Boolean operations on binary strings, allowing particles to
traverse the discretized problem space more effectively. This method of optimization has
already found applications in the area of antenna design [40–45]. AIS BPSO is promising
due to its fast convergence, however, when applied to the antenna design it was found to
be highly susceptible to converging to local minima [42].

In this paper, a novel form of BPSO is proposed to configure conductive parasitic
patches of an IFA for bandwidth improvement, in addition to demonstrate the effectiveness
of the evolutionary optimization algorithm in limited ground clearance areas. Here, the
AIS BPSO algorithm was modified by introducing a dynamic weighting factor, creating
an algorithm that effectively traverses the solution space without significant sacrifice in
accuracy or convergence speed. This algorithm is termed the Dynamic Hybrid BPSO (DH-
BPSO). In Section 2, we describe the operation of the DH-BPSO algorithm. In Section 3.1,
we benchmark the algorithm’s performance on common test functions, compare it with
other AIS algorithms, and describe the results. In Section 3.2, we apply the algorithm
to design an IFA antenna. This is followed by fabrication of the designed antenna and
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verification of simulated results in Section 3.3. Finally, Section 4 presents the conclusion,
discussion of results, and possible topics for future work.

2. Materials and Methods

The DH-BPSO algorithm includes three key components—a minimum velocity pa-
rameter, a maximum velocity parameter, and a novel weighting factor. First, the minimum
velocity parameter ensures at least one bit in a particle’s position vector is flipped if the
particle’s velocity is calculated to be 0. The purpose of this is to encourage particles to
continue searching if they reach the swarm’s best location, so that nearby locations are
also tested. Secondly, the maximum velocity parameter, originally proposed in [38], limits
the maximum number of bits in the position vector that can change between iterations.
Limiting particle velocities promotes a more granular exploration of the solution space.
The third component is a dynamic weighting factor distinct to the DH-BPSO algorithm.

To understand the third component, we must first distinguish the global best (Gbest)
and local best (Lbest) approaches. In a Gbest approach, the velocity of each particle is
calculated as a combination of the global best position and the personal best position. The
global best position is the position with the lowest cost encountered by any particle in the
swarm. The personal best position of a particle is the position of lowest cost encountered by
that particular particle. In a Lbest approach, however, the global best position is replaced
with the local best position, which refers to the lowest-cost position among a particle and its
k neighboring particles. In the array of particles that represent the swarm, the k neighbors
of particle of index i are those particles with indices ranging from i − k/2 to i + k/2 (array
wraps if i + k/2 is greater than the population size). In this case, k was chosen to be two,
because this neighborhood size was found to be resistant to convergence to local minima
in the original study by Eberhart and Kennedy [24]. An Lbest algorithm converges more
slowly but is less likely to become trapped in local minima.

The last and most important component of the DH-BPSO algorithm is the Dynamic
Hybrid Weighting (DHW). The main purpose of the DHW is to provide a balance between
the Lbest and Gbest approaches. In the early iterations, the particles will mostly move
towards the Lbest position, but the weighting is introduced and shift towards the Gbest
position after each iteration. The result is a search that explores many possibilities at the
beginning but converges quickly after finding the best area.

The process of the DH-BPSO algorithm is shown in Figure 1. In step 1, the DHW
vector is pseudo-randomly generated. Each bit j of the DHW is determined by the follow-
ing equations:

p = 1− Iteration
Max Iteration

(1)

DHW[j] = (rand(0, 1) > p) (2)

where rand(0,1) produces a pseudo-randomly generated decimal number between 0 and 1.
The variable p in Equation (1) is the probability that the jth bit in the DHW will be 0, as
shown in Equation (2). It varies linearly with iteration, starting at 1 at the first iteration and
progressing to 0 as the iteration number approaches the max iteration.
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The logic used to produce the Swarm Vector from the proposed DHW is illustrated
in steps 2 to 4 in the upper section of Figure 1. The logic takes the form of a multiplexer
equation with the DHW bits serving as the select bit. Specifically,

Swarm Vector = [(¬DHW) ∧ Lbest] ∨ (DHW∧Gbest), (3)

where ¬ is the negation (NOT) operator, ∧ is the conjunction (AND) operator, and ∨ is
the disjunction (OR) operator. Interpreting Equation (3), each bit of the Swarm Vector is
copied from either the Lbest position vector or the Gbest position vector, depending on the
value of the corresponding bit in the DHW vector. A 0 bit in the DHW vector means the
corresponding bit in the Swarm Vector will be copied from the Lbest position vector. In the
reverse case of a DHW bit of 1, the corresponding Gbest bit is copied into the corresponding
bit position in the Swarm Vector. The Swarm Vector can also be interpreted as a weighted
superposition of the Lbest and Gbest positions.

