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Abstract: Additive Manufacturing (AM) brought a revolution in parts design and production. It
enables the possibility to obtain objects with complex geometries and to exploit structural optimiza-
tion algorithms. Nevertheless, AM is far from being a mature technology and advances are still
needed from different perspectives. Among these, the literature highlights the need of improving the
frameworks that describe the design process and taking full advantage of the possibilities offered by
AM. This work aims to propose a workflow for AM guiding the designer during the embodiment
design phase, from the engineering requirements to the production of the final part. The main aspects
are the optimization of the dimensions and the topology of the parts, to take into consideration
functional and manufacturing requirements, and to validate the geometric model by computer-aided
engineering software. Moreover, a case study dealing with the redesign of a piston rod is presented,
in which the proposed workflow is adopted. Results show the effectiveness of the workflow when
applied to cases in which structural optimization could bring an advantage in the design of a part
and the pros and cons of the choices made during the design phases were highlighted.

Keywords: DfAM; design for additive manufacturing; size optimization; topology optimization;
design workflow; computational geometry; geometric modeling

1. Introduction

From the works of the early pioneers, additive manufacturing (AM) technologies were
characterized by great growth in the last 35 years [1]. According to ISO/ASTM standards
“AM is the general term for those technologies that, based on a geometrical representation,
create physical objects by successive addition of material” [2]. Depending on the method
of layer manufacturing, it is possible to organize the AM technologies in the following
categories: vat photopolymerization, material jetting, binder jetting, powder bed fusion,
material extrusion, directed energy deposition, and sheet lamination [2].

This technology brings new opportunities especially in design freedom, allowing very
complex shapes, integrating cinematics and multi-material parts, reducing the number of
components through part consolidation, and increasing mass customization. On the other
hand, to fully exploit the AM technologies’ potential, many needs in different sub-fields
were highlighted [1,3–8], as summarized in Figure 1. For example, a highly skilled work-
force is required, file formats for exchanging the data related to the AM workflow need
enhancements [8,9], and design methods and tools for complex structures, multi-material
parts, and functionally graded materials need to be improved [10,11]. The concerns over
the structural integrity of these complex parts require static and dynamic mechanical char-
acterization [12,13]; also, experimental tests help to mechanically characterize the materials,
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and the obtained information is used in numerical simulations to predict the different
mechanical behavior between the products obtained through additive manufacturing and
the ones obtained by traditional techniques of material subtraction [14,15]. More, dedicated
qualification standards for AM are needed to guarantee an adequate quality of the printed
parts [16,17] and their representation in 2D drawings [18].
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In a recent work, The Economist claims that the value of AM products will no longer
be in the physical item, but in its design [19]. These reflections lead to a reconsideration
of the design approaches for AM. According to Ullman [20], the design process can be
divided into six major phases: product discovery, project planning, product definition,
conceptual design, product development, and product support. During the conceptual
design phase, several concepts are generated and evaluated; however, the knowledge of
the concepts is limited and the goal in this phase is to select the best alternatives with
the least expenditure of time and other resources. In the product development phase,
instead, once the product is generated, it is fundamental to compare its performance to
the engineering specifications. This is done both with virtual simulations and physical
prototypes, often resulting in a time-consuming iterative process due to part modifications
and redesigns. A different approach that exploits the higher computational capabilities
available nowadays is the computational design synthesis [21], where the tasks needed to
obtain a solution are divided into four main steps: “representation” deals with the creation
of a mental model of the object, “generation” deals with the object creation, “evaluation”
verifies if the constraints and design goals are met, and “guidance” gives a feedback for
the design improvements [22]. The last three phases are iteratively repeated until a final
design is obtained. In design synthesis, optimization is performed in the representation
and generation phases, where the design has not a specific topology yet. Usually, stochastic
methods are applied to obtain different designs that satisfy the requirements [23].

