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Abstract: This study aimed to reveal the influence of sound absorption in general dwellings on the
subjective evaluation of acoustics. First, a subjective experiment was conducted using a full-scale
room model. The results indicate that the feelings of silence and serenity can be experienced at
absorption coefficients above 0.17, particularly above 0.25. Additionally, we used the recorded
binaural sounds for a subjective test instead of using a full-scale room model. This trial showed that
the reverberance, feeling of silence, and feeling of serenity can also be evaluated using a headphone
listening test. We also measured the reverberation times and recorded the sound environments in
three bedrooms, three living and dining (LD) rooms, and three child rooms in modern Japanese
dwellings. The average absorption coefficients of the LD and child rooms were lower than 0.17, in
the range of 500 Hz to 4 kHz. Therefore, we analyzed the subjective effect of absorption through a
psychological test using binaural recorded sounds. The bedrooms with absorption coefficients of
0.18–0.23 were significantly less reverberant, quieter, and more serene than the other rooms.

Keywords: absorption coefficient; reverberation time; modern Japanese dwelling; subjective experiment

1. Introduction

Wooden dwellings are very popular in Japan because most part of the territory of
the country is covered by forests and mountains. Old and traditional Japanese dwellings
tolerated small gaps at high temperatures and humidity. However, recent technologies
provide flexible plans as well as airtightness and adiabaticity in modern dwellings. Addi-
tionally, with the change in Japanese lifestyle, cloths on plaster boards have been used for
the finish of walls and ceilings, instead of thin wooden boards, whereas for the floor, wood
is commonly used instead of “tatami” (straw and rush mats). These changes may lead to
longer reverberation times and higher average sound pressure levels in modern Japanese
dwellings. Under these circumstances, Japanese dwellings could be expected to require
different specifications with respect to not only airborne insulation from the outside but
also room acoustics.

Studies have been conducted on the room acoustic specifications of general dwellings.
Parkin et al. reported that the reverberation time of a general furnished living room
is approximately 0.5 s in the main frequency range of 100–3150 Hz [1]. Jackson et al.
measured the reverberation time for 50 living rooms and 50 kitchens and reported average
reverberation times of 0.51 and 0.68 s at 1 kHz, respectively [2]. Burgress et al. investigated
47 living rooms and 51 bedrooms and reported reverberation times of 0.33 and 0.28 s at
500 Hz, respectively [3]. They stated that the decrease in reverberation time could be
attributed to the increasing number of carpets laid on the floors from the 1950s to the 1980s.
Bradley measured acoustic parameters of 602 multiple residence homes in Canada and
reported that the average reverberation time was close to 0.4 s with a standard deviation of
less than 0.1 s in the frequency range of 100–4000 Hz [4].
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In the 2000s, Díaz et al. measured 11687 rooms (8246 bedrooms, 3211 living rooms, and
230 unfurnished rooms) and revealed the relationship between room volume and reverber-
ation time (or equivalent absorption area) in general Spanish dwellings [5,6]. To estimate
the airborne insulation of rooms, ISO16283 provides the standardized level difference, Dn,T,
and the standardized impact sound level, Ln,T, calculated using the reverberation time, T, of
the receiving room [7,8]. Nowicka et al. measured the reverberation times of living rooms,
bathrooms, and kitchens in Poland for five years and reported that the reverberation times
of furnished rooms under 55 m3 were below 0.5 s [9]. Mašović et al. measured 91 furnished
rooms and 151 unfurnished rooms and reported that the average reverberation times of
furnished rooms under and over 50 m3 were approximately 0.5 s and 0.7 s, respectively, and
that of rooms with any volume under 100 Hz was approximately 1.0 s [10]. These results
are consistent with those reported by Díaz et al. [5,6]. Kylliäinen et al. reported that the
average reverberation time of 207 furnished living rooms was 0.5 s at 125–4000 Hz [11,12].
Jeon et al. also reported the reverberation times of unfurnished and furnished living rooms
in Korea [13,14]. These studies focused on quantitative evaluations of rooms of dwellings
by using acoustic objective parameters.

Subjective studies concerning the sound environment in dwellings have been con-
ducted from the viewpoint of soundscapes. The term soundscape has been defined by
ISO12913–1 [15] as the “acoustic environment as perceived or experienced and/or under-
stood by a person or people, in context”. To date, researchers have focused on urban studies
and outdoor environments. The soundscape can be described in at least two dimensions,
pleasantness and eventfulness, and also by the eight soundscape items, pleasant, annoying,
chaotic, calm, vibrant, monotonous, uneventful, and eventful, proposed by ISO/TS 12913–2
and –3 [16,17] (adapted from Ref. [18]). These interests have recently spread to indoor con-
texts [19–21] such as care facilities [22,23], public libraries [24,25], restaurants [26–28], and
commuting hubs [29]. Studies on the soundscape of living rooms in residences are strongly
related to our study [30–33]. Torresin et al. conducted indoor soundscape listening tests
using a mockup living room and derived eight affective responses instead of the former
eight items. From this study, the item “calm” could be related to “private, controlled” [33].
Moreover, there have been many studies on loudness and annoyance caused by floor
impact or airborne insulation [34–52]. However, it is uncertain whether sound absorption
treatment is subjectively effective in providing such a “calm” or “private, controlled” living
room. If sound absorption has such subjective effects, the amount of effective absorption
must be determined by subjective experiments. However, no extensive studies have been
conducted on the subjective effects of absorption in ordinary dwelling rooms.

