Aeroacoustic Sound Source Characterization of the Human Voice Production-Perturbed Convective Wave Equation
Abstract
:1. Introduction
2. Phonation and Simulation Model
2.1. Phonation Model
2.2. Aeroacoustic Model
2.3. Convective Background Flow Source
2.4. Simulation Overview
- the VFs are entirely closed (minimum opening),
- the VFs are opening,
- the VFs are entirely opened (maximum opening),
- and the VFs are closing.
- the VFs fundamental frequency ,
- and the VFs non-harmonic (e.g., ).
3. Aeroacoustic Source Visualization
3.1. Flow Quantities
3.2. Aeroacoustic Sources
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
3D | Three dimensional |
ABC | Absorbing boundary condition |
CA | Computational acoustics |
CFD | Computational fluid dynamics |
FFT | Fast Fourier transformation |
fVF | false VF |
GAW | Glottal area waveform |
PCWE | Perturbed convective wave equation |
PIV | Particle image velocimetry |
PML | Perfectly matched layer |
SPL | Sound pressure level |
TKE | Turbulent kinetic energy |
VF | Vocal fold |
References
- Deliyski, D.D.; Petrushev, P.P.; Bonilha, H.S.; Gerlach, T.T.; Martin-Harris, B.; Hillman, R.E. Clinical implementation of laryngeal high-speed videoendoscopy: Challenges and evolution. Folia Phoniatr. Et Logop. 2008, 60, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Döllinger, M. The next step in voice assessment: High-speed digital endoscopy and objective evaluation. Curr. Bioinform. 2009, 4, 101–111. [Google Scholar] [CrossRef]
- Döllinger, M.; Kaltenbacher, M. Preface: Recent Advances in Understanding the Human Phonatory Process. Acta Acust. United Acust. 2016, 102, 195–208. [Google Scholar] [CrossRef]
- Krömer, F.; Müller, J.; Becker, S. Investigation of aeroacoustic properties of low-pressure axial fans with different blade stacking. AIAA J. 2018, 56, 1507–1518. [Google Scholar] [CrossRef]
- Kim, S.; Niu, Y.; Kim, Y.J. Computational aeroacoustic modeling of open fan and comparison of predicted and experimental noise fields. In INTER-NOISE and NOISE-CON Congress and Conference Proceedings; Institute of Noise Control Engineering: Innsbruck, Austria, 2013; Volume 246, pp. 970–977. [Google Scholar]
- Lodermeyer, A.; Tautz, M.; Becker, S.; Döllinger, M.; Birk, V.; Kniesburges, S. Aeroacoustic analysis of the human phonation process based on a hybrid acoustic PIV approach. Exp. Fluids 2018, 59, 13. [Google Scholar] [CrossRef]
- Krane, M.H. Aeroacoustic production of low-frequency unvoiced speech sounds. J. Acoust. Soc. Am. 2005, 118, 410–427. [Google Scholar] [CrossRef] [PubMed]
- McPhail, M.J.; Campo, E.T.; Krane, M.H. Aeroacoustic source characterization in a physical model of phonation. J. Acoust. Soc. Am. 2019, 146, 1230–1238. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, C.; Frankel, S.H.; Mongeau, L. Computational aeroacoustics of phonation, Part I: Computational methods and sound generation mechanisms. J. Acoust. Soc. Am. 2002, 112, 2134–2146. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, W.; Frankel, S.H.; Mongeau, L. Computational aeroacoustics of phonation, Part II: Effects of flow parameters and ventricular folds. J. Acoust. Soc. Am. 2002, 112, 2147–2154. [Google Scholar] [CrossRef]
- Hardin, J.; Pope, D. An acoustic/viscous splitting technique for computational aeroacoustics. Theor. Comput. Fluid Dyn. 1994, 6, 323–340. [Google Scholar] [CrossRef]