Furthermore, when designing parts that are going to be produced by AM technolo-
gies, several thoughts must be considered to “maximize product performance through the
synthesis of shapes, sizes, hierarchical structures, and material compositions, subject to
the capabilities of AM technologies” [24]. All these considerations can be grouped within
the Design for Additive Manufacturing (DfAM) concept. Gibson et al. [24] distinguished
between opportunistic and restrictive DfAM; the former allows to take advantages of the
unique capabilities of AM, such as cellular solids, part consolidation, and multi-material,
whereas the latter focuses on the restrictions and limitations of the AM technologies,
such as the minimum feature size and the need of support structures. Rosen [25] used
a Process–Structure–Property–Behavior framework to describe and model a design and
proposed a DfAM system organized in several modules dealing with the modeling, manu-
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facturing simulation, and design behavior analysis phases. Ponche et al. [26] presented a
DfAM methodology that takes into account the design requirements and the manufactur-
ing specificities, adopting a redesign strategy based on the functional surface approach;
they concentrated on metallic components produced by Additive Laser Manufacturing.
Vayre et al. [27] applied a four-step designing methodology consisting of initial shape gen-
eration, set of geometrical parameter definition, shape optimization through the tuning
of the parameters, and final validation of a metallic part produced by direct metal deposi-
tion and electron beam melting AM technologies. Briard et al. [28] presented a four-step
methodology to maximize the potential of generative design coupled with DfAM; the first
phase deals with the translation of the problem to a suitable input for generative design,
whereas the following three phases deal with an unconstrained iterative optimization,
an iterative optimization driven by the AM guidelines, and a final iterative optimization
refining the part including AM-enabled structures, such as lattices. Duro-Royo et al. [29]
presented a computational workflow for the design and the fabrication of multi-material
and multi-scale structured objects; they focused on water-based heterogeneous materials
based on polysaccharide hydrogels in 1% to 12% concentrations in w/v of 1% acetic acid
aqueous solutions and these gels were also mixed with cellulose microfiber to obtain vol-
umetric composites. They created a model that considers the input data, like materials
and geometry, and calculates all the instructions for the object fabrication via a pneumatic
extruder mounted on a six-axes robotic arm. Boddeti et al. [30] presented a digital design
and manufacturing workflow able to design both the macroscopic topology and the mi-
crostructure of an object; the workflow is divided into three steps: a design automation
process that optimizes the material distribution and its microstructure, a material compi-
lation process that creates a material layout and generates the code for fabrication, and
a digital fabrication step with multi-material photopolymer material jetting technology.
Zhang et al. [31] proposed an evaluation framework to assess the design from the perspec-
tive of process planning for AM; two sets of indicators were used to check whether the part
is suitable to be produced by AM manufacturing and to verify the design’s utilization of
the characteristics of an AM process. Similarly, Lettori et al. [32] proposed an approach to
assess the compatibility and suitability of a product for the AM production through a set
of reference questions and a compliance index; then, they validated the method with case
studies found in the literature. Motyl and Filippi [33] reviewed the scientific literature to
explore the relationship between AM processes and product design, concentrating on the
conceptual design phase and the theory of inventive problem solving (TRIZ) [34]; some of
the analyzed works use the TRIZ for the definition of the DfAM guidelines.

Nonetheless, the literature highlights the lack of exhaustive frameworks that describe
the design process and take full advantage of the possibilities offered by AM. Seepersad [35]
stated that advances are still needed to couple computer-aided design (CAD) software
and computer-aided engineering (CAE) tools to incorporate the DfAM knowledge into
the design process. Kumke et al. [36] highlighted some limitations on the existing DfAM
frameworks too: they do not cover the entire design process steps, they focus on the
utilization of a single AM potential, and they are often too specific for a single case study.

In this contribution, a heuristic design workflow for AM is proposed aimed at exploit-
ing the new possibilities offered by AM technologies and the high computational resources
available nowadays. The workflow focuses on the product design phase, also referred
to as embodiment design [20,37], where the design is developed up to the production. It
specifically concentrates on cases in which mechanical performances are required, together
with a reduction of the weight of the parts. Different geometric modeling opportunities
and structural optimization techniques are presented: commercial software is used to
perform the topology optimization and the redesign of the optimized results. As an alterna-
tive, a method developed by the research group designs conformal lattice structures with
size optimization performed on the beams and allows to automatically obtain a smooth
mesh model. The proposed workflow is then validated on a test case, adopting different
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design methods based on lattice structures, PolyNurbs, and parametric CAD to reach
innovative solutions.

