Influence of Silver Nanoparticles, Laser Light and Electromagnetic Stimulation of Seeds on Germination Rate and Photosynthetic Parameters in Pumpkin (Cucurbita pepo L.) Leaves
Abstract
:1. Introduction
2. Material and Methods
2.1. Plant Material and Seed Treatment
2.2. Atomic Force Microscopy (AFM) Analysis
2.3. The Experiment of Pumpkin Germination
- Ng4, g8—number of seeds germination after 4 and 8 days.
- N—number of seeds sown.
2.4. Spectrophotometric Methods
2.5. Photosynthetic Activity of Plants
2.6. Statistical Analysis
3. Results and Discussion
3.1. AFM Analysis of AgNC
3.2. Germination Seeds
3.3. Elements Concentrations in Leaves of Pumpkin
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Borthakur, P.R.; Barua, A.G. Fluorescence Studies of the Seeds of the Pumpkin (Cucurbita pepo L.). Natl. Acad. Sci. Lett. 2014, 37, 275–279. [Google Scholar] [CrossRef]
- Kadzińska, J.; Janowicz, M.; Kalisz, S.; Sitkiewicz, I.; Mika, M. The influence of edible coatings on the change of the properties of pumpkin fruits during storage. Adv. Food Process. Technol. 2017, 2, 37–45. [Google Scholar]
- Wu, H.; Zhu, J.; Diao, W.; Wang, C. Ultrasound-assisted enzymatic extraction and antioxidant activity of polysaccharides from pumpkin (Cucurbita moschata). Carbohydr. Polym. 2014, 113, 314–324. [Google Scholar] [CrossRef]
- Giami, S.; Chibor, B.; Edebiri, K.; Achinewhu, S. Changes in nitrogenous and other chemical constituents, protein fractions and in vitro protein digestibility of germinating fluted pumpkin (Telfairia occidentalis Hook) seed. Plant Foods Hum. Nutr. 1999, 53, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhou, J.; Wu, T.; Cao, J. Shoot regeneration and the relationship between organogenic capacity and endogenous hormonal contents in pumpkin. Plant Cell Tissue Organ. Cult. 2008, 93, 323–331. [Google Scholar] [CrossRef]
- DeRossi, A.; De Pilli, T.; Giuliani, R.; Orlando, I.; Palmieri, L.; Severini, C. Study on prestabilization of pumpkin (cucurbita moschata) by osmotic dehydration in quaternary complex solution. J. Food Process. Eng. 2011, 34, 398–413. [Google Scholar] [CrossRef]
- Kaźmińska, K.; Sobieszek, K.; Targońska-Karasek, M.; Korzeniewska, A.; Niemirowicz-Szczytt, K.; Bartoszewski, G. Genetic diversity assessment of a winter squash and pumpkin (Cucurbita maxima Duchesne) germplasm collection based on genomic Cucurbita -conserved SSR markers. Sci. Hortic. 2017, 219, 37–44. [Google Scholar] [CrossRef]
- Katsoufi, S.; Lazou, A.E.; Giannakourou, M.C.; Krokida, M.K. Mass transfer kinetics and quality attributes of osmo-dehydrated candied pumpkins using nutritious sweeteners. J. Food Sci. Technol. 2017, 54, 3338–3348. [Google Scholar] [CrossRef] [PubMed]
- Podleśny, J.; Stochmal, A.; Podleśna, A.; Misiak, L.E. Effect of laser light treatment on some biochemical and physiological processes in seeds and seedlings of white lupine and faba bean. Plant Growth Regul. 2012, 67, 227–233. [Google Scholar] [CrossRef]
- Levina, N.S.; Tertyshnaya, Y.V.; Bidey, I.A.; Elizarova, O.V. Presowing treatment of seeds. Agri. Mach. Technol. 2018, 12, 13–18. [Google Scholar]
- Pietruszewski, S.; Muszyński, S.; Dziwulska, A. Electromagnetic fields and electromagnetic radiation as non-invasive extermal stimulants for seeds (selected methods and responses). Int. Agrophys. 2007, 21, 95–100. [Google Scholar]