Steps 5 through 9 in the lower section of Figure 1 show the original AIS BPSO algo-
rithm. This is kept the same for the DH-BPSO, only replacing the global best position with
the Swarm Vector. Following the logic shown on the left of Figure 1, the difference vector d
in Equation (4) is the exclusive disjunction (XOR) between the original position of a particle
xi and the Swarm Vector in step 5. Thus,

xi ⊕ (Swarm Vector) = d. (4)

where⊕ denotes the exclusive disjunction operation. The position of the 1 bits in this vector
correspond to differing bits between the particle’s current position xi and the Swarm Vector.

In step 6, the 1 bits are randomly removed from the difference vector d by taking the
conjunction of the difference vector d and a pseudo-random vector r of 0s and 1s. This
yields the Swarm Change Vector.

d ∧ r = Swarm Change Vector (5)
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If the Swarm Vector in Equation (4) is replaced with the best position of the individual
particle, the logic along the bottom right side of Figure 1 will apply, and Equation (5)
will then result in the Individual Change Vector. The disjunction of the Swarm Change
Vector and Individual Change Vector is taken in step 7. The result is a series of bits where
the 1s indicate bits to be flipped from the original position and is known as the Change
Vector—the functional equivalent of a particle’s velocity. Hence,

(Swarm Change Vector) ∨ (Individual Change Vector) = Change Vector. (6)

Before calculating a particle’s new position, velocity limits set by the minimum and
maximum velocity parameters are enforced in step 8. If the number of 1s in the Change
Vector is between the minimum and maximum velocity parameters, the particle position is
updated as usual. If the number is under the minimum velocity, random 0s are flipped
until the condition is satisfied. Conversely, if the number is over the maximum velocity,
random 1s are flipped. Finally, the new position of the particle xi+1 is found in step 9 by
taking the exclusive disjunction of the Change Vector and the particle’s current position
xi. Finally,

xi ⊕ (Change Vector) = xi+1. (7)

This DH-BPSO algorithm is executed using the IronPython2.7 interpreter built in to
ANSYS HFSS.

3. Results
3.1. Algorithm Performance

The original AIS algorithms [38] is implemented using the Gbest approach. Com-
paring the dynamic hybrid approach with the Gbest alone ignores the other possible AIS
BPSO approaches, namely Lbest and static hybrid. Thus the AIS Gbest algorithm in [38] is
extended to implement Lbest and static hybrid approaches to provide a comprehensive
comparison of the these algorithms with DH-BPSO. The Lbest simply replaces the global
best position with the local best position in the original AIS algorithm in [38]. The static
hybrid approach (AIS Hybrid) uses a combined Gbest and Lbest approach with the proba-
bility threshold p from Equation (1) fixed to 0.5. Thus, a broad range of AIS approaches
were considered for the following analysis.

Each of the four optimization algorithms were performed 500 times with a population
of 10 particles and a maximum iteration of 200. The number of variables N was set to
100. The algorithms operate on four well-known test functions: Sphere, Griewank, Holder
Table 2, and Eggholder functions [46]. The definitions and their global minima of the test
functions are summarized in Table 1 below.

Table 1. Mathematical definitions of functions used to test a set of BPSO algorithms.