- Shen, W.Z.; Sørensen, J.N. Aeroacoustic modelling of low-speed flows. Theor. Comput. Fluid Dyn. 1999, 13, 271–289. [Google Scholar] [CrossRef]
- Ewert, R.; Schröder, W. Acoustic perturbation equations based on flow decomposition via source filtering. J. Comput. Phys. 2003, 188, 365–398. [Google Scholar] [CrossRef]
- Seo, J.; Moon, Y.J. Perturbed compressible equations for aeroacoustic noise prediction at low mach numbers. AIAA J. 2005, 43, 1716–1724. [Google Scholar] [CrossRef]
- Munz, C.-D.; Dumbser, M.; Roller, S. Linearized acoustic perturbation equations for low Mach number flow with variable density and temperature. J. Comput. Phys. 2007, 224, 352–364. [Google Scholar] [CrossRef]
- Kaltenbacher, M. Computational Acoustics; CISM International Centre for Mechanical Sciences, Springer International Publishing: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Kaltenbacher, M.; Hüppe, A.; Reppenhagen, A.; Zenger, F.; Becker, S. Computational aeroacoustics for rotating systems with application to an axial fan. AIAA J. 2017, 55, 3831–3838. [Google Scholar] [CrossRef]
- Schoder, S.; Weitz, M.; Maurerlehner, P.; Hauser, A.; Falk, S.; Kniesburges, S.; Döllinger, M.; Kaltenbacher, M. Hybrid aeroacoustic approach for the efficient numerical simulation of human phonation. J. Acoust. Soc. Am. 2020, 147, 1179–1194. [Google Scholar] [CrossRef]
- Crighton, D. Computational aeroacoustics for low Mach number flows. In Computational Aeroacoustics; Springer: Berlin/Heidelberg, Germany, 1993; pp. 50–68. [Google Scholar]
- Hardin, J.C.; Hussaini, M.Y. (Eds.) Computational Aeroacoustics; Chapter Regarding Numerical Considerations for Computational Aeroacoustics; Springer: Berlin/Heidelberg, Germany, 1992; pp. 216–228. [Google Scholar]
- Colonius, T. Modeling artificial boundary conditions for compressible flow. Annu. Rev. Fluid Mech. 2004, 36, 315–345. [Google Scholar] [CrossRef] [Green Version]
- Alipour, F.; Brücker, C.; Cook, D.; Gommel, A.; Kaltenbacher, M.; Mattheus, W.; Mongeau, L.; Nauman, E.; Schwarze, R.; Tokuda, I. Mathematical models and numerical schemes for the simulation of human phonation. Curr. Bioinform. 2011, 6, 323–343. [Google Scholar] [CrossRef] [Green Version]
- Šidlof, P.; Zörner, S.; Hüppe, A. A hybrid approach to the computational aeroacoustics of human voice production. Biomech. Model. Mechanobiol. 2015, 14, 473–488. [Google Scholar] [CrossRef]
- Link, G.; Kaltenbacher, M.; Breuer, M.; Döllinger, M. A 2d finite-element scheme for fluid–solid–acoustic interactions and its application to human phonation. Comput. Methods Appl. Mech. Eng. 2009, 198, 3321–3334. [Google Scholar] [CrossRef]
- Schäfer, F.; Kniesburges, S.; Uffinger, T.; Becker, S.; Grabinger, J.; Link, G.; Kaltenbacher, M. Numerical simulation of fluid-structure-and fluid-structure-acoustic interaction based on a partitioned coupling scheme. In High Performance Computing in Science and Engineering, Garching/Munich 2007; Springer: Berlin/Heidelberg, Germany, 2009; pp. 335–348. [Google Scholar]
- Schäfer, F.; Müller, S.; Uffinger, T.; Becker, S.; Grabinger, J.; Kaltenbacher, M. Fluid-structure-acoustic interaction of the flow past a thin flexible structure. AIAA J. 2010, 48, 738–748. [Google Scholar] [CrossRef]
- McGowan, R.S. An aeroacoustic approach to phonation. J. Acoust. Soc. Am. 1988, 83, 696–704. [Google Scholar] [CrossRef]