2. Design Workflow

The proposed workflow helps the designer during the product development process of
AM components, guiding him throughout decisions that allow to fully exploit AM potential.
AM-related engineering requirements and technological constraints are considered in the
first phases of the workflow and simulation tools are used to optimize and validate the
geometric model. In particular, the workflow can be adopted during the embodiment
design phase of parts in which the mechanical performance needs to be maximized and
the weight needs to be as low as possible. Structural optimization approaches such as size
and topology optimization perfectly suit this scenario.

Figure 2 shows the proposed design workflow for AM. First, the design space is
identified. The design space is a volume where the material distribution is going to be
optimized; it can be obtained from an existing model or it can be specifically designed
considering the maximum allowable size of the component. Then, two paths can be
followed: the first one performs a topology optimization on the entire design space,
whereas the second one performs a size optimization on a lattice structure. Regardless of
the selected approach, a finite element (FE) model is created taking into consideration not
only the “usual” boundary conditions such as the material, the loads, and the constraints
but also the constraints and conditions strictly related to the design for AM. For instance,
the technological constraints could include a limit for the inclination of the structure to
avoid overhang angles (if required by the manufacturing technology) and the upper and
lower limits for the most critical features, i.e., hole size, strut dimension, wall thickness,
etc. Furthermore, since AM allows the production of complex geometrical shapes, it is
easier to create parts resulting from multi-objective optimization; the optimization goals
like targeted mass and natural frequencies, or desired heat exchanging properties can be
considered as engineering requirements. Including this information in the first part of the
workflow enables to obtain a design with the desired functionalities that is likely to be
produced without the need of stepping back to the product development phase.
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If the topology optimization approach is chosen, the design space is discretized and a
polyhedral mesh is obtained; then, the topology optimization is performed. During this
process, the material is arranged inside the design space to find the best distribution of
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material under a set of boundary conditions and respecting the structural and dimensional
performance requirements. According to the literature, several topology optimization
algorithms can be used [38]. Homogenization methods use the mathematical theory of
homogenization [39,40] to study a complex domain previously divided into microstruc-
tures, i.e., the finite elements, as a continuum domain made up of a virtual material called
effective material [41]. Density methods consider the density as the only design variable
for each finite element, and the variable can assume a value between 0 and 1; since the
optimal solutions would consist of elements with values mostly between 0 and 1, the
results would be far from a solid (1)–void (0) situation. The most popular numerical
method for suppressing intermediate densities is the Solid Isotropic Microstructure with
Penalization (SIMP) method, proposed by Bendsoe [42], which penalizes elements with
intermediate densities exploiting a power law. To avoid intermediate densities in the
optimized solution, discrete methods, also called “hard-kill” methods, can be used; in the
Evolutionary Structural Optimization (ESO) method proposed by Xie and Steven [43], a cri-
terion parameter is calculated for each element and at each iteration the elements with the
lowest criterion parameter value are eliminated. Furthermore, Bi-directional Evolutionary
Structural Optimization (BESO) method [44] is an extension of ESO, in which new elements
can be added next to those elements with a high criterion parameter at each iteration.
Level-set Methods (LSMs) are another category of topology optimization methods where
the iso-contours of a level-set function implicitly define the interface between the material
phases [45,46]; this approach allows to obtain a sharp transition between void and solid
regions. In the proposed workflow, a SIMP density method is adopted because this method
requires relatively few iterations, is suitable for a combination of a wide range of design
constraints, multiple load conditions, multi-physics problems, and extremely large (often
3D) systems, is extensively used in industrial software [38], and can be easily implemented
with a simple code [47,48]. As a result of the SIMP method, a density map is obtained,
which is contoured to a specific level of density (threshold), obtaining a mesh surface.
Often, the resulting mesh cannot be directly used for the production phase due to the lack
of connection zones or the presence of coarse regions due to the process discretization.
The remodeling of the topology optimization mesh is a research topic of interest, indeed.
Zegard and Paulino [49] presented a tool that generates suitable outputs for AM by using
filters and the continuation approach on the penalization parameter; Jiu et al. [50] proposed
a CAD-oriented topology optimization method able to perform the optimization directly
on the CAD model instead of on the mesh. Most of the time the procedure is operated
manually, and the part is modeled in a CAD environment using the mesh as guideline
during the modeling. Alternatively, software tools for automatic remodeling are available;
these mainly adopt quad-remesh and subdivision surface approaches.

