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Abstract: β-Carotene degrades rapidly in a 2% oil-in-water emulsion, made from food-grade soy
oil with 7.4 mg β-carotene/mL oil, during storage and when exposed to light. Added clove oil (2.0,
4.0, or 8.0 µL/mL of emulsion) protects against the photodegradation of β-carotene, regardless of
the ratio between clove oil and β-carotene in the concentration range studied, suggesting that the
regeneration of β-carotene is caused by eugenol, the principal plant phenol of clove oil to occur in
the oil-water interface. Therefore, clove oil in low concentrations may find use as a natural protectant
of provitamin A in enriched foods during retail display.

Keywords: eugenol; photoprotection; provitamin A

1. Introduction

While β-Carotene (β-Car) is an important provitamin A, it is sensitive to light and
degrades rapidly in plant oils or in plant oil emulsions during storage under ambient
conditions [1–4]. Vitamin A deficiency is a major challenge worldwide, especially for
children’s nutrition, and urgently calls for practical solutions [5,6].

Recently, it was found that plant phenols regenerate β-Car and other carotenoids (Car)
from their initial photooxidation product, the carotenoid radical cations (Car•+), through
electron transfer from the reducing phenol group ϕ-OH [7]:

Car•+ + ϕ-OH→ Car + ϕ-O• + H+ (1)

The regeneration of β-Car corresponding to the reaction of Equation (1) was surpris-
ingly found to be the most efficient for moderately reducing plant phenols, such as eugenol,
while strongly reducing plant phenols, like tea catechins, showed no regeneration of β-Car,
but displayed enhanced photobleaching [7–9].

Eugenol and isoeugenol, the main constituents of clove oil [10], are moderately
reducing plant phenols that have been found to regenerate β-Car efficiently from the
radical cation formed by photolysis of β-Car. This reduction occurs in alkaline chloro-
form/methanol as an electron-withdrawing solvent [11]. The ordering of the anions of
the plant phenols according to the rate of regeneration of carotenoids could further be
accounted for by the Marcus theory of electron transfer [12]. According to this theory, the
maximal rate of electron transfer corresponds to a driving force matching the reorganiza-
tion energy in the transition state for electron transfer. Notably, for a larger driving force,
the rate of electron transfer enters the so-called inverted region with a higher activation
barrier, and accordingly, lower rates are seen for quercetin and tea catechins [7,12].

The more practical aspects of the Marcus theory for electron transfer have not yet
been exploited in relation to food preservation. However, the protection of β-Car, as a
provitamin A in an oil-in-water emulsion in a functional food, could provide a proof of
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concept, where the use of Marcus theory could be moved from model systems involving
chlorinated solvents of high pH into a real food system. Accordingly, clove oil, with high
content of moderately reducing plant phenols and its worldwide use in food and beverages,
was combined with β-Car in an oil-in-water emulsion and stored under illumination in
ambient conditions with the objective of protecting provitamin A against degradation
during retail display. The present study aimed to explore whether the Marcus theory for
electron transfer could be used to design optimal protection of a light-sensitive vitamin.

2. Materials and Methods
2.1. Materials

All-trans-β-carotene (β-Car) was from Sigma-Aldrich (St. Louis, MO, USA). Clove oil,
containing 85% eugenol and isoeugenol, was from O’plants (Shanghai, China). Soybean oil
was from Yihai Kerry Food Co., Ltd. (Beijing, China). Whey protein isolates (WPI) were
from HIRMAR (Los Angeles, CA, USA). Lecithin (95%) was from Arbor Star Biological
Technology Co., Ltd. (Beijing, China).