Function Definition Domain Global Minimum

Sphere f (x) =
N
∑

n=1
x2

n
xn ∈ {0, 1} f (0, 0, . . . , 0) = 0

Griewank f (x) = 1 +
N
∑

n=1

x2
n

4000 −
N
∏

n=1
cos
(

xn√
n

)
xn ∈ {0, 1} f (0, 0, . . . , 0) = 0

Holder Table 2 f (x1, x2) = −
∣∣∣∣sin(x1) cos(x2) exp

(∣∣∣∣1− √x2
1+x2

2
π

∣∣∣∣)∣∣∣∣ xn ∈ [−8, 8] f (±8,±6.48094)
= −9.45799

Eggholder f (x1, x2) = −(x2 + 47) sin
(√∣∣x2 +

x1
2 + 47

∣∣)
−x1 sin

(√
|x1 − (x2 + 47)|

) xn ∈ [−512, 512] f (512, 404.2319)
= −959.6407

The input vector x to the Sphere and Griewank fucntions represents a particle’s
position as a list of raw bits xn. The Eggholder and Holder Table 2 functions take two real-
valued parameters. To use these functions, each particles’ position, expressed as a binary
string of 100 bits, is converted to a real number using a sign-magnitude fixed precision
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encoding scheme. First, each bit string is divided into two 50-bit strings. The leftmost bit of
each string is the sign bit. For the Eggholder function, the next nine bits are used as the
integer bits, leaving 40 precision bits. This naturally constrains the domain of xn to ±512.
The encoding for the Holder Table 2 function uses three integer bits and 46 precision bits,
naturally restricting the domain to±8. Restricting the domain to a power of 2 simplifies the
enforcement of boundary conditions in binary algorithms such as AIS BPSO. The domain
is also within the ±10 domain of the Holder Table 2 function as defined in [46].

Figure 2 plots against iteration number each algorithm’s average global best cost over
500 independent optimizations for the aforementioned test functions. From Figure 2a,b,
it is evident that Griewank and Sphere functions pose little difficulty in optimizing for
any algorithm. The dynamic behavior of DH-BPSO is also clearly shown in that the DH-
BPSO convergence curves mimic those of the AIS Lbest algorithm for a brief period at
the beginning of the optimization. DH-BPSO quickly begins to accelerate, deviating away
from the AIS Lbest curve and closely approaching the AIS Gbest and Hybrid curves some
iterations later.
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Although the Griewank and Sphere function are multi-modal, they are bowl-shaped
cost functions with a singular global minimum. Such functions are better optimized by
Gbest algorithms which accelerate towards this global minimum once any one particle
discovers it. This can be observed from Figure 2a,b. As expected, the AIS Gbest and
Hybrid algorithms converged the fastest to the minimum cost. The Eggholder and Holder
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Table 2 functions, however, are significantly more complicated multi-modal cost functions.
The Eggholder function is especially difficult due to the presence of several local minima
of comparable magnitude to the global minimum. These functions are therefore better
optimized by Lbest algorithms. Results in Figure 2c,d confirm this. AIS Lbest and DH-
BPSO outperformed AIS Gbest and AIS Hybrid. It is also with these functions that the
superiority of the DH-BPSO algorithm can be seen. The DH-BPSO algorithm consistently
reached the lowest minimum of any of the other algorithms. It also discovered the lowest
minimum quicker than the AIS Lbest algorithm, shown by the steeper slope of the DH-
BPSO convergence trace. These results also indicate that dynamic hybrid algorithms such
as DH-BPSO promise better performance on complex, difficult-to-optimize cost functions
than static hybrid algorithms such as AIS Hybrid.

Table 2 provides column plots of performance statistics calculated during the opti-
mizations. Three metrics are provided. First, the average minimum cost is provided. This
is calculated by taking the average over all trials of the minimum cost achieved by each
optimization. Secondly, the average iterations to reach the minimum cost is given. This is
calculated as an average over the 500 trials of the iterations required to first reach that trial’s
final minimum cost. Lastly, the average time to reach the minimum cost is given. For each
of the 500 trials, the time required to first reach the ultimate minimum cost is calculated and
averaged over the 500 trials. These benchmarks were performed on a computer equipped
with an Intel i7-6560u 2.2 GHz quad-core processor and 8 GB DDR3 RAM. The raw values
of the performance metrics are given in Appendix A in Table A1.

The qualitative conclusions gleaned from Figure 2 can now be quantified. For the sim-
ple Sphere function, the difference in average minimum cost achieved is negligible, varying
from 0.014 for AIS Hybrid to 0.03 for AIS Lbest. The average iterations to the minimum
cost show a similar pattern, with AIS Hybrid leading with 115.028 iterations on average
to converge to a minimum value. Although it did not outperform AIS Gbest or Hybrid,
DH-BPSO did outperform AIS Lbest in both average minimum cost and average iterations
required to minimize. For the Sphere function, DH-BPSO required 115.348 ± 26.48 average
iterations to find an average minimum of 0.022 ± 0.147, compared to AIS Lbest’s average
minimum of 0.03 ± 0.171 achieved in 123.88 ± 24.822 average iterations. Note that the
DH-BPSO average minimum cost has a smaller standard deviation, which is an indication
of consistency. The performance of these two algorithms on the Griewank function exhibits
a similar pattern, namely that DH-BPSO achieves a lower cost in less iterations on average.
These results once again show that dynamic hybrid algorithms can exceed in performance
compared to their static hybrid or non-hybrid counterparts.