We analyzed the influence of the average absorption coefficient (equivalent absorption
area) on the acoustic subjective evaluations using full-scale room models [53]. Subsequently,
we used binaural recorded sources by a dummy-head microphone system for the subjective
evaluation of these rooms because the analysis of full-scale room models requires a long
time period and considerable human resources [54]. Based on these experimental outcomes,
we measured the acoustic characteristics of real rooms in modern Japanese dwellings and
recorded binaural sound sources [55]. We also conducted a subjective analysis using the
recorded sources in our laboratory [55]. In this study, we derived the average absorption
coefficient required to provide feelings of silence and serenity based on a series of subjective
tests and acoustic measurements previously performed and detailed in our papers written
in Japanese [53–55]. Additionally, we discussed the relationship between background noise
level and sound absorption of the room to create feelings of silence and serenity.

2. Subjective Experiment Using Full-Scale Room Models
2.1. Purpose

A pair of rooms with different absorption areas was used for the comparison. We
investigated whether participants could feel the auditorily differences between them, such
as reverberance or some spatial impression differences. To clarify the required absorption
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coefficient to provide the desired effectiveness to the occupant, the experimenter changed
the absorption area in some steps.

2.2. Specification of Evaluation Spaces

Two axisymmetric evaluation spaces and front chamber shown in Figure 1a were
set in an area of 3.5 × 3.5 m2 in a dwelling built using a wooden panel system. The
evaluation spaces had 12.5-mm-thick wooden floor, and the walls and ceiling were finished
with a 12.5-mm-thick plasterboard on the plywood board. The floor finish of the front
chamber was a plywood board. Figure 2 presents five absorption patterns, from “A” to
“E”. Polyester nonwoven panels with a thickness of 50 mm and density of 32 kg/m3 were
used as absorbers [56].

Before the subjective experiment, the reverberation time of each pattern and that of
the front chamber were measured according to ISO3382–2 [57]. A loudspeaker (YAMAHA
MSR100) was located on the floor at position “S” as shown in Figure 1b and exposed a
time-stretched pulse (TSP) signal. Microphones (ONOSOKKI MI-1235, class 1) were located
at five point marked positions with a height of 1.5 m. The absorption coefficients were
calculated using the measurement results (Table 1 and Figure 3). The reverberation times
gradually decreased as the absorption area increased from pattern “A” to “E”. Pattern “O”
indicates the result of the front chamber. The higher absorption coefficients at 125 Hz than
at 250 Hz in all patterns were caused by the plywood board plane vibration.
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Table 1. Results of the measurement in the front chamber (O) and five absorption patterns (A–E).

Parameter Pattern
Octave Band Frequency (Hz)

125 250 500 1000 2000 4000

Reverberation
Time

A 0.29 0.66 0.91 0.83 0.75 0.65
B 0.26 0.45 0.46 0.40 0.39 0.38
C 0.22 0.32 0.32 0.28 0.27 0.24
D 0.14 0.21 0.25 0.17 0.15 0.16
E 0.14 0.18 0.14 0.11 0.11 0.14
O 0.26 0.39 0.49 0.60 0.60 0.53

Absorption
Coefficient

A 0.16 0.07 0.05 0.06 0.06 0.07
B 0.17 0.11 0.10 0.12 0.12 0.12
C 0.20 0.14 0.14 0.16 0.17 0.19
D 0.29 0.21 0.18 0.25 0.28 0.27
E 0.30 0.24 0.31 0.35 0.37 0.30
O 0.22 0.15 0.12 0.10 0.10 0.11
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2.3. Procedure of the Subjective Experiment

Nakaya’s modified method of Scheffé’s paired comparisons [58–64] was used for
the subjective experiment. The evaluation items are listed in Table 2. The participants
experienced the two evaluation spaces in sequence and rated the difference in the evalu-
ation items between the two spaces, as shown in Figure 4. Initially, the examiner leads a
participant from position “X” in the front chamber to position “Y” in evaluation space 1.
The participant experiences this space by generating noise or voice, and then returns to
position “X” and moves to position “Z” with the help of the examiner. In sequence, the
participant experiences evaluation space 2. After experiencing both spaces, the participant
returns to position “X” and states the auditory difference between the two spaces on a scale
of −3 to 3 (seven-grade evaluation) for the eight items listed in Table 2.

Table 2. Evaluation items for the paired comparison experiment.

Evaluation Item

Difference in feeling of silence between the inside and outside of the room
Reverberance

Feeling of silence
Feeling of serenity

Sense of room volume
Feeling of oppression

Sense of quality
User preference

Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 22 
 

 

the evaluation space and that he/she could experience the pair of spaces again in case of 
finding difficulties to evaluate the spaces. As shown in Figure 4, the recorded fan noise of 
the kitchen, as a sound that commonly exists in houses, was transmitted from the two 
loudspeakers located at the corners of the floor in the front chamber with a 33-dB A-
weighted level. 