2.2. Preparation of Emulsion

β-Car (40 mg, accurately weighted) and lecithin (2400 mg) were mixed in 5.4 mL
soybean oil and stirred at 1000 rpm for 3 h in the dark to fully dissolve the mixture in the
oil phase. The water phase contained 12 g WPI in 280 mL deionized water with the pH
of the aqueous solution adjusted to 7.0. This solution was adjusted by dropwise addition
of dilute HCl and NaOH, while pH was monitored electrochemically. The emulsion was
prepared by mixing the oil phase with the aqueous solution and homogenizing the mixture
at 13,000 rpm for 5 min using an FA25 homogenizer (Shanghai, China). Subsequently,
10 mL of emulsion samples were added to glass jars before adding the clove oil (0.02 mL,
0.04 mL, or 0.08 mL) to different samples, which were homogenized at 13,000 rpm for 2 min.
In this study, 10 mL emulsion without clove oil served as the control sample. The emulsion
had a fat content of approximately 2%, which is comparable to milk and other nutritive
beverages. The final concentration of eugenol and isoeugenol from clove oil was 1.7, 3.4,
or 6.8 µL/mL emulsion. All samples were stored under light (spectral distribution in the
300−800 nm range, 22,000 Lx warm white similar to light used for illumination during
retail display) at 25 ◦C. Control emulsion samples were stored in the dark at 25 ◦C. The
main experiment, as described in Figures 1 and 2 as well as in Table 1, was in storage for
three weeks. The standard deviation of each color measurement was less than 1%.
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Figure 2. Red bleaching (relative redness a/a0) of oil-in-water emulsion with β-Car with or without
the addition of clove oil during storage in the dark or exposed to light of 22,000 Lx at 25 ◦C.

Table 1. The redness parameter a of β-Car and β-Car-clove oil on light exposure compared to dark
storage for different days. The redness parameter of 0 day is defined as a0.

Sample
Day 0 3 6 9 13 17 21

β-Car 24.12 23.31 21.80 20.87 20.31 20.16 20.01
β-Car-clove oil
(2 µL/mL emulsion; Light) 24.69 23.78 23.49 22.90 22.17 22.00 21.87

β-Car-clove oil
(4 µL/mL emulsion; Light) 24.45 23.66 23.38 22.48 21.59 21.69 21.59

β-Car-clove oil
(8 µL/mL emulsion; Light) 23.39 22.39 21.93 22.48 20.72 20.39 20.46

β-Car-clove oil
(2 µL/mL emulsion; Dark) 24.27 23.91 24.40 24.02 23.88 23.81 23.11

β-Car-clove oil
(4 µL/mL emulsion; Dark) 24.07 24.12 24.27 23.93 23.56 23.38 23.60

β-Car-clove oil
(8 µL/mL emulsion; Dark) 22.93 22.97 23.04 22.84 22.65 22.34 22.70

2.3. UV-Visible Absorption Spectroscopy

UV-visible absorption spectra were measured on a Cary50 spectrophotometer (Varian
Inc., Palo Alto, CA, USA), using 1.0 cm quartz cells. According to Lambert-Beer’s law, the
soybean oil acted as a mixed low-polarity solvent for the concentration of β-Car as it relates
to the absorbance:

c =
Aλ

ελ·b
(2)
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Equation (2) was used for quantification in this study [13]. In Equation (2), c is the
molar concentration (mol·L−1) of β-Car. Aλ is the measured absorbance, and ελ is the molar
extinction coefficient of β-Car in pure soybean oil (1.43× 105 L·mol−1·cm−1) at the maximal
absorption wavelength (λ) of 462 nm. b is the optical pathlength of the cuvette (1 cm).

2.4. Color Measurement

The LAB Hunter values of the emulsion samples were measured multiple times by
a PR-780 Spectrophotometer (Photo Research, Los Angeles, CA, USA) during storage for
up to 21 days. In the main experiment, photographs of the samples were taken regularly
during storage using a digital camera. The light source for color measurement was a
tungsten lamp (40 W), and a standard, white tile served as a background.

3. Results and Discussion

β-Car is lipophilic (logP = 12.2) and dissolves in the soy oil of the oil-in-water emulsion.
Clove oil consists mainly of eugenol with logP = 2.49 [14,15] which distributes between
the oil and the aqueous phase. As evident from Figure 1, the emulsion appeared homo-
geneously red. The concentration of β-Car in the emulsion oil phase was 7.4 mg/mL soy
oil, while the phenols from clove oil were distributed between the two phases. Soy oil was
selected for the oil phase of the emulsion as it is edible, with good nutritive value, and
is available worldwide. Lecithin with 8.4 mg/mL emulsion was also added because it is
commonly used as an emulsifier in foods.