The performance of DH-BPSO and AIS Lbest excel when optimizing the more complex
Holder Table 2 and Eggholder functions. In these trials, DH-BPSO outperformed the other
algorithms in minimum cost achieved. For Holder Table 2, DH-BPSO achieved a minimum
cost of−9.336± 0.597 compared to the next best minimum cost of−9.278± 0.811 achieved
by AIS Lbest. The true global minimum of −9.45799 lies within one standard deviation of
both results, however, DH-BPSO consistently achieved a lower minimum cost, evidenced
by the lower average minimum and smaller standard deviation. A similar conclusion can be
made comparing AIS Lbest and DH-BPSO performance optimizing the Eggholder function.
Note that while the AIS Gbest and Hybrid algorithms reached minima significantly faster,
the minima they converge to were larger than those reached by AIS Lbest or DH-BPSO.

In terms of real time to converge to a minimum cost, AIS Gbest and Hybrid algo-
rithms exceed. However, this convergence speed comes at the cost of a larger minimum
cost achieved. Additionally, several factors influence the real time required to achieve
a minimum cost. These include the method by which the algorithm is implemented in
code and other processes executing on the computer during benchmarking. Hence, av-
erage iterations to converge to a minimum is a more useful metric. This and the average
minimum cost achieved are the primary metrics used to select an algorithm for antenna
design applications.
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Table 2. Column plots comparing AIS BPSO algorithms solving 100-variable test functions using 10 particles and a
maximum iteration of 200 averaged over 500 runs.

Function Average Minimum Cost Average Iterations to Minimum Average Time to Minimum (ms)
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The qualitative conclusions gleaned from Figure 2 can now be quantified. For the 
simple Sphere function, the difference in average minimum cost achieved is negligible, 
varying from 0.014 for AIS Hybrid to 0.03 for AIS Lbest. The average iterations to the 
minimum cost show a similar pattern, with AIS Hybrid leading with 115.028 iterations on 
average to converge to a minimum value. Although it did not outperform AIS Gbest or 
Hybrid, DH-BPSO did outperform AIS Lbest in both average minimum cost and average 
iterations required to minimize. For the Sphere function, DH-BPSO required 115.348 ± 
26.48 average iterations to find an average minimum of 0.022 ± 0.147, compared to AIS 
Lbest’s average minimum of 0.03 ± 0.171 achieved in 123.88 ± 24.822 average iterations. 
Note that the DH-BPSO average minimum cost has a smaller standard deviation, which 
is an indication of consistency. The performance of these two algorithms on the Griewank 
function exhibits a similar pattern, namely that DH-BPSO achieves a lower cost in less 
iterations on average. These results once again show that dynamic hybrid algorithms can 
exceed in performance compared to their static hybrid or non-hybrid counterparts.  

The performance of DH-BPSO and AIS Lbest excel when optimizing the more com-
plex Holder Table 2 and Eggholder functions. In these trials, DH-BPSO outperformed the 
other algorithms in minimum cost achieved. For Holder Table 2, DH-BPSO achieved a 
minimum cost of −9.336 ± 0.597 compared to the next best minimum cost of −9.278 ± 0.811 
achieved by AIS Lbest. The true global minimum of −9.45799 lies within one standard 
deviation of both results, however, DH-BPSO consistently achieved a lower minimum 
cost, evidenced by the lower average minimum and smaller standard deviation. A similar 
conclusion can be made comparing AIS Lbest and DH-BPSO performance optimizing the 
Eggholder function. Note that while the AIS Gbest and Hybrid algorithms reached min-
ima significantly faster, the minima they converge to were larger than those reached by 
AIS Lbest or DH-BPSO.  

In terms of real time to converge to a minimum cost, AIS Gbest and Hybrid algo-
rithms exceed. However, this convergence speed comes at the cost of a larger minimum 
cost achieved. Additionally, several factors influence the real time required to achieve a 
minimum cost. These include the method by which the algorithm is implemented in code 
and other processes executing on the computer during benchmarking. Hence, average it-
erations to converge to a minimum is a more useful metric. This and the average minimum 
cost achieved are the primary metrics used to select an algorithm for antenna design ap-
plications. 