 
Figure 4. Two evaluation spaces used for the Nakaya’s modified method of Scheffé’s paired com-
parisons. The participants experience the two evaluation spaces successively and state the differ-
ences between these two spaces for eight subjective items. 

2.4. Results and Discussion 
Figure 5 shows the results of the subjective experiments on a psychological scale. Error 

bars represent 5% significant yardsticks. We can evaluate statistical significance (p < 0.05) 
between two average cores by comparing with the other’s yardstick. The largest difference 
in psychological value was observed for “reverberance.” All evaluation spaces were found 
to have significantly different reverberances. The participants could distinguish one space 
from the others. With the increase in the absorber area, the psychological values of “feeling 
of silence,” “feeling of serenity,” “sense of quality,” and “user preference” also tended to 
increase. However, the changing ranges of these items were not larger than that of “rever-
berance.” Regarding “feeling of silence” and “sense of quality,” the largest change in psy-
chological value was observed between evaluation spaces “C” and “D.” These results indi-
cate that a certain threshold of absorption area must be exceeded to feel the difference in 
these sensations. 

An analysis of variance (ANOVA) was performed between the average absorption co-
efficients of the five patterns and eight evaluation items. The main effect of changing the 
absorption area was not significant in terms of “sense of room volume,” F (4, 20) = 2.20, p = 
0.11 and “feeling of oppression,” F (4, 20) = 0.28, p = 0.89, but showed 1% significance for 
the other six evaluation items. The correlation coefficients of these six items were calculated 
and are listed in Table 3. The absorption installation may influence “difference in feeling of 
silence,” r(5) = 0.81, p < 0.01, “reverberance,” r(5) = −0.94, p < 0.01, ”feeling of silence,” r(5) = 
0.97, p < 0.01, “feeling of serenity,” r(5) = 0.98, p < 0.01, “sense of quality,” r(5) = 0.94, p < 0.01, 
and “user preference,” r(5) = 0.90, p < 0.01 (all values at 500 Hz). 

Table 3. Correlation coefficients between the average absorption coefficients and psychological values of each evaluation 
item. 

Item 125 Hz 250 Hz 500 Hz 1000 Hz 2000 Hz 4000 Hz 
Difference in feeling of silence 0.79 * 0.77 * 0.81 * 0.80 * 0.80 * 0.72 

Reverberance −0.93 ** −0.97 ** −0.94 ** −0.97 ** −0.97 ** −0.99 ** 
Feeling of silence 0.97 ** 0.98 ** 0.97 ** 0.99 ** 0.99 ** 0.96 ** 

Feeling of serenity 0.93 ** 0.98 ** 0.98 ** 0.98 ** 0.97 ** 0.99 ** 
Sense of room volume - - - - - - 
Feeling of oppression - - - - - - 

Sense of quality 0.99 ** 1.00 ** 0.94 ** 0.98 ** 0.99 ** 0.99 ** 

Figure 4. Two evaluation spaces used for the Nakaya’s modified method of Scheffé’s paired compar-
isons. The participants experience the two evaluation spaces successively and state the differences
between these two spaces for eight subjective items.

Ten pairs were used for the comparison. To reduce the order effect, two series of
ten-pair sequences (one is EA, EC, DB, DC, . . . , CB, and the other is of the opposite order:
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AE, CE, BD, CD, . . . , BC), excluding equal patterns (AA, BB, . . . , EE) were set. The
sequence of the experiment was randomized, and we ensured that either side was not
always less absorptive than the other side. Six people with normal hearing participated in
the experiment (age: 20–30s). Three participants were examined in one sequence and the
other three were examined in the other sequence. The examiner individually explained
the type of the test, approach, procedure, and risk to all participants before the test in all
subjective experiments. A blindfold (eye mask) and glove were consensually worn by the
participants to eliminate the influence of vision and tactile sensation. Before the experiment,
the experimenter indicated to the participant that he/she was allowed to generate noises
or speak in the evaluation space and that he/she could experience the pair of spaces again
in case of finding difficulties to evaluate the spaces. As shown in Figure 4, the recorded
fan noise of the kitchen, as a sound that commonly exists in houses, was transmitted from
the two loudspeakers located at the corners of the floor in the front chamber with a 33-dB
A-weighted level.

2.4. Results and Discussion

Figure 5 shows the results of the subjective experiments on a psychological scale. Error
bars represent 5% significant yardsticks. We can evaluate statistical significance (p < 0.05)
between two average cores by comparing with the other’s yardstick. The largest difference
in psychological value was observed for “reverberance”. All evaluation spaces were found
to have significantly different reverberances. The participants could distinguish one space
from the others. With the increase in the absorber area, the psychological values of “feeling
of silence”, “feeling of serenity”, “sense of quality”, and “user preference” also tended
to increase. However, the changing ranges of these items were not larger than that of
“reverberance”. Regarding “feeling of silence” and “sense of quality”, the largest change in
psychological value was observed between evaluation spaces “C” and “D”. These results
indicate that a certain threshold of absorption area must be exceeded to feel the difference
in these sensations.