When stored in the dark, the color remained constant, as depicted in Figure 2. In
Table 1, a, i.e., the redness parameter of the LAB color system, is shown for 21 days of
storage, while a0 is the redness parameter of day 0. The presence of clove oil did not
affect the color during dark storage at any of the three concentrations. This finding was
in agreement with the robustness toward uncatalyzed degradation of β-Car which was
previously observed [16].

Upon exposure to light, the redness faded, as was evident from visual inspection;
see Figure 1. Carotenoids are generally sensitive to radiation, including light and γ-
irradiation [17]. The redness parameter a also showed a significant decrease during storage
when exposed to light (Table 1 and Figure 2). The presence of clove oil clearly provided
protection, as bleaching was reduced to approximately half of that in the emulsion without
clove oil. Notably, the protection of color, and accordingly, of β-Car, was not dependent
on either the amount of clove oil added or the concentration of the plant phenols in
the concentration range studied (clove oil between 2.0 µL/mL and 8.0 µL/mL), due to
the saturation of plant phenols at the emulsion interface. The decrease of the redness
parameter a could be described by a mono-exponential model function for each of the
three independent experiments for which the rate constant was 0.089 days−1, and was not
dependent on the clove oil concentration. This type of protection was similar to that of
plant phenols toward the carotenoids involved in the visual function [18].

The light source used for the storage experiment had an intensity of 22,000 Lx, was
mainly in the visible region, and had a minor UV-component. The glass of the jars further
served as a UV-filter. As seen from the absorption spectra of Figure 3, the light was absorbed
by β-Car rather than by the clove oil phenols. Excitation of β-Car to the singlet or triplet
states generated radical cations, leading to bleaching:

Car + hν→ 1Car∗ (3)
1Car∗ → 3Car∗ (4)

3Car∗/1Car∗→Car•+ + e− (solv.) (5)

Car•+ → Degradation products (6)
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According to Equations (1) and (6), the regeneration of the carotenoid from radi-
cal cations will compete with its degradation. As seen in Figure 2, the bleaching was
independent of the concentration of eugenol in the concentration range studied.

The regeneration rate previously found for homogeneous solution [7]:

d[Car]
dt

= k2[Car+][ϕ–OH] (7)

seems for the present conditions independent of the total phenol concentration in the
emulsion. This apparent zero-order dependence on the plant phenol for the emulsion
probably indicated: (i) a rapid electron transfer, and (ii) an apparent similar excess of
phenol available for reduction under all conditions investigated. These observations
pointed toward a mechanism occurring in the emulsion interface that was saturated with
the plant phenols. The rate expression of Equation (7) was based on a series of more
systematic kinetic studies in homogenous solutions [7–9,11]. The observed kinetics for the
photodegradation of β-Car in the oil-in-water emulsion can be accommodated within this
theory, including the partition of eugenol between the homogeneous aqueous phase and
the heterogeneous oil phase. The distribution between water and oil may be adjusted as
eugenol is consumed.

In the oil-in-water emulsion, the protection of β-Car by clove oil is an important
finding, since regeneration occurs at neutral pH as compared to the conditions of high
pH used in model studies [7–9,11]. The phenols of clove oil and not only their anions are
sufficiently reducing for the donation of an electron, and have matching reduction potential
according to Marcus’ theory to reduce the carotenoid radical cation [12]. Isoeugenol and
especially eugenol may be unique in this respect; nevertheless, other plant oils and plant
phenols with similar, moderate reduction potentials are now being investigated for their
ability to protect carotenoids against light degradation in food.
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Designing functional foods with better shelf life is encouraging, as there is a serious
problem with vitamin A deficiency worldwide [19]. Moreover, the use of plant oils will
provide such products with a natural image of sustainability. The practical application
of these findings still needs further development, but in light of the simple procedures
required, the perspective seems encouraging, especially for developing countries.

4. Conclusions

Our results show that clove oil protects β-carotene in an oil-in-water emulsion from
photodegradation due to the content of moderately reducing plant phenols. It serves as a
proof of concept for the use of the Marcus theory for electron transfer as a strategy for the
protection of vitamin A and provitamin A compounds, thus addressing a global problem.
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