When applying PSO algorithms to antenna design, the cost function is usually some 
electrical characteristic of an antenna determined via a full-wave simulation. In such cases, 
each particle represents an antenna configuration that must be simulated to determine the 
cost. If there are several design variables (i.e., large N), the optimization may run for an 
unacceptably long time or consume an excessive amount of computational resources. 
Hence, when selecting an algorithm for antenna design, the statistic of interest is the av-
erage minimum cost achieved and the average iterations required to reach a minimum 
cost. Additionally, the changes in electrical characteristics induced by a change in antenna 
structure are often unpredictable. It is likely multiple satisfactory solutions exist. That is, 
the solution space of such a problem may have multiple, distinctly large minima, and only 
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When applying PSO algorithms to antenna design, the cost function is usually some
electrical characteristic of an antenna determined via a full-wave simulation. In such cases,
each particle represents an antenna configuration that must be simulated to determine
the cost. If there are several design variables (i.e., large N), the optimization may run for
an unacceptably long time or consume an excessive amount of computational resources.
Hence, when selecting an algorithm for antenna design, the statistic of interest is the
average minimum cost achieved and the average iterations required to reach a minimum
cost. Additionally, the changes in electrical characteristics induced by a change in antenna
structure are often unpredictable. It is likely multiple satisfactory solutions exist. That is,
the solution space of such a problem may have multiple, distinctly large minima, and only
one of which may be the true global minima. The shape of the Eggholder function emulates
this. An algorithm that explores a wide range of solutions but is resilient to premature
convergence to local minima is ideal. Given these criteria, the DH-BPSO algorithm promises
the best performance. It exceled in optimizing the Eggholder function in both average
minimum cost achieved and average iterations required to reach a minimum cost. Thus, the
DH-BPSO algorithm appears a promising tool in the design and optimization of antennas.
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3.2. IFA Design Using DH-BPSO

An application of the proposed DH-BPSO to an antenna design is demonstrated in this
section. Although any antenna can be chosen to demonstrate an application of DH-BPSO,
we select a planar IFA, one of the common antenna geometries in mobile devices. The
IFA is modelled with an electromagnetic simulator, ANSYS HFSS 2019 R2. The design
parameters of the IFA geometry are shown in Figure 3.
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ance length, the reference base design (i.e., no active parasitic elements) is optimized to 
resonate at 720 MHz by adjusting the feed_gap and arm_z parameters. The exact value of 

Figure 3. Design parameters of the inverted-F antenna (IFA) antenna with parasitic patches. The IFA
element is in orange and FR4 substrate is in blue.

The resonant frequency of the IFA is mainly determined by arm_z which is approxi-
mately a quarter-wave long at the resonant frequency. The width of the conducting IFA
arm is denoted as arm_w and is fixed to be 1 mm. The input impedance is controlled
by adjusting feed_gap and feed_z. The slot_w is the spacing between the parasitic patches
and set to be 0.25 mm. A 1 mm thick FR4 substrate with standard double-sided copper
cladding is used. The permittivity and loss tangent of the FR4 substrate are 4.4 and 0.02,
respectively. The size of the substrate is fixed for all IFAs and defined with sub_z and
sub_x which is 85 × 140 mm2. The width of the parasitic patches (patch_z2) is fixed to
be 7.05 mm, whereas the width of the patches closest to the feed and grounding strip
(patch_z1) varies depending on feed position for impedance matching. The feed_z is set
to be 2.5 mm. The ground clearance GND_clr is the distance between the IFA arm and
ground plane. The ground clearance region is divided into 24 sections that represent either
activated or deactivated parasitic patches. The yellow squares represent patches that are
activated to be conductive and the grey squares represent the deactivated patches to be
non-conductive. The state (active or inactive) of a particular parasitic patch maps to the
state of a bit (1 or 0) in the integer that represents the position of a particle. Hence there are
16,777,216 (224) possible patch configurations, and the particles of the DH-BPSO algorithm
traverse a discrete 24-dimensional space. The conductive elements are modelled as copper
sheets with a thickness of 35 µm and a conductivity of 5.8 × 108 S/m. A unique antenna
design is created for a range of values of ground clearance (GND_clr) from 9 to 14 mm.
For each clearance length, the reference base design (i.e., no active parasitic elements) is
optimized to resonate at 720 MHz by adjusting the feed_gap and arm_z parameters. The
exact value of these and other parameters are given in Table 3. The parasitic patch design is
then optimized by applying the DH-BPSO algorithm with 10 particles, a maximum velocity
of 10, and a minimum velocity of 1. The goal of the optimization is to improve the −10 dB
bandwidth of the reflection coefficient of the IFAs, which is simulated from 500 MHz to
1 GHz. Because DH-BPSO searches for the global minima of a cost function, the negative
of the −10 dB bandwidth is used as the cost function. The minima of this cost function
correspond to wider bandwidths.
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Table 3. Parameters that vary between IFAs.