If the size optimization approach is followed, given a cell type and the unit cell
dimension, a wireframe model is obtained filling the design space with a conformal lattice
structure. In a conformal structure, the unit cell can deform to adapt to the boundary of
the part or the lines of the stress field; this feature eliminates weakness at boundaries and
provides stiffness and resistance to the entire model [51]. The size optimization is then
performed on the wireframe [52,53]. The diameter of the beams iteratively varies until
all the beams reach the target utilization, defined as the ratio between the maximum Von
Mises stress measured on the beam and the admissible stress; as previously highlighted,
the size of the beam is controlled to ensure that the beam diameter is thick enough to
be manufactured and that it does not exceed the upper bound to avoid interferences
with the surrounding beams. The optimized wireframe is then modeled with a boundary
representation mesh-based approach as proposed by Savio et al. [54]. The obtained coarse
mesh is then smoothed adopting the Catmull–Clark subdivision surface algorithm [55]:
each quad face is subdivided into four smaller quad faces at every iteration. The algorithm
produces a surface with continuity in curvature (C2 surface), except at extraordinary
vertices where they are C1. This allows to reduce stress concentration, especially at nodal
points, enhancing the mechanical properties and the fatigue life of the lattice [56–58].
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Alternatively, it is possible to combine topology and size optimization. The litera-
ture shows how the density map of the topology optimization can be used to assign an
optimized dimension to the diameter of a beam-like lattice structure [59,60] and to the
thickness of a shell-like lattice structure [61].

Once the optimized part is modeled, it is necessary to perform an additional FE
analysis to mechanically validate the final model. This step is mandatory in topology
optimization because during the modeling phase weak zones could arise, especially if
manual remodeling is adopted. After that, process-related considerations are done. Process
planning deals with all the necessary operations needed once the AM production technol-
ogy and machine have been selected. The orientation of the part inside the manufacturing
machine, the generation of the supports (if needed), and the generation of the print path
strategy affect the quality of the printed part, i.e., the surface texture and the mechanical
properties [26], the material and energy consumption, and the production time [62–64].
Then, process simulation helps to predict residual stress and geometric distortion of the
printed parts, avoiding time-consuming and expensive experimental campaigns based
on trial and error. The evaluation of residual stresses and thermal distortions allows
compensating the geometrical CAD model obtaining parts with the desired dimensional
specifications and mechanical properties, reducing the probability of defects that lead to
crack initiation, propagation, and failure both during the printing and the utilization of
the product, especially when dealing with metallic components [65]. Process simulation
methods that concentrate not only on metals AM techniques [66–69] but also on material
extrusion [70,71] and powder bed fusion [72,73] of polymers can be found. If the FE analy-
sis fails to validate the component or if the manufacturing process simulation highlights
dimensional deformation and residual stresses higher than requirements, it is necessary
to remodel the part or to step back to the optimization phase, changing the boundary
conditions of the model.