An analysis of variance (ANOVA) was performed between the average absorp-
tion coefficients of the five patterns and eight evaluation items. The main effect of
changing the absorption area was not significant in terms of “sense of room volume”,
F (4, 20) = 2.20, p = 0.11 and “feeling of oppression”, F (4, 20) = 0.28, p = 0.89, but showed
1% significance for the other six evaluation items. The correlation coefficients of these six
items were calculated and are listed in Table 3. The absorption installation may influence
“difference in feeling of silence”, r(5) = 0.81, p < 0.01, “reverberance”, r(5) = −0.94, p < 0.01,
”feeling of silence”, r(5) = 0.97, p < 0.01, “feeling of serenity”, r(5) = 0.98, p < 0.01, “sense
of quality”, r(5) = 0.94, p < 0.01, and “user preference”, r(5) = 0.90, p < 0.01 (all values at
500 Hz).

Table 3. Correlation coefficients between the average absorption coefficients and psychological values of each evaluation item.

Item 125 Hz 250 Hz 500 Hz 1000 Hz 2000 Hz 4000 Hz

Difference in feeling of silence 0.79 * 0.77 * 0.81 * 0.80 * 0.80 * 0.72
Reverberance −0.93 ** −0.97 ** −0.94 ** −0.97 ** −0.97 ** −0.99 **

Feeling of silence 0.97 ** 0.98 ** 0.97 ** 0.99 ** 0.99 ** 0.96 **
Feeling of serenity 0.93 ** 0.98 ** 0.98 ** 0.98 ** 0.97 ** 0.99 **

Sense of room volume - - - - - -
Feeling of oppression - - - - - -

Sense of quality 0.99 ** 1.00 ** 0.94 ** 0.98 ** 0.99 ** 0.99 **
User preference 0.94 ** 0.97 ** 0.90 ** 0.95 ** 0.95 ** 0.99 **

** p < 0.01, * p < 0.05.
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We analyzed the relationship between objective measurements and subjective experi-
ments in detail. Only for “reverberance”, the absorption pattern “B” with an arithmetic
average of the absorption coefficients of 0.12 from 500 to 4000 Hz significantly differed
from pattern “A”. This shows that an absorption coefficient of 0.12 is not sufficient to create
the auditory effect of the room. Similarly, the absorption pattern “C” (arithmetic average of
absorption coefficient: 0.17) could provide a lower “reverberance” and higher “feeling of
serenity” and “user preference”. However, it could not provide a “feeling of silence” and
“sense of quality”. Absorption pattern “D” (arithmetic average of the absorption coefficient:
0.25) could provide a higher “feeling of silence” and “sense of quality”, considerably lower
“reverberance”, and considerably higher “feeling of serenity” and “user preference”. Thus,
the effect of the absorbent material was increased at an absorption coefficient of 0.17 and
was further increased at an absorption coefficient of 0.25.
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3. Subjective Evaluation Using Recording Sources and Headphone Listening

The subjective test described in the previous section using a full-scale room model
requires considerable time and human resources to switch the absorption pattern. To
reduce these resources and provide a more convenient comparison, we recorded the sound
fields of five absorption patterns with a dummy-head microphone system and replayed
binaural resources with headphones.

3.1. Binaural Recording

The sound fields of the five absorption patterns, i.e., “A”–“E”, in the full-scale room
model were recorded using a dummy-head microphone system. In each pattern, the en-
vironmental sound (kitchen fan noise) was played at 33 dB, as in the former subjective
experiment. A KEMAR 45BA dummy head and two GRAS 40AD high-sensitivity micro-
phones were used for recording. The height of the ear external canal was 1.5 m. The sounds
were digitized using 24-bit, 48-kHz pulse-code modulation. As shown in Figure 6a, the
experimenter held the dummy head with both hands and moved from the front chamber to
evaluation space 1, generating a stepping sound. In the former experiment, the participants
were allowed to generate noise and voice, and almost all spoke something to verify the
sound. In this case, if the experimenter spoke something and recorded it, the participant
would have to listen to the experimenter’s voice. However, it is slightly strange to listen to
another person’s voice for a subjective test. Thus, we decided to record only the sound of
the steps. We aimed to provide a constant moving pitch and walking speed throughout the
recording. However, the repeatability may not be perfect.
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3.2. Procedure of the Subjective Experiment

The subjective test was analyzed using headphone reproduction in a very quiet
traditional Japanese room with 10 sheets of “tatami” mats (approximately 18.2 m2), where
the A-weighted 10-s equivalent continuous sound pressure level (LAeq,10s) was 22.7 dB.
The recorded sounds were reproduced from a personal computer to a SENNHEISER H25-1
headphone through an RME Fireface UC as a Digital to Analog (DA) converter. The
reproduction level was manually adjusted to be almost equal to the level in the full-scale
room model, and the volume control was fixed to reproduce the level difference of the
absorption pattern. Before the experiment, the headphones were placed on the dummy
head, and the sound sources of the five absorption patterns were reproduced and recorded.
The A-weighted single-event sound exposure levels (LEA) of absorption patterns A–E were
72.6, 67.4, 64.2, 60.0, and 56.3 dB, respectively. The frequency characteristics of the last step
in each absorption pattern are shown in Figure 6b.
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The subjective experiment using headphones was organized with Nakaya’s modified
method of Scheffé’s paired comparisons, with the 10 pairs, as in the former test for the
full-scale room model. The subjective items were the same as those in the former test, as
shown in Table 2. The participants, who different from those in the former test, were six
people in their 20s. The experimenter instructed that the object for evaluation was not “the
room you can see” but “the sound you hear”. The participants rated the difference between
a pair of sound sets for the eight items and were allowed to listen to a pair of sound sets
again if they wanted.