- Asghar, T.; Jamil, Y.; Iqbal, M.; Abbas, M. Laser light and magnetic field stimulation effect on biochemical, en-zymes activities and chlorophyll contents in soybean seeds and seedlings during early growth stages. J. Photochem. Photobiol. B Biol. 2016, 165, 283–290. [Google Scholar] [CrossRef]
- Perveen, R.; Jamil, Y.; Ashraf, M.; Ali, Q.; Iqbal, M.; Ahmad, M.R. He-Ne Laser-Induced Improvement in Biochemical, Physiological, Growth and Yield Characteristics in Sunflower (Helianthus annuus L.). Photochem. Photobiol. 2011, 87, 1453–1463. [Google Scholar] [CrossRef] [PubMed]
- Szymanek, M.; Dziwulska-Hunek, A.; Zarajczyk, J.; Michałek, S.; Tanaś, W. The Influence of Red Light (RL) and Effective Microorganism (EM) Application on Soil Properties, Yield, and Quality in Wheat Cultivation. Agronomy 2020, 10, 1201. [Google Scholar] [CrossRef]
- Mroczek-Zdyrska, M.; Kornarzyński, K.; Pietruszewski, S.; Gagoś, M. The efects of low-frequency magnetic feld exposure on the growth and biochemical parameters in lupin (Lupinus angustifolius L.). Plant Bios. 2017, 151, 504–511. [Google Scholar] [CrossRef]
- Matwijczuk, A.; Kornarzynski, K.; Pietruszewski, S. Effect of magnetic field on seed germination and seedlings growth of sunfower. Int. Agrophys. 2012, 26, 271–278. [Google Scholar] [CrossRef]
- Sacała, E.; Demczuk, A.; Grzyś, E.; Prośba-Białczyk, U.; Szajsner, H. Impact of pre-sowing laser irradiation of seeds on sugar beet properties. Int. Agrophys. 2012, 26, 295–300. [Google Scholar] [CrossRef]
- Dziwulska-Hunek, A.; Krawiec, M.; Sujak, A. Laser Light Stimulation Effects on Scorzonera hispanica L. Seeds Germination, Field Emergence and Photosynthetic Pigments Content. J. Hortic. Res. 2016, 24, 57–62. [Google Scholar] [CrossRef] [Green Version]
- Sujak, A.; Dziwulska-Hunek, A.; Reszczyńska, E. Effect of Electromagnetic Stimulation on Selected Fabaceae Plants. Pol. J. Environ. Stud. 2013, 22, 893–898. [Google Scholar]
- Sujak, A.; Dziwulska-Hunek, A.; Kornarzyński, K. Compositional and nutritional values of amaranth seeds after pre-sowing He-Ne laser light and alternating magnetic field treatment. Int. Agrophys. 2009, 23, 81–86. [Google Scholar]
- Hernandez, A.C.; Dominguez, P.A.; Cruz, O.A.; Ivanov, R.; Carballo, C.A.; Zepeda, B.R. Laser in agriculture. Int. Agrophys. 2010, 24, 407–422. [Google Scholar]
- Fayez, K.A.; El-Deeb, B.A.; Mostafa, N.Y. Toxicity of biosynthetic silver nanoparticles on the growth, cell ultrastructure and physiological activities of barley plant. Acta Physiol. Plant. 2017, 39, 155. [Google Scholar] [CrossRef]
- Huang, S.; Wang, L.; Liu, L.; Hou, Y.; Li, L. Nanotechnology in agriculture, livestock, and aquaculture in China. A review. Agron. Sustain. Dev. 2015, 35, 369–400. [Google Scholar] [CrossRef] [Green Version]
- Kachel-Jakubowska, M.; Strubińska, J.; Matwijczuk, A.; Gagoś, M. Microscopic and Spectroscopic Analyses of Selected Agricultural Formulations Containing Various nanostructures. Pol. J. Environ. Stud. 2017, 26, 1565–1573. [Google Scholar] [CrossRef]
- Li, Q.; Mahendra, S.; Lyon, D.Y.; Brunet, L.; Liga, M.; Li, D.; Alvarez, P.J.J. Antimicrobial nanomaterials for water disinfec-tion and microbial control: Potential applications and implications. Water Res. 2008, 42, 4591–4602. [Google Scholar] [CrossRef]