When all these steps are successfully completed, the part is ready to be produced. The
component is optimized for the intended use and it is likely to not encounter manufacturing
issues during the printing phase. An important consideration is whether to use the
topology optimization or the size optimization approach. One option could be to apply
both and compare the solutions, choosing the one that best suits the application, but it is
computationally demanding. Some a priori thoughts can help to decide as well. If the part is
metallic, the struts of the lattice could act as internal supports, heat dissipators, and prevent
thermal warping. Furthermore, being less bulky, the lattice structure could present lower
residual stress. The mechanical validation of a lattice structure requires high computational
resources and it is time consuming due to the high number of 3D elements needed to
mesh the structure; at the same time, while the FE validation analysis is mandatory for the
topology optimized part because the manual remodeling phase can introduce weak areas,
it is less necessary for the lattice structure model because the diameters of the beams were
previously optimized through a FE analysis and in the presented mesh modeling approach
the optimized value is adopted at the middle of the beam, whereas the diameter tends to
increase towards the nodal points.

3. Case Study

The proposed workflow was applied to the remodeling of a piston rod. Reducing the
weight of a piston rod while maintaining the mechanical performance is an important goal,
especially in competitions in the automotive fields, but also in the industry where weight
reduction leads to less inertia and to a reduction of energy consumption.

The part is currently produced with a pressure die-casting process and is intended to
be produced with the Selective Laser Melting (SLM) powder bed fusion AM technology.
The material is an aluminum AlSi10Mg with properties as in Table 1.
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Table 1. Aluminum AlSi10Mg properties.

Density 2700 kg/m3

Young modulus 68 GPa
Yield strength 190 MPa

Ultimate tensile strength 335 MPa
Poisson Ratio 0.30

Overall dimensions, loads, and constraints applied to the piston rod are shown in
Figure 3a,b, respectively. The loads and constraints are summarized in Table 2.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 14 
 

it is computationally demanding. Some a priori thoughts can help to decide as well. If the 
part is metallic, the struts of the lattice could act as internal supports, heat dissipators, and 
prevent thermal warping. Furthermore, being less bulky, the lattice structure could pre-
sent lower residual stress. The mechanical validation of a lattice structure requires high 
computational resources and it is time consuming due to the high number of 3D elements 
needed to mesh the structure; at the same time, while the FE validation analysis is man-
datory for the topology optimized part because the manual remodeling phase can intro-
duce weak areas, it is less necessary for the lattice structure model because the diameters 
of the beams were previously optimized through a FE analysis and in the presented mesh 
modeling approach the optimized value is adopted at the middle of the beam, whereas 
the diameter tends to increase towards the nodal points. 

3. Case Study 
The proposed workflow was applied to the remodeling of a piston rod. Reducing the 

weight of a piston rod while maintaining the mechanical performance is an important 
goal, especially in competitions in the automotive fields, but also in the industry where 
weight reduction leads to less inertia and to a reduction of energy consumption. 

The part is currently produced with a pressure die-casting process and is intended to 
be produced with the Selective Laser Melting (SLM) powder bed fusion AM technology. 
The material is an aluminum AlSi10Mg with properties as in Table 1. 

Table 1. Aluminum AlSi10Mg properties. 

Density 2700 kg/m3 
Young modulus 68 GPa 
Yield strength 190 MPa 

Ultimate tensile strength 335 MPa 
Poisson Ratio 0.30 

Overall dimensions, loads, and constraints applied to the piston rod are shown in 
Figure 3a,b, respectively. The loads and constraints are summarized in Table 2. 

 
Figure 3. Piston rod: (a) overall dimension, (b) boundary conditions and design space. 

Table 2. Load and constraints applied to the piston rod. 

Load 
7.5 kN axial traction along z-axis. 

Applies to big rod’s end face. 

Constraints 

All the displacements and rotations locked. 
Applies to inner face of the small rod’s end. 

Displacements along x- and y-directions locked. 
Applies to big rod’s end face. 

Figure 3. Piston rod: (a) overall dimension, (b) boundary conditions and design space.

Table 2. Load and constraints applied to the piston rod.

Load
7.5 kN axial traction along z-axis.

Applies to big rod’s end face.

Constraints

All the displacements and rotations locked.
Applies to inner face of the small rod’s end.