3.3. Results

The results of the subjective tests are shown in Figure 7. Error bars represent 5%
significant yardsticks. All results of all items with headphones follow a similar tendency
to that of the full-scale room model in Figure 5. Table 4 shows the results of the ANOVA
on the main effects of the absorption coefficient on the eight evaluation items. “Sense of
room volume”, F (4, 20) = 2.20, p = 0.11 and “feeling of oppression”, F (4, 20) = 0.28, p = 0.89
in the full-scale room model test and “sense of quality”, F (4, 20) = 1.66, p = 0.20 in the
headphone listening were not significant. “Difference in feeling of silence”, “reverberance”,
“feeling of silence”, and “feeling of serenity” were significant with respect to the absorption
coefficient as well as in the result of the former test with the full-scale room model. The
experimenter conducted interviews with all the participants after the experiment. The
“sense of quality” was not significant in all sound fields because a participant group (three
participants) replied a “feeling of silence and appropriate reverberance” for the space “E”,
whereas the other group replied “feeling a high ceiling as in an entrance of a high graded
hotel” for the space “A”. These responses were also obtained for “user preference”, which
explains the yardstick of “user preference” being as large as that of “sense of quality”.

The correlation coefficients between the psychological scores and the absorption
coefficients of the five patterns were calculated. The calculation results are presented in
Table 5. These five items are strongly correlated with the absorption coefficient. Thus, the
primitive sensations, such as “reverberance”, “feeling of silence”, and “feeling of serenity”,
were stably evaluated using the headphone test with recorded resources by the dummy
head as well as using the full-scale room model. In contrast, the “sense of quality” and
“user preference” depended on the preference of the participant.

Table 4. Results of significant-difference tests of the main effects of the average absorption coefficient
on the evaluation items.

Item
Main Effects F (4, 20)

Full-Scale Model Headphone Listening

Difference in feeling of silence 12.76 ** 42.36 **
Reverberance 65.00 ** 24.07 **

Feeling of silence 10.17 ** 45.79 **
Feeling of serenity 14.10 ** 10.22 **

Sense of room volume 2.20 12.79 **
Feeling of oppression 0.28 4.38 *

Sense of quality 9.00 ** 1.66
User preference 9.38 ** 4.48 **

F0.99 (4, 20) = 4.431, F0.95 (4, 20) = 2.866
** p < 0.01, * p < 0.05.
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Figure 7. Results of the psychological experiment using recording sources and headphone listening.
The eight figures show the psychological values of the five absorption patterns (A–E) for each
subjective item. The error bars represent the 5% significant yardsticks.

Table 5. Correlation coefficients between the psychological values of the full-scale modeling experi-
ment and those of the headphone listening experiment for each evaluation item.

Item Correlation Coefficient

Difference in feeling of silence 0.90 **
Reverberance 0.98 **

Feeling of silence 0.93 **
Feeling of serenity 0.97 **

Sense of room volume 0.55
Feeling of oppression 0.36

Sense of quality 0.76 *
User preference 0.96 **

** p < 0.01, * p < 0.05.
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4. Reverberation Times in Dwellings
4.1. Measurement

After these subjective experiments, we conducted acoustic investigations in modern
Japanese dwellings. Three model houses for sale, with a wooden panel system, were
selected for the investigation. The measurement was planned in bedrooms, living and
dining (LD) combined rooms, and child rooms of each house for comparison. All walls
and ceilings of these rooms were finished with vinyl cloths on plaster boards. Other
specifications of the rooms are listed in Table 6. Photographs of these nine furnished rooms
are presented in Figures 8–10. The LD room of House A had a raised seating area, and that
of House B had a part of double height. The impulse responses were measured using a
dodecahedral loudspeaker and a TSP signal. The reverberation times T30 were calculated
according to ISO3382-2 [58] using these responses. Subsequently, the average absorption
coefficients of the nine rooms were calculated.

Table 6. Specifications of the bedrooms, living and dining (LD) rooms, and child rooms of the
three houses.