- El-Nour, K.M.A.; Eftaiha, A.; Al-Warthan, A.; Ammar, R.A. Synthesis and applications of silver nanoparticles. Arab. J. Chem. 2010, 3, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.; Ahmad, M.; Swami, B.L.; Ikram, S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res. 2016, 7, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Cohen, M.S.; Stern, J.M.; Vanni, A.J.; Kelley, R.S.; Baumgart, E.; Field, D.; Libertino, J.A.; Summerhayes, I.C. In Vitro Analysis of a Nanocrystalline Silver-Coated Surgical Mesh. Surg. Infect. 2007, 8, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Cui, D.; Zhang, P.; Ma, Y.-H.; He, X.; Li, Y.-Y.; Zhao, Y.-C.; Zhang, Z.-Y. Phytotoxicity of silver nanoparticles to cucumber (Cucumis sativus) and wheat (Triticum aestivum). J. Zhejiang Univ. Sci. A 2014, 15, 662–670. [Google Scholar] [CrossRef]
- Khalil, K.A.; Fouad, H.; Elsarnagawy, T.; Almajhdi, F.N. Preparation and characterization of electrospun PLGA/silver com-posite nanofibers for biomedical applications. Int. J. Electrochem. Sci. 2013, 8, 3483–3493. [Google Scholar]
- Nejatzadeh-Barandozi, F. Antibacterial activities and antioxidant capacity of Aloe vera. Org. Med. Chem. Lett. 2013, 3, 5. [Google Scholar] [CrossRef] [Green Version]
- Hojjat, S.S.; Hojjat, H. Effects of silver nanoparticle exposure on germination of Lentil (Lens culinaris Medik). Int. J. Farm Allied Sci. 2016, 5, 248–252. [Google Scholar]
- Seif, S.M.; Sorooshzadeh, A.; Rezazadeh, H.S.; Naghdibadi, H.A. Effect of nano silver and silver nitrate on seed yield of bor-age. J. Med. Plants Res. 2011, 5, 706–710. [Google Scholar]
- Hojjat, S.S.; Hojjat, H. Effect of Nano Silver on Seed Germination and Seedling Growth in Fenugreek Seed. ETP Int. J. Food Eng. 2015, 1, 106–110. [Google Scholar] [CrossRef] [Green Version]
- Parveen, A.; Rao, S. Effect of Nanosilver on Seed Germination and Seedling Growth in Pennisetum glaucum. J. Clust. Sci. 2014, 26, 693–701. [Google Scholar] [CrossRef]
- Gusev, A.A.; Kudrinsky, A.A.; Zakharova, O.V.; Klimov, A.I.; Zherebin, P.M.; Lisichkin, G.V.; Vasyukova, I.A.; Denisov, A.N.; Krutyakov, Y.A. Versatile synthesis of PHMB-stabilized silver nanoparticles and their significant stimulating effect on fodder beet (Beta vulgaris L.). Mater. Sci. Eng. C 2016, 62, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Kaveh, R.; Li, Y.-S.; Ranjbar, S.; Tehrani, R.; Brueck, C.L.; Van Aken, B. Changes inArabidopsis thalianaGene Expression in Response to Silver Nanoparticles and Silver Ions. Environ. Sci. Technol. 2013, 47, 10637–10644. [Google Scholar] [CrossRef] [PubMed]
- Qian, H.; Peng, X.; Han, X.; Ren, J.; Sun, L.; Fu, Z. Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. J. Environ. Sci. 2013, 25, 1947–1956. [Google Scholar] [CrossRef]
- Kaegi, R.; Sinnet, B.; Zuleeg, S.; Hagendorfer, H.; Mueller, E.; Vonbank, R.; Boller, M.; Burkhardt, M. Release of silver nanoparticles from outdoor facades. Environ. Pollut. 2010, 158, 2900–2905. [Google Scholar] [CrossRef] [PubMed]
- Nowack, B. Nanosilver Revisited Downstream. Science 2010, 330, 1054–1055. [Google Scholar] [CrossRef] [PubMed]