Displacements along x- and y-directions locked.
Applies to big rod’s end face.

The topology optimization of the design space was performed in SolidWorks 2019
(Dassault Systèmes) using the SolidWorks Simulation module; the software adopts the
SIMP method for solving the optimization problem. The “best stiffness to weight ratio”
goals was set, using the constraint of a final mass equal to 25% of the original part. The
symmetry of the final part with respect to the YZ and ZX plane was imposed. Figure 4a
shows the mesh resulting from the topology optimization. This mesh was then used as
a starting point for the manual remodeling phase, performed in Inspire Studio CAD 3D
software (Altair), as in Figure 4b.

The size optimization section of the workflow was performed in Rhinoceros 6 (Robert
McNeel & Associates) inside Grasshopper environment. The design space was filled with
a conformal wireframe based on the simple cubic unit cell; the number of instances is 10, 4,
and 15 along the x-, y-, and z-axis, respectively, and the minimum element size equals 3 mm.
The FE beams model was set-up using Karamba3D plugin [74]. The loads and the con-
straints were directly applied at the nodes of the beams placed at the interface between the
design space and the big and small rod’s ends; the 7.5 kN load was equally distributed on
each node of the upper part of the wireframe, so as the rotation and translation constraints
on each node of the lower and upper part of the wireframe. The target utilization ratio
was set to (90 ± 1)% with respect to the yield strength. The upper and lower bound for the
diameter of the beams were defined as 1.5 mm and 0.5 mm, respectively. Figure 5 shows
the conformal wireframe and the utilization ratio of the optimized structure. Some beams
do not reach the required utilization ratio; indeed, they present a utilization ratio lower
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than the target because the optimized diameter was smaller than the minimum allowable
size (i.e., 0.5 mm), so, being assigned the 0.5 mm diameter, they are under-utilized.
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The lattice structure was then modeled adopting the mesh approach and the Catmull–
Clark subdivision surface algorithm. As can be seen in Figure 6, smooth surfaces are
obtained, especially at nodal points.
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smooth surfaces at nodal points.

Then, the two models obtained from the topology and the size optimization were
validated through FE analyses in Ansys Mechanical 2019 R1. The parts were meshed
with tetrahedron elements using an element minimum size of 0.1 mm and an element
maximum size of 1 mm. The meshing method is patch-independent and includes automatic
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refinement in curvature and proximity. The symmetry of the topology optimized part with
respect to the ZX and YZ plane was exploited to simulate only one quarter of the model.
The results are represented in Figure 7. In the size optimized model (Figure 7b), the higher
value of stress observed on the legend is related to the absence of fillet between the lattice
structure and the body and does not depend on the modeling method of the lattice.
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Figure 7. FE analyses validation, equivalent Von Mises stress: (a) topology optimization, (b) size optimization.

Netfabb Premium 2020.3 (Autodesk) was used for preliminary process planning,
choosing for the best part orientation. Supports too were created inside the software.
The Renishaw AM 400 SLM machine was selected, together with the default material
configuration for Aluminum AlSi10Mg-0403 printed with a 25 µm layer thickness, as
suggested by the powders manufacturer [75]. First, the topology optimized model was
oriented. Among the proposed orientations, three are reported in Figure 8. The final
decision is driven by several considerations. The orientation in Figure 8a has the lowest
height, resulting in faster printing time, but presents the highest supported area, requiring
more time for supports removal and post-process such as sandblasting to avoid the lower
quality of the surface finish in the supported areas; the configuration in Figure 8b has
the less supported area, but has the highest support volume and height, resulting in a
long build time and high material waste; the configuration in Figure 8c has the lower
support volume and a relatively low supported area and build time. Moreover, since the
configuration in Figure 8a lays on the platform, the circular functional surfaces on the rod’s
ends will have the best dimensional and geometrical accuracy. Further milling operations
could be needed to comply with the requested tolerances.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 14 
 

time and high material waste; the configuration in Figure 8c has the lower support volume 
and a relatively low supported area and build time. Moreover, since the configuration in 
Figure 8a lays on the platform, the circular functional surfaces on the rod’s ends will have 
the best dimensional and geometrical accuracy. Further milling operations could be 
needed to comply with the requested tolerances. 