GND_clr (mm) patch_z1 (mm) feed_gap (mm) arm_z (mm)

9 10.225 5.5 81
10 10.225 5.5 80.75
11 9.225 6.5 82.5
12 9.225 6.5 81.75
13 8.225 7.5 82.5
14 8.225 7.5 82.5

To show a fair comparison, three different antenna patch configurations were simu-
lated: (1) a base IFA design with no parasitic patches as a reference, (2) a base IFA with
all parasitic patches activated, and (3) the optimized IFA. The reflection coefficient versus
frequency plot for the 14 mm ground clearance IFA is shown in Figure 4. The simulation re-
sults indicate that the DH-BPSO algorithm improves the bandwidth from the conventional
IFA without the parasitic patches by 74.3%. The base IFA with all patches activated shows
poor input impedance mismatch and shift of resonant frequency to the lower frequency.
Regarding the radiation pattern of the three different IFAs shown in Figure 5, the optimized
IFA shows similar omnidirectional pattern on ϕ = 90◦ plane and figure “8” shape on ϕ = 0◦

plane relative to the base IFA. Furthermore, the base IFA with all patches shows a smaller
gain over all azimuth and elevation angles. Additionally, the effect of the optimal patch
configuration in the realized gain is minimal and the peak realized gain is 2.7 dBi. Therefore,
the DH-BPSO-optimized IFA significantly outperforms the reference IFA in bandwidth.
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In addition to the 14 mm ground clearance, the bandwidth effect was further investi-
gated by reducing the size of the ground clearance in the base and optimized IFAs. In our
simulations, the ground clearance was varied from 9 mm to 14 mm with an increment of
1 mm. Figure 6 shows the optimized antenna geometries for the different ground clearance.
Active parasitic patches are clustered around the feed, ground strip, and IFA arm. This is
because of the strong, high-frequency current flow in this area. The patch configurations
in Figure 6d,e appear identical, however the size of the parasitics differs between the two
models, leading to a difference in bandwidth.
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Figure 7 compares the simulated bandwidths of the DH-BPSO optimized and base
IFAs for each ground clearance length. At each clearance length, the optimized IFAs show a
marked improvement in bandwidth over the base IFA. The magnitude of this improvement
increases with increasing ground clearance length. In addition, the rate of bandwidth
increase is higher in the optimized IFAs than in the base IFA. The minimum simulated
bandwidth increase is 20.3% at 9 mm. The maximum simulated bandwidth increase is
74.3% at 14 mm, as mentioned previously.
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3.3. Fabrication and Measurement

Following optimization via DH-BPSO, optimized and base IFAs were fabricated with
ground clearance lengths of 9, 10, 12, and 14 mm using a LPKF S4 laser milling machine.
The fabricated antennas with semi-rigid, 50 Ω coaxial connectors attached are depicted in
Figure 8. The reflection coefficient of each antenna was measured over a frequency range
of 0.5 to 1 GHz using an Agilent E8364C PNA. Figure 7 compares the performance of the
fabricated antennas with the simulations of the base and DH-BPSO-optimized designs. The
optimized designs show good agreement between simulation and measurement results
overall. The 14 mm ground clearance length IFA showed a measured bandwidth increase
of 58.6%. The discrepancy from the simulated bandwidth increase can be attributed to
fabrication tolerances. The measurements of the base IFA also show good agreement with
the simulations, with a slight discrepancy of 6.83 MHz at 9 mm clearance length. Thus,
the measurement results validate the results of the simulations and show that the DH-
BPSO algorithm successfully found an optimal parasitic patch configuration to increase
bandwidth of the IFA.
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Figure 8. (a) The four IFA antennas with optimized parasitic patch configuration fabricated with
attached connectors. (b) The four base IFAs measured as reference.