- Krishnaraj, C.; Jagan, E.; Ramachandran, R.; Abirami, S.; Mohan, N.; Kalaichelvan, P. Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. plant growth metabolism. Process Biochem. 2012, 47, 651–658. [Google Scholar] [CrossRef]
- Monica, R.C.; Cremonini, R. Nanoparticles and higher plants. Caryologia 2009, 62, 161–165. [Google Scholar] [CrossRef] [Green Version]
- Salama, H.M.H. Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). Int. Res. J. Biotech. 2012, 3, 190–197. [Google Scholar]
- Sharma, P.; Bhatt, D.; Zaidi, M.G.H.; Saradhi, P.P.; Khanna, P.K.; Arora, S. Silver Nanoparticle-Mediated Enhancement in Growth and Antioxidant Status of Brassica juncea. Appl. Biochem. Biotechnol. 2012, 167, 2225–2233. [Google Scholar] [CrossRef] [PubMed]
- Savithramma, N.; Ankanna, S.; Bhumi, G. Effect of nanoparticles on seed germination and seedling growth of Boswellia ovali-foliolata an endemic and endangered medicinal tree taxon. Nano Vis. 2012, 2, 61–68. [Google Scholar]
- Kalaji, H.M.; Jajoo, A.; Oukarroum, A.; Brestic, M.; Zivcak, M.; Samborska, I.A.; Cetner, M.D.; Łukasik, I.; Goltsev, V.; Ladle, R.J. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol. Plant. 2016, 38, 102. [Google Scholar] [CrossRef] [Green Version]
- Kataria, S.; Baghel, L.; Guruprasad, K. Pre-treatment of seeds with static magnetic field improves germination and early growth characteristics under salt stress in maize and soybean. Biocatal. Agric. Biotechnol. 2017, 10, 83–90. [Google Scholar] [CrossRef]
- Hojjat, S.S.; Kamyab, M. The effect of silver nanoparticle on Fenugreek seed germination under salinity levels. Russ. Agric. Sci. 2017, 43, 61–65. [Google Scholar] [CrossRef]
- Anusuya, S.; Banu, K.N. Silver-chitosan nanoparticles induced biochemical variations of chickpea (Cicer arietinum L.). Biocatal. Agric. Biotechnol. 2016, 8, 39–44. [Google Scholar] [CrossRef]
- Pietruszewski, S. Electromagnet. Utility Model, Patent Office of Republic of Poland Protection Rights. No. 59863, 31 July 2003. Volume 7 p. 1077. [Google Scholar]
- Muszyński, S.; Gagoś, M.; Pietruszewski, S. Short-Term Pre-Germination Exposure to ELF Magnetic Field Does Not Influence Seedling Growth in Durum Wheat (Triticum durum). Pol. J. Environ. Stud. 2009, 18, 1065–1072. [Google Scholar]
- Kachel, M.; Matwijczuk, A.; Sujak, A.; Czernel, G.; Niemczynowicz, A.; Nowicka, A. The influence of copper and silver nano-colloids on the quality of pressed spring rapeseed oil. Agronomy 2019, 9, 643. [Google Scholar] [CrossRef] [Green Version]
- Meier, U. Growth Stages of Mono- and Dicotyledonous Plants; Blackwell Wissenschafts-Verlag: Bonn, Germany, 2001. [Google Scholar]
- Lichtenthaler, H.K.; Buschmann, C. Chlorophylls and Carotenoids: Measurement and Characterization by UV-Vis Spectros-copy. In Current Protocols in Food Analytical Chemistry; Supplement 1; Wiley & Sons. Inc.: Hoboken, NJ, USA, 2001. [Google Scholar]
- Kocira, S.; Sujak, A.; Oniszczuk, T.; Szparaga, A.; Szymanek, M.; Karakuła-Juchnowicz, H.; Krawczuk, A.; Kupryaniuk, K. Improvement of the photosynthetic activity of Moldavian dragonhead (Dracocephalum moldavica L.) through foliar application of a nitrophenolate-based biostimulant. BIO Web Conf. 2018, 10, 01009. [Google Scholar] [CrossRef] [Green Version]