Volume, m3 Surface Area, m2 Floor Area, m2 Floor Finish

Bedroom
House A 42.4 78.6 18.8

CarpetHouse B 42.3 74.9 16.6
House C 66.3 107.6 27.6

LD room
House A 78.6 128.9 34.5

WoodHouse B 174.6 233.6 56.8
House C 74.0 117.1 30.2

Child room
House A 30.9 57.7 11.7

WoodHouse B 32.5 60.9 14.0
House C 30.1 59.9 12.5
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4.2. Results

The results of the reverberation time measurements are presented in Table 7 and
Figure 11. The absorption coefficients are presented in Table 7 and Figure 12. The reverber-
ation times were 0.34–0.51 s in the bedrooms, slightly longer at mid and high frequency
bands; 0.52–0.84 s in the LD rooms, and also longer at mid and high frequency bands
except that of room C; and 0.36–0.67 s in the child rooms, with larger values at mid and
high frequency bands. We compared these results to the averages of 11,457 furnished room
reverberation times reported by Díaz et al. [5,6] at 500 Hz and 1 kHz, and observed that
the values were very similar. However, the reverberation times of the LD rooms and child
rooms were approximately 0.1–0.2 s longer than that reported by Díaz et al., because these
rooms were finished by wooden floors. At 125 and 250 Hz, the values of this measurement
were approximately 0.1–0.2 s shorter than that reported by Díaz et al. The panel absorption
of the walls and ceilings might be the main reason.

The absorption coefficients of the bedroom in House C were larger than those in
the other houses. The shorter reverberation times were caused by the two beds and the
thick-piled carpet in the bedroom. The values of the LD rooms did not differ among the
three houses. The high absorption coefficient values at 125 and 250 Hz were due to the
panel absorption of the walls and ceilings. The values of the child room in House B were
slightly larger than those in the other rooms because the room had a bed.

Table 7. Reverberation times and absorption coefficients in the nine rooms.

Parameter Room House
Octave Band Frequency (Hz)

125 250 500 1000 2000 4000 8000

Reverberation
Time

Bedroom
A 0.34 0.35 0.40 0.39 0.46 0.44 0.40
B 0.36 0.42 0.51 0.48 0.46 0.44 0.41
C 0.38 0.44 0.40 0.38 0.36 0.37 0.37

LD room
A 0.52 0.62 0.70 0.67 0.63 0.67 0.63
B 0.62 0.64 0.72 0.84 0.83 0.80 0.72
C 0.60 0.67 0.74 0.76 0.71 0.67 0.59

Child room
A 0.52 0.61 0.67 0.61 0.59 0.62 0.60
B 0.36 0.47 0.52 0.54 0.51 0.53 0.48
C 0.52 0.56 0.60 0.59 0.61 0.58 0.53

Absorption
Coefficient

Bedroom
A 0.23 0.22 0.20 0.20 0.17 0.18 0.20
B 0.22 0.19 0.16 0.17 0.18 0.19 0.20
C 0.23 0.20 0.22 0.23 0.24 0.24 0.24

LD room
A 0.17 0.15 0.13 0.14 0.14 0.14 0.14
B 0.18 0.17 0.15 0.13 0.14 0.14 0.15
C 0.16 0.14 0.13 0.13 0.13 0.14 0.16

Child room
A 0.15 0.13 0.12 0.13 0.14 0.13 0.13
B 0.21 0.17 0.15 0.15 0.16 0.15 0.16
C 0.14 0.13 0.13 0.13 0.12 0.13 0.14
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5. Subjective Evaluation of Recoding Sources in the Dwellings
5.1. Binaural Recordings

The binaural recording was organized such that the experimenter held the dummy
head and walked through the room with a foot-stepping sound, as shown in Figure 13.
The following procedure was adopted: the experimenter wore room shoes, walked from
the outside into the back of the room, stopped at a certain position, stepped a few times
at that position, turned around, and went back to the outside through the same way. In
sequence, the stepping sound of the experimenter and background noise were recorded in
nine rooms (three rooms in three houses). The same experimenter followed this procedure
in the nine rooms. The other experimenters removed their shoes to avoid stepping sounds.
The 24-bit/48-kHz digital recording settings and volume control were fixed throughout
the nine recordings to compare the sounds.
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5.2. Procedure of the Subjective Experiment

The subjective experiment was conducted in a quiet room and consisted of headphone
listening. The test sounds were reproduced from a personal computer to a SENNHEISER
H25-1 headphone through the RME Fireface UC as the DA converter. The reproduction
level was controlled to be the same as that in the recorded rooms and was fixed throughout
the test by the experimenter.

A total of 36 pairs of comparison sets were used for subjective tests. The test was
based on Nakaya’s modified Scheffé’s paired comparison method. The seven evaluation
items except “difference in feeling of silence between the inside and outside”, as shown in
Table 2, were selected. The participants were 13 people (age: 20s). The experimenter did
not instruct them on the specifications and photographs of the nine recording rooms and
instructed them to evaluate only by sound listening. The participants rated the degrees
of difference in seven steps and were allowed to listen to a pair of sound sets again if
they wanted.