The radiation patterns, peak gain, and radiation efficiency were measured using
a Model 2100D anechoic chamber from The Howland Company. Figure 9 shows the
measurement setup in the anechoic chamber. The simulated and measured radiation
patterns are shown in Table 4 below. The omnidirectional radiation patterns were observed
on the ϕ = 90◦ plane. In the ϕ = 90◦ plane, figure “8” shapes of radiation were measured,
indicating characteristics of a dipole antenna. For the both principle planes, the simulated
and measured results show good agreement. The DH-BPSO optimized IFA shows similar
radiation characteristics as those of the base IFA despite the presence of parasitic patches.
The simulated current distribution is also shown in Table 4. The current is strongest around
the feed, grounding strip, and activated parasitic patches, whereas it is weakest at the end
of the IFA arm and FR4 substrate. This supports the omnidirectional and figure “8” shape
of radiation patterns.
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Although the goal of the DH-BPSO algorithm was to improve the −10 dB bandwidth,
improvements in peak gain and efficiency are also observed. Figure 10 compares the
peak gain and efficiency between the simulations and measurements. According to the
simulated results, the DH-BPSO-optimized IFA shows a higher peak gain for all ground
clearance lengths. The largest increase in peak gain is 5.8% observed at 14 mm ground
clearance length. The peak gain slightly increases as the ground clearance becomes larger
for both the simulated and measured results, as expected. The measured optimized peak
gain varies from 2.9 to 3.2 dBi. In addition, the radiation efficiency of the optimized IFA
improved by as much as 6.4% compared to the base IFA efficiency. The measured radiation
efficiency ranges from 89% to 97% for 9 and 14 mm ground clearances, respectively. The
discrepancy between the simulated and measured results can be attributed to fabrication
tolerances. Thus, the radiation pattern, gain, and efficiency of the proposed IFA is suitable
for mobile devices.
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Table 5 compares the bandwidth enhancement results of this article to those achieved
in recent literature. Clark and Jeong [31] make use of the Hybrid PSO (HPSO) algorithm,
which makes use of both the real PSO algorithm [24] and the original binary PSO [14]
to simultaneously optimize the configuration and spacing between parasitic patches sur-
rounding a microstrip patch antenna. However, we achieve a markedly higher bandwidth
improvement of 58.6% using DH-BPSO as opposed to the 16.3% achieved using HBPSO.
Kibria et al. in [30] and Verma, et al. in [47] achieve bandwidth enhancement using curve
fitting in conjunction with PSO. Instead of using PSO as an external optimizer of a full-wave
simulator, IE3D is used to generate data that relates the antenna bandwidth to the physical
dimensions of the patch antennas to be optimized. Analytical functions are synthesized
using curve fitting and PSO is used to find the maximum of these functions, thus deter-
mining the antenna dimensions required for wider bandwidths. Ref. [30] is distinct in
their treatment of particle boundary conditions, which they claim to reduce computation
time. The bandwidth improvement achieved by such an approach is 13.5% and 13.8%
for [47], respectively, compared to that achieved by DH-BPSO. Mirhadi et al. [48] utilize the
original binary PSO algorithm [14] to maximize the voltage standing wave ratio (VSWR) of
a pixelized planar monopole antenna in the frequency range 3.1 to 10.6 GHz. The antenna
VSWR is simulated via the Discrete Green’s function instead of a full-wave simulator such
as HFSS or IE3D. Their optimized antenna achieves a 27.4% increase in bandwidth relative
to a reference staircase monopole antenna with bandwidth 6.2 GHz. Shandilya et al. [49]
use the continuous-domain real PSO to determine the dimensions of a Printed Log Periodic
Dipole Array (PLPDA) antenna for maximum bandwidth. They enhance the initial 5 GHz
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bandwidth to 7.4 GHz, giving a measured increase of 48%. Compared to existing literature,
DH-BPSO achieved a significantly higher bandwidth increase.

Table 5. Comparison of DHBPSO with other applications in literature of PSO algorithms towards bandwidth enhancement.

Ref Geometry Optimization
Algorithm Domain

Resonant
Frequency

(GHz)

Antenna Size
(mm3)

Efficiency
(%) Gain (dBi)

−10 dB
Bandwidth
Increase (%)

[47] Microstrip
Patch

PSO + Curve
Fitting Real 2.37 39 × 47.6 × 1.6 93.9 3.5 13.5

[30] Microstrip
Patch

HBCPSO +
Curve Fitting Real 3.1 29 × 20.5 × 1.6 N/A N/A 13.8

[31] Microstrip
Patch HPSO Binary 2.39 189 × 261.87 × 1.6 N/A 4.56 16.3

[48] Planar
Monopole BPSO + DGF Binary 4.2 16 × 19.2 × 1.6 N/A 4.71 27.4

[49] PLPDA PSO Real 7.2 46 × 33 × 1.6 N/A 7.6 48.0
Proposed IFA DH-BPSO Binary 0.720 120 × 85 × 1 97 3.2 58.6

4. Discussion

A new DH-BPSO was developed as a modification of the original AIS algorithm by
introducing the DHW. DH-BPSO exhibited an affinity in optimizing complex, varying
functions such as the Eggholder and Holder Table 2 functions. Its performance exceeded
that of its AIS Hybrid, Gbest, and Lbest counterparts in terms of minimum cost achieved
and iterations required to reach a minimum cost. Thus DH-BPSO has advantages in both
speed and efficiency when solving problems with many satisfactory solutions and where
iterations are computationally demanding. Future work may explore the effectiveness
of non-linear, higher-order weightings on certain types of problems. For example, an
exponential or quadratic weighting strongly favoring a Lbest approach may make DH-
BPSO better suited for large domain problems with a variety of solutions.