- Podleśny, J. The effect of seed irradiation with laser and plant desiccation on yielding and quality features of white lupine seeds. Acta Agrophys. 2007, 9, 733–745. [Google Scholar]
- Dziwulska, A.; Koper, R.; Wilczek, M. Estimation of effect of He-Ne laser beam on germination capacity of white clover variety of Anda cultivar. Acta Agrophys. 2004, 3, 435–441. [Google Scholar]
- Muszyński, S.; Gładyszewska, B. Representation of He-Ne laser irradiation effect on radish seeds with selected germination indices. Int. Agrophys. 2008, 22, 151–157. [Google Scholar]
- Szajsner, H.; Drozd, D. The improvement of seeds of selected vegetable species through laser radiation. Roczniki Akademii Rolniczej w Poznaniu. Ogrodnictwo 2007, 41, 625–629. [Google Scholar]
- Klimont, K. Studies of laser biostimulation on sowing value of seeds and yield of tomato (Lycopersicon esculentum Mill.) and cucumber (Cucumis sativus L.) plants. Biul. Inst. Hod. I Aklim. Rosl. 2002, 223/224, 257–266. [Google Scholar]
- Drozd, D.; Szajsner, H. Effect of application of pre-sowing laser stimulation on bare-grained oat genotypes. Acta Agrophys. 2007, 9, 583–589. [Google Scholar]
- Prośba-Białczyk, U.; Szajsner, H.; Grzyś, E.; Demczuk, A.; Sacała, E.; Bąk, K. Effect of seed stimulation on germination and sugar beet field. Int. Agrophys. 2013, 27, 195–201. [Google Scholar] [CrossRef]
- Dziwulska-Hunek, A.; Kornarzyński, K.; Matwijczuk, A.; Pietruszewski, S.; Szot, B. Efect of laser and variable magnetic feld simulation on amaranth seeds germination. Int. Agrophys. 2009, 23, 229–235. [Google Scholar]
- Sujak, A.; Dziwulska-Hunek, A. Minerals and fatty acids of amaranth seeds subjected to pre-sowing electromagnetical stim-ulation. Int. Agrophys. 2010, 24, 375–379. [Google Scholar]
- Rochalska, M.; Orzeszko-Rywka, A. Magnetic field treatment improves seed performance. Seed Sci. Technol. 2005, 33, 669–674. [Google Scholar] [CrossRef]
- Gubbins, E.J.; Batty, L.C.; Lead, J.R. Phytotoxicity of silver nanoparticles to Lemna minor L. Environ. Pollut. 2011, 159, 1551–1559. [Google Scholar] [CrossRef]
- El-Temsah, Y.S.; Joner, E.J. Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ. Toxicol. 2010, 27, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Amooaghaie, R.; Tabatabaei, F.; Ahadi, A.-M. Role of hematin and sodium nitroprusside in regulating Brassica nigra seed germination under nanosilver and silver nitrate stresses. Ecotoxicol. Environ. Saf. 2015, 113, 259–270. [Google Scholar] [CrossRef]
- Stampoulis, D.; Sinha, S.K.; White, J.C. Assay-Dependent Phytotoxicity of Nanoparticles to Plants. Environ. Sci. Technol. 2009, 43, 9473–9479. [Google Scholar] [CrossRef]
- Abdel-Azeem, E.A.; Elsayed, B.A. Phytotoxicity of silver nanoparticles on Vicia faba seedlings. N. Y. Sci. J. 2013, 6, 148–156. [Google Scholar]
- Barrena, R.; Casals, E.; Colón, J.; Font, X.; Sánchez, A.; Puntes, V. Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 2009, 75, 850–857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yasur, J.; Rani, P.U. Environmental effects of nanosilver: Impact on castor seed germination, seedling growth, and plant physiology. Environ. Sci. Pollut. Res. 2013, 20, 8636–8648. [Google Scholar] [CrossRef]