5.3. Results and Discussion

The psychological scores of the nine rooms for each evaluation item are shown in
Figure 14, the results of the ANOVA of the psychological scores and main effects for each
evaluation item are shown in Table 8, and the correlation coefficients between psychological
scores and absorption coefficients in each frequency band are shown in Table 9. The
ANOVA shows a 5% significance for “feeling of oppression” F (8, 96) = 2.20, p = 0.04,
and 1% significance for the other six items. The participants were able to evaluate the
differences in the acoustic environments of each dwelling room. Seven items, not including
“feeling of oppression”, r(9) = −0.05 at 500 Hz, had high correlations at all octave bands.
Table 9 indicates that the increase in the absorption coefficient decreased “reverberance”,
r(9) = −0.79, and increased the “feeling of silence”, r(9) = 0.88, and “feeling of serenity”,
r(9) = 0.84 (at 500 Hz).

Table 8. Results of the ANOVA of the psychological scales and main effects for each evaluation item.

Item Main Effects F (8, 96)

Reverberance 31.20 **
Feeling of silence 23.77 **

Feeling of serenity 32.61 **
Sense of room volume 14.22 **
Feeling of oppression 2.20 *

Sense of quality 10.69 **
User preference 5.96 **

F0.99 (8, 96) = 2.702, F0.95 (8, 96) = 2.036
** p < 0.01, * p < 0.05.

Table 9. Correlation coefficients between the average sound absorption coefficient and psychological
value of each evaluation item.

Item 125 Hz 250 Hz 500 Hz 1000 Hz 2000 Hz 4000 Hz

Reverberance −0.70 ** −0.77 ** −0.79 ** −0.83 ** −0.70 ** −0.81 **
Feeling of silence 0.73 ** 0.85 ** 0.88 ** 0.88 ** 0.74 ** 0.84 **

Feeling of serenity 0.71 ** 0.85 ** 0.84 ** 0.83 * 0.66 ** 0.78 **
Sense of room volume −0.77 ** −0.76 ** −0.76 ** −0.85 ** −0.71 ** −0.75 **
Feeling of oppression −0.11 −0.13 −0.05 0.16 0.12 0.07

Sense of quality 0.70 ** 0.86 ** 0.83 ** 0.80 * 0.63 ** 0.76 **
User preference 0.66 ** 0.84 ** 0.84 ** 0.78 * 0.64 ** 0.76 **

** p < 0.01, * p < 0.05.
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5% significant yardsticks.

The arithmetic means of the absorption coefficients at 500 Hz to 4 kHz in each room
were calculated. Those of the bedrooms were 0.18 to 0.23, those of the LD rooms were
0.13 to 0.14, and those of the child rooms were 0.13 to 0.17. Only those of the bedrooms
exceeded 0.17. As shown in Figure 14, the “reverberance” values of the bedrooms were
lower than those of the other rooms, whereas the “feeling of silence” and “feeling of



Appl. Sci. 2021, 11, 2709 16 of 21

serenity” values were higher. This supports the results of the subjective experiment in
Sections 2 and 3.

6. Discussion

The aforementioned “feeling of silence” and “feeling of serenity” were clearly affected
by the absorption coefficients of the room. However, the “feeling of silence” is commonly
known to be influenced by the absolute sound pressure level as well. In this section, we
discuss the relationship between the “feeling of silence” and background noise level.

We measured not only the reverberation time but also the sound pressure levels
of each absorption pattern at the point marked positions, as shown in Figure 15. Then,
the exposed fan noise level was increased to 67 dB from the subjective test setting to
improve the signal-to-noise ratio. The measurement results of column “d” are shown in
Figures 16 and 17. Figure 16 shows the results of the A-weighted values, and Figure 17
shows those of the 1 kHz octave-band values. The sound pressure levels decreased from
the boundary position “d6”. The amount of decrease differed for each absorption condition.
The larger the absorption area, the larger the decrease in the value. The A-weighted values
at “d1” and “d2” were larger than that at “d3”. The rising levels at low-frequency bands
could be considered because the receiving positions were near the forward wall.

Using these results, the correlation coefficients between the sound pressure levels at
position “d3”, around the center of the room, and the psychological scale values of each
subjective item in Section 2 were calculated. Table 10 lists the results of these calculations.
The items “feeling of silence”, “feeling of serenity”, “sense of quality”, and “user preference”
had strong negative correlation with sound pressure levels. "Feeling of silence" and "feeling
of serenity" were found to be related to the absorption coefficient of the room from the
subjective tests in Sections 2–5. However, these subjective items were also related to
the absolute sound pressure levels of the room used in the subjective evaluation. From
these discussions, we could not identify whether the dominant factor was the “absorption
coefficient of the room” or the “absolute sound pressure level”.
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Table 10. Correlation coefficients between the sound pressure levels at position “d3” in the evaluation
space and psychological value of each evaluation item.

Item A-Weighted 1000 Hz

Reverberance 0.94 ** 0.93 **
Feeling of silence −0.95 ** −0.97 **

Feeling of serenity −0.94 ** −0.93 **
Sense of room volume 0.43 0.36
Feeling of oppression −0.54 −0.57

Sense of quality −0.92 ** −0.93 **
User preference −0.90 ** −0.88 **

** p < 0.01.

We also measured background noise levels in nine rooms in modern Japanese dwellings,
as described in Sections 4 and 5. Table 11 presents the measurement results. All rooms had
A-weighted levels of less than 45 dB. Table 12 shows the correlation coefficients between
the background noise levels and psychological scale values. Compared to the results in
Table 9, the coefficients of all items were low in every octave band and A-weighted levels
in Table 12. The coefficient values of “feeling of silence” and “feeling of serenity” were
also under 0.6. From these calculations, the background noise level could not be directly
associated with the “Feeling of silence” and “Feeling of serenity” in dwellings.