A drawback of DH-BPSO is its dependence on the maximum iterations shown in
Equation (1). For small values of the maximum iteration, DH-BPSO would quickly tran-
sition to a Gbest approach and would lose the benefit of the explorative Lbest approach.
Thus, a possible avenue of research is a dynamic weighting scheme that does not depend
on the maximum iteration but possibly adapts to the current speed of convergence, which
could be determined from the slope of its convergence trace.

Experiments with IFA optimization show the applicability of DH-BPSO. Both mea-
surements and simulations show an improvement in the −10 dB bandwidth, the peak
gain, and the efficiency when optimized via DH-BPSO. Optimizations with this algorithm
improved simulated bandwidths by as much as 74.3% and measured bandwidths by as
much as 58.6%. Bandwidth improvements could be improved by further pixelating the
ground clearance area, simultaneously decreasing the patch size and increasing the number
of parasitic patches. This would facilitate finer control of the antenna configuration by the
algorithm, possibly allowing for better solutions with wider bandwidths.

Although this paper only considered the IFA, the process can be easily applied to other
antenna geometries such as patch, slot, and loop antennas. The parasitic patches can be
configured around each antenna as previously done, and the number of dimensions of the
optimization can be increased appropriately. This will lead to a longer convergence time,
but in theory the number of parasitic patches can be increased indefinitely with appropriate
time and computing resources.

Another potential future area of work is extending DH-BPSO to find solutions to
multi-objective problems. For example, the radiation pattern could be analyzed in addition
to bandwidth. Additionally, desired resonant frequencies may be incorporated into the
cost function to ensure increased bandwidth in a frequency band of interest. The principle
of a dynamic weighting factor can also be applied beyond just the AIS BPSO to any PSO
that incorporates local and global best approaches.
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Appendix A

Table A1. Comparison of Artificial Immune System (AIS) BPSO algorithms solving 100-variable test functions using
10 particles and a maximum iteration of 200 averaged over 500 runs.

Metric Function AIS Gbest AIS Hybrid AIS Lbest DH-BPSO (Proposed)

Avg.
Minimum

Cost

Sphere 0.018 ± 0.133 0.014 ± 0.133 0.03 ± 0.171 0.022 ± 0.147
Griewank 2.024 × 10−4 ± 1.749 × 10−3 1.332 × 10−4 ± 9.454 × 10−4 2.662 × 10−4 ± 1.340 × 10−3 2.061 × 10−4 ± 1.203 × 10−3

Holder Table 2 −9.035 ± 1.216 −9.159 ± 1.005 −9.278 ± 0.811 −9.336 ± 0.597
Eggholder −720.067 ± 70.824 −738.278 ± 52.024 −743.676 ± 55.764 −748.929 ± 52.036

Avg.
Iterations to
Minimum

Sphere 114.716 ± 25.445 115.028 ± 25.379 123.88 ± 24.822 115.348 ± 26.480
Griewank 123.132 ± 23.905 127.682 ± 25.181 143.766 ± 21.836 132.308 ± 24.912

Holder Table 2 149.648 ± 30.729 157.202 ± 27.688 182.274 ± 16.495 166.902 ± 23.698
Eggholder 164.19 ± 29.857 176.082 ± 24.409 192.566 ± 11.382 183.962 ± 18.847

Avg. Time
to Minimum

(ms)

Sphere 184.192 ± 83.509 190.627 ± 57.019 229.474 ± 62.214 270.223 ± 95.012
Griewank 239.142 ± 51.089 227.947 ± 34.787 267.383 ± 32.331 243.914 ± 34.749

Holder Table 2 337.449 ± 174.633 428.906 ± 200.488 838.32 ± 304.057 635.229 ± 165.255
Eggholder 257.806 ± 47.540 294.785 ± 47.201 340.074 ± 29.136 335.925 ± 48.022
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