- Suh, J.; Frankel, S. Numerical simulation of turbulence transition and sound radiation for flow through a rigid glottal model. J. Acoust. Soc. Am. 2007, 121, 3728–3739. [Google Scholar] [CrossRef] [PubMed]
- Valášek, J.; Kaltenbacher, M.; Sváček, P. On the application of acoustic analogies in the numerical simulation of human phonation process. Flow Turbul. Combust. 2019, 102, 129–143. [Google Scholar] [CrossRef]
- Hüppe, A.; Kaltenbacher, M. Comparison of source term formulations for computational aeroacoustics. In Proceedings of the 19th AIAA/CEAS Aeroacoustics Conference, Berlin, Germany, 27–29 May 2013. [Google Scholar]
- Seo, J.H.; Mittal, R. A high-order immersed boundary method for acoustic wave scattering and low-Mach number flow-induced sound in complex geometries. J. Comput. Phys. 2011, 230, 1000–1019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, F.B.; Dai, H.; Luo, H.; Doyle, J.F.; Rousseau, B. Fluid–structure interaction involving large deformations: 3D simulations and applications to biological systems. J. Comput. Phys. 2014, 258, 451–469. [Google Scholar] [CrossRef] [Green Version]
- Zörner, S.; Kaltenbacher, M.; Lerch, R.; Sutor, A.; Döllinger, M. Measurement of the elasticity modulus of soft tissues. J. Biomech. 2010, 43, 1540–1545. [Google Scholar] [CrossRef]
- Kelleher, J.E.; Siegmund, T.; Du, M.; Naseri, E.; Chan, R.W. Empirical measurements of biomechanical anisotropy of the human vocal fold lamina propria. Biomech. Model. Mechanobiol. 2013, 12, 555–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zörner, S.; Kaltenbacher, M.; Döllinger, M. Investigation of prescribed movement in fluid–structure interaction simulation for the human phonation process. Comput. Fluids 2013, 86, 133–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kniesburges, S. Fluid-Structure-Acoustic Interaction During Phonation in a Synthetic Larynx Model: Fluid-Struktur-Akustik-Interaktion Während Der Phonation in Einem Künstlichen Kehlkopfmodell; Shaker: Düren/Maastricht, Germany, 2014. [Google Scholar]
- Lodermeyer, A.; Becker, S.; Döllinger, M.; Kniesburges, S. Phase-locked flow field analysis in a synthetic human larynx model. Exp. Fluids 2015, 56, 77. [Google Scholar] [CrossRef]
- Sadeghi, H.; Kniesburges, S.; Kaltenbacher, M.; Schützenberger, A.; Döllinger, M. Computational models of laryngeal aerodynamics: Potentials and numerical costs. J. Voice 2019, 33, 385–400. [Google Scholar] [CrossRef] [PubMed]
- Kniesburges, S.; Lodermeyer, A.; Becker, S.; Traxdorf, M.; Döllinger, M. The mechanisms of subharmonic tone generation in a synthetic larynx model. J. Acoust. Soc. Am. 2016, 139, 3182–3192. [Google Scholar] [CrossRef] [PubMed]
- Kniesburges, S.; Birk, V.; Lodermeyer, A.; Schützenberger, A.; Bohr, C.; Becker, S. Effect of the ventricular folds in a synthetic larynx model. J. Biomech. 2017, 55, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Schoder, S.J.; Wurzinger, A.; Junger, C.; Weitz, M.; Freidhager, C.; Roppert, K.; Kaltenbacher, M. Application limits of conservative source interpolation methods using a low Mach number hybrid aeroacoustic workflow. JTCA 2020, 2050032, 27p. [Google Scholar]
- Ribner, H.S. Aaerodynamic Sound from Fluid Dilatations—A Theory of the Sound from Jets and Other Flows; Technical Report; Institute for Aerospace Studies, University of Toronto: Toronto, ON, Canada, 1962. [Google Scholar]