Table 11. Background noise levels (dB) in nine rooms in modern Japanese dwellings.

125 Hz 250 Hz 500 Hz 1000 Hz 2000 Hz 4000 Hz A-Weighted

Bedroom
House A 41.1 35.0 32.5 24.2 16.9 12.3 33.4
House B 36.1 31.1 23.6 18.9 14.6 13.2 27.6
House C 44.4 38.1 32.9 25.9 17.3 13.8 34.4

LD room
House A 37.9 34.7 30.8 26.6 17.1 13.0 32.3
House B 47.4 42.4 35.0 26.7 20.6 17.4 37.8
House C 42.6 44.3 41.6 37.0 31.2 25.5 42.3

Child room
House A 38.2 37.9 38.7 35.8 26.9 17.8 39.7
House B 39.9 38.9 32.1 28.0 20.4 15.1 34.4
House C 41.2 36.7 30.2 22.8 16.7 17.8 32.6
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Table 12. Correlation coefficients between the background noise levels in nine rooms in modern Japanese dwellings and the
psychological values of each evaluation item.

Item 125 Hz 250 Hz 500 Hz 1000 Hz 2000 Hz 4000 Hz A-Weighted

Reverberance −0.05 0.37 0.40 0.53 0.47 0.35 0.45
Feeling of silence 0.19 −0.33 −0.36 −0.53 −0.50 −0.42 −0.40

Feeling of serenity 0.21 −0.32 −0.38 −0.58 −0.51 −0.40 −0.42
Sense of room volume 0.20 0.60 * 0.50 0.56 0.60 * 0.63 * 0.58
Feeling of oppression −0.46 −0.24 0.25 0.36 0.22 −0.01 0.13

Sense of quality 0.27 −0.27 −0.36 −0.57 −0.49 −0.37 −0.38
User preference 0.39 −0.22 −0.38 −0.61 * −0.53 −0.37 −0.38

* p < 0.05.

In general, we perceive a feeling of silence under the condition of a lower noise level.
According to our series of studies, when we are in a quiet room, the “feeling of silence” or
“feeling of serenity” can be influenced by the “reverberance” sound coming from several
sounds caused by themselves, other people, or several machines in a room. “Reverberance”
is inversely correlated with “feeling of silence” and “feeling of serenity”. Thus, we may
perceive the “feeling of silence” or the “feeling of serenity” when reverberance is not
perceived. From the results of our subjective tests, it was revealed that “feeling of silence”
and “feeling of serenity” could be clearly perceived with an absorption coefficient above
0.25, as mentioned in Section 2. From this discussion, it is implied that an absorption
coefficient of 0.25 can be one of the criteria for creating serene spaces in ordinary dwellings.

7. Conclusions

In this study, we investigated the influence of sound absorption in general dwellings
on the subjective evaluation of acoustics. First, a subjective experiment was conducted
using a full-scale room model. “feeling of silence” and “feeling of serenity” could be felt at
an absorption coefficient above 0.17 and were clearly felt above values of 0.25. Second, we
used the recorded binaural sounds obtained in the full-scale room model for a subjective
test because this model examination required considerable time and human resources. This
test showed that “reverberance”, “feeling of silence”, and “feeling of serenity” can also be
evaluated using headphone listening.

We also measured the reverberation time and recorded the sound environment in
the bedrooms, LD rooms, and child rooms in three modern Japanese dwellings to verify
the results of the former experiments. The reverberation times of LD and child rooms
in this study were longer than the other reported furnished rooms by approximately
0.1–0.2 s [1–6,9,10]. In particular, those of the child rooms were long, despite the small
room volume of approximately 30 m3. The wooden floor and lack of absorption materials
could be the cause of longer reverberation times. The average absorption coefficients of the
LD and child rooms were smaller than 0.17, in the range of 500 Hz to 4 kHz. Therefore, we
analyzed the subjective effect of the absorption by a psychological test using the binaural
recorded sounds in the nine rooms and observed that the bedrooms with absorption
coefficients of 0.18 to 0.23 were significantly less reverberant, quieter, and serener than the
other rooms. The results may be caused by the wooden floor and low absorption of the
ceiling and walls in all LD and child rooms. From the discussion, it was revealed that the
absorption coefficient above 0.25 may become one of the criteria for creating a silent and
serene space when a room has low background noise level.

As you feel stiffening in an anechoic room, considerable absorption may not make us
comfortable. There may be upper limit of the absorption area to provide a feeling of comfort
and serenity in a room. Further studies are required to clarify this aspect. Additionally,
to prevent booming or fluttering echo in a small room, the amount and position of the
absorption area are important factors to be considered. Although scattering treatment
does not reduce reverberant energy by itself, it can induce an adequate absorption effect.
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Therefore, moderate acoustic scattering treatment could be important for creating a serenity
room and should be further investigated.
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