- Mehrian, S.K.; Heidari, R.; Rahmani, F.; Najafi, S. Effect of Chemical Synthesis Silver Nanoparticles on Germination Indices and Seedlings Growth in Seven Varieties of Lycopersicon esculentum Mill. (tomato) Plants. J. Clust. Sci. 2015, 27, 327–340. [Google Scholar] [CrossRef]
- Liu, H.; Fu, Y.; Wang, M. Green light enhances growth, photosynthetic pigments and CO2 assimilation efficiency of lettuce as revealed by ’knock out’ of the 480–560 nm spectral waveband. Photosynthetica 2016, 55, 144–152. [Google Scholar] [CrossRef]
- Kachel, M.; Parafiniuk, S.; Krajewska, M. The influence of metal nanocolloids on selected abiotic stress factors and the overall quality of pumpkin. Fresenius Environ. Bull. 2020, 29, 5651–5667. [Google Scholar]
- Mazumdar, H. The Impact of Silver Nanoparticles on Plant Biomass and Chlorophyll Content. Int. J. Eng. Sci. 2014, 4, 12–20. [Google Scholar]
- Winkelmann, K.; Bernas, L.; Swiger, B.; Brown, S. Measurement of Chlorophyll Loss Due to Phytoremediation of Ag Nanoparticles in the First-Year Laboratory. J. Chem. Educ. 2017, 94, 751–757. [Google Scholar] [CrossRef]
- Kumar, G.; Srivastava, P.; Pandy, J.K.; Gopal, R. Effect of laser-irradiation on photosynthetic efficiency of safflower leaves. J. Phytol. 2010, 2, 13–16. [Google Scholar]
- Możdżeń, K.; Barabasz-Krasny, B.; Zandi, P. Effect of Long-Term of He-Ne Laser Light Irradiation on Selected Physiological Processes of Triticale. Plants 2020, 9, 1703. [Google Scholar] [CrossRef]
- Li, Y.; Xin, G.; Liu, C.; Shi, Q.; Yang, F.; Wei, M. Effects of red and blue light on leaf abatomy, CO2 assimilation and the photosynthetic electron transport capacity of sweet pepper (Capsicium annum L.) seedlings. BMC Plant Biol. 2020, 20, 318. [Google Scholar]
Experiment | Date | BBCH Scale | |
---|---|---|---|
Sowinig | 13 May 2017 | - | |
Laboratory (Petri dishes) | GE4 | 17 May 2017 | - |
GC8 | 21 May 2017 | - | |
Sowing | 16 May 2017 | - | |
Greenhouse (pots) | Ng8 | 24 May 2017 | - |
Ng14 | 30 May 2017 | - | |
Stage of development | SI | 23 June 2017 | 31–39 |
SII | 26 June 2017 | 41–49 | |
SIII | 23 July 2017 | 51–69 | |
SIV | 2 August 2017 | 71–79 |
Parameters | C | L | p | AgNC |
---|---|---|---|---|
Germination | ||||
GE(%) | 54 ± 2.31 (1) b | 60 ± 13.86 b | 74 ± 12.44 a | 53 ± 16.45 b |
GC(%) | 84 ± 8.64 a | 79 ± 11.02 a | 88 ±8.64 a | 75 ± 13.61 a |
Emergence | ||||
Ne8 | 6 ± 0.00 a | 5 ± 1.41a | 3 ± 2.12 ac | 1 ± 0.00 bc |
Ne14 | 6 ± 0.00 a | 6 ± 0.00a | 3 ± 1.41 b | 2 ± 0.71 b |
Research Groups | Pearson Coefficient r | ||||
---|---|---|---|---|---|
Carotenoids | |||||
C | L | p | AgNC | ||
Chlorophyll a + b (in leaves dishes) | C | −0.360 | 0.603 | −0.983 | 0.382 |
L | 0.012 | 0.856 | −0.980 | 0.011 | |
p | 0.365 | −0.599 | 0.982 | −0.3877 | |
AgNC | 0.960 | 0.269 | 0.449 | −0.967 | |
Chlorophyll a + b (in leaves pots) | C | −0.152 | 0.749 | −0.985 | −0.916 |
L | 0.324 | 0.971 | −0.953 | −0.625 | |
p | −0.943 | −0.791 | −0.353 | −0.223 | |
AgNC | 0.795 | 0.940 | 0.623 | −0.086 |
Chlorophyll Fluorescence Parameters | Stage of Development | C | L | p | AgNC |
---|---|---|---|---|---|
F | SI | 785 ± 70.45 (1) a | 867 ± 98.30 a | 803 ± 89.18 a | 465 ± 77.69 b |
SII | 392 ± 109.97 b | 412 ± 57.10 ad | 432 ± 63.59 ad | 593 ± 104.20 ac | |
SIII | 565 ± 68.82 a | 573 ± 91.16 a | 517 ± 121.87 ac | 624 ± 101.60 ab | |