- Zörner, S.; Šidlof, P.; Hüppe, A.; Kaltenbacher, M. Flow and acoustic effects in the larynx for varying geometries. Acta Acust. United Acust. 2016, 102, 257–267. [Google Scholar] [CrossRef]
- Scherer, R.C.; Shinwari, D.; De Witt, K.J.; Zhang, C.; Kucinschi, B.R.; Afjeh, A.A. Intraglottal pressure profiles for a symmetric and oblique glottis with a divergence angle of 10 degrees. J. Acoust. Soc. Am. 2001, 109, 1616–1630. [Google Scholar] [CrossRef] [PubMed]
- Thomson, S.L.; Mongeau, L.; Frankel, S.H. Physical and numerical flow-excited vocal fold models. In Proceedings of the Third International Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications, Florence, Italy, 10–12 December 2003. [Google Scholar]
- Kaltenbacher, B.; Kaltenbacher, M.; Sim, I. A modified and stable version of a perfectly matched layer technique for the 3-d second order wave equation in time domain with an application to aeroacoustics. J. Comput. Phys. 2013, 235, 407–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angermeier, K.; Bahr, L.; Dev, C.; Eiser, S.; Escobar, M.; Freidhager, C.; Grabinger, J.; Greifenstein, J.; Guess, T.; Hassanpour Guilvaiee, H.; et al. openCFS—Open Source Finite Element Software for Multi-Physical Simulation. Available online: https://gitlab.com/openCFS/cfs (accessed on 30 October 2020).
- Schoder, S.; Junger, C.; Kaltenbacher, M. Computational aeroacoustics of the EAA benchmark case of an axial fan. Acta Acust. 2020, 4, 22. [Google Scholar] [CrossRef]
- Kniesburges, S.; Lodermeyer, A.; Semmler, M.; Schulz, Y.K.; Schützenberger, A.; Becker, S. Analysis of the tonal sound generation during phonation with and without glottis closure. J. Acoust. Soc. Am. 2020, 147, 3285–3293. [Google Scholar] [CrossRef] [PubMed]
- Birk, V.; Kniesburges, S.; Semmler, M.; Berry, D.A.; Bohr, C.; Döllinger, M.; Schützenberger, A. Influence of glottal closure on the phonatory process in ex vivo porcine larynges. J. Acoust. Soc. Am. 2017, 142, 2197–2207. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schoder, S.; Maurerlehner, P.; Wurzinger, A.; Hauser, A.; Falk, S.; Kniesburges, S.; Döllinger, M.; Kaltenbacher, M. Aeroacoustic Sound Source Characterization of the Human Voice Production-Perturbed Convective Wave Equation. Appl. Sci. 2021, 11, 2614. https://doi.org/10.3390/app11062614
Schoder S, Maurerlehner P, Wurzinger A, Hauser A, Falk S, Kniesburges S, Döllinger M, Kaltenbacher M. Aeroacoustic Sound Source Characterization of the Human Voice Production-Perturbed Convective Wave Equation. Applied Sciences. 2021; 11(6):2614. https://doi.org/10.3390/app11062614
Chicago/Turabian StyleSchoder, Stefan, Paul Maurerlehner, Andreas Wurzinger, Alexander Hauser, Sebastian Falk, Stefan Kniesburges, Michael Döllinger, and Manfred Kaltenbacher. 2021. "Aeroacoustic Sound Source Characterization of the Human Voice Production-Perturbed Convective Wave Equation" Applied Sciences 11, no. 6: 2614. https://doi.org/10.3390/app11062614
APA StyleSchoder, S., Maurerlehner, P., Wurzinger, A., Hauser, A., Falk, S., Kniesburges, S., Döllinger, M., & Kaltenbacher, M. (2021). Aeroacoustic Sound Source Characterization of the Human Voice Production-Perturbed Convective Wave Equation. Applied Sciences, 11(6), 2614. https://doi.org/10.3390/app11062614