 
Figure 8. Part orientation and support generation for the topologically optimized piston rod. (a), (b), and (c) show three 
possible orientations. 

The same procedure was followed for the orientation of the piston rod with the lattice 
structure. This time, due to the extreme difficulty of removing the supports between the 
beams of the lattice, the only orientation that did not present supports in the central part 
of the model was chosen, as shown in Figure 9. 

 
Figure 9. Part orientation and support generation for the size optimized piston rod. 

Finally, the next step would be to perform the process simulation of the oriented part 
to assess the printability of the models, the geometrical distortions, and the residual 
stresses. According to the results, the designer can consider geometrically compensating 
the part, changing the part orientation, or going back to the modeling phase and remodel 
the part. 

The application of the workflow for redesigning the piston rod enabled to obtain two 
optimized parts and a considerable reduction of the mass, as shown in Table 3. The two 
methods present some drawbacks too. The topology optimized model requires manual 
remodeling, and it is more prone to failure during the final FE analysis verification, due 
to human errors during the remodeling phase. The proposed method for the size optimi-
zation is in its prototypal stage and it still has a limited choice of unit cells and does not 

Figure 8. Part orientation and support generation for the topologically optimized piston rod. (a–c) show three possible
orientations.



Appl. Sci. 2021, 11, 2572 10 of 14

The same procedure was followed for the orientation of the piston rod with the lattice
structure. This time, due to the extreme difficulty of removing the supports between the
beams of the lattice, the only orientation that did not present supports in the central part of
the model was chosen, as shown in Figure 9.
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Finally, the next step would be to perform the process simulation of the oriented
part to assess the printability of the models, the geometrical distortions, and the residual
stresses. According to the results, the designer can consider geometrically compensating
the part, changing the part orientation, or going back to the modeling phase and remodel
the part.

The application of the workflow for redesigning the piston rod enabled to obtain two
optimized parts and a considerable reduction of the mass, as shown in Table 3. The two
methods present some drawbacks too. The topology optimized model requires manual
remodeling, and it is more prone to failure during the final FE analysis verification, due to
human errors during the remodeling phase. The proposed method for the size optimization
is in its prototypal stage and it still has a limited choice of unit cells and does not correctly
manage the connection between the lattice structure and the adjacent objects. Numerical
analyses on the lattice model are computationally demanding but less necessary since the
wireframe was previously optimized and the mesh modeling method does not alter the
diameter of the beams.

Table 3. Mass reduction of the optimized models. The mass only considers the design space volume
and not the rod’s ends, which were not optimized.

Model/Approach Mass [g] % of Mass Reduction

Starting design space 104.7
Topology optimization 29.99 −71%

Size optimization 20.98 −80%

4. Conclusions

In this work, a design workflow for Additive Manufacturing was proposed, trying
to overcome the limits highlighted in the literature, where it is stated that the available
frameworks do not exploit all the advantages offered by AM and do not cover the entire
design process. The presented workflow considers the embodiment design phase, from
the definition of a design volume to the production of the part, integrating both CAD
tools for the geometric modeling of the part and CAE tools for the optimization and
simulation phases; more, it considers the possibility to use the size optimization to obtain
lattice structures with optimized beams, and the topology optimization to obtain more
organic shapes. The workflow was then applied to the remodeling and optimization of a
piston rod in which both commercial and custom tools were adopted, showing its ease and
universality of implementation.
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As future works, the process simulation will be performed on the oriented parts. Then,
a hybrid method that combines size and topology optimization is going to be developed
to further expand the workflow possibilities; the 0–1 density parameter will drive the
dimension of the beams, shell, or solid elements. The connection between the lattice
structures and the adjacent objects will be addressed to obtain smoother links and enhance
the mechanical properties of the parts. Moreover, aspects related to hybrid manufacturing
technologies will be addressed.
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