SIV | 632 ± 78.62 b | 732 ± 14.20 ac | 657 ± 111.42 bc | 300 ± 74.63 ad | |
Fm | SI | 2465 ± 458.68 a | 2317 ± 573.89 a | 2694 ± 447.17 a | 1622 ± 213.46 b |
SII | 1006 ± 386.54 b | 1241 ± 251.49 b | 1143 ± 217.55 b | 2180 ± 239.68 a | |
SIII | 1813 ± 257.01 a | 1993 ± 255.61 ab | 1616 ± 441.41 ac | 1901 ± 239.71 ab | |
SIV | 2149 ± 445.82 a | 2195 ± 423.10 a | 2143 ± 403.29 a | 902 ± 290.19 b | |
PAR | SI | 158 ± 39.59 b | 259 ± 33.88 ac | 193 ± 93.20 bc | 131 ± 28.22 bd |
SII | 107 ± 17.04 a | 106 ± 30.54 a | 99 ± 30.13 a | 65 ± 22.58 b | |
SIII | 70 ± 7.53 b | 57 ± 14.92 b | 70 ± 16.47 b | 141 ± 40.69 a | |
SIV | 74 ± 24.52 b | 112 ± 36.62 b | 100 ± 66.12 b | 302 ± 58.66 a | |
Y(II) | SI | 0.677 ± 0.071 a | 0.591 ± 0.20 ac | 0.693 ± 0.07 ab | 0.712 ± 0.03 ab |
SII | 0.578 ± 0.11 b | 0.659 ± 0.06 ad | 0.611 ± 0.09 bd | 0.728 ± 0.73 ac | |
SIII | 0.685 ± 0.04 a | 0.713 ± 0.03 ab | 0.675 ± 0.04 a | 0.667 ± 0.07 ac | |
SIV | 0.693 ± 0.08 a | 0.662 ± 0.05 a | 0.683 ± 0.07 a | 0.646 ± 0.09 a | |
ETR | SI | 44.49 ± 11.65 b | 65.87 ± 40.53 a | 55.78 ± 12.26 b | 39.34 ± 8.79 b |
SII | 26.18 ± 7.70 a | 29.73 ± 9.61 ab | 25.00 ± 7.54 a | 19.88 ± 7.13 ac | |
SIII | 20.16 ± 2.99 b | 17.06 ± 4.42 bd | 19.81 ± 5.24 bd | 39.41 ± 11.57 ac | |
SIV | 21.01 ± 6.43 b | 30.61 ± 8.41 bd | 27.54 ± 7.51 bd | 81.62 ± 17.05 ac | |
SPAD | SI | 28.53 ± 3.58 b | 29.73 ± 3.45 bd | 32.46 ± 2.48 ad | 32.87 ± 3.61 ac |
SII | 18.6 ± 2.14 a | 20.13 ± 1.85 a | 19.97 ± 3.87 a | 20.61 ± 3.49 a | |
SIII | 15.58 ± 4.35 b | 18.24 ± 5.37 b | 16.02 ± 2.99 b | 20.47 ± 3.49 a | |
SIV | 17.90 ± 5.28 a | 16.72 ± 3.84 a | 17.53 ± 5.82 a | 19.40 ± 1.69 a |
Stages of Plant Development | Pearson r Coefficient | |||
---|---|---|---|---|
SI | SII | SIII | SIV | |
SI | 0.218 | −0.139 | 0.108 | 0.085 |
SII | 0.006 | 0.268 | 0.408 | 0.465 |
SIII | 0.180 | 0.143 | −0.022 | −0.052 |
SIV | −0.074 | 0.113 | −0.185 | −0.235 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dziwulska-Hunek, A.; Kachel, M.; Gagoś, M.; Szymanek, M. Influence of Silver Nanoparticles, Laser Light and Electromagnetic Stimulation of Seeds on Germination Rate and Photosynthetic Parameters in Pumpkin (Cucurbita pepo L.) Leaves. Appl. Sci. 2021, 11, 2780. https://doi.org/10.3390/app11062780
Dziwulska-Hunek A, Kachel M, Gagoś M, Szymanek M. Influence of Silver Nanoparticles, Laser Light and Electromagnetic Stimulation of Seeds on Germination Rate and Photosynthetic Parameters in Pumpkin (Cucurbita pepo L.) Leaves. Applied Sciences. 2021; 11(6):2780. https://doi.org/10.3390/app11062780
Chicago/Turabian StyleDziwulska-Hunek, Agata, Magdalena Kachel, Mariusz Gagoś, and Mariusz Szymanek. 2021. "Influence of Silver Nanoparticles, Laser Light and Electromagnetic Stimulation of Seeds on Germination Rate and Photosynthetic Parameters in Pumpkin (Cucurbita pepo L.) Leaves" Applied Sciences 11, no. 6: 2780. https://doi.org/10.3390/app11062780
APA StyleDziwulska-Hunek, A., Kachel, M., Gagoś, M., & Szymanek, M. (2021). Influence of Silver Nanoparticles, Laser Light and Electromagnetic Stimulation of Seeds on Germination Rate and Photosynthetic Parameters in Pumpkin (Cucurbita pepo L.) Leaves. Applied Sciences, 11(6), 2780. https://doi.org/10.3390/app11062780