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Featured Application: The methodology described in this paper may be used, and will be used
by the authors of this and related works, to (1) examine the influence of various factors, including
the shape of the bouton and its neurotransmitter synthesis domains as well as the release sites
and various organelles, on the course of the nerve impulse. And, vice versa, (2) to detect some
abnormalities in the composition o the synapse basing on the shape of its electrical output.

Abstract: In order to examine nerve impulses by means of simulation methodology, the models
of all parts of nervous system, well suited for numerical modeling, are needed. In this paper the
problem of setting up such a model, namely, that of a presynaptic bouton, is addressed. Simulation of
the neurotransmitter flow inside the presynaptic bouton is performed. The transport is modeled with
a partial differential equation with an additional nonlinear term. Two ways of modeling the bouton
are applied. One of them let reflect a complex shape of the bouton and of some inner organelles.
The influence of the generated mesh quality on the accuracy of numerical simulations is studied
by comparing the released amount of neurotransmitter. The only mesh that produced diminished
output was the worst one. The conclusion is that even slightly optimized tetrahedral mesh is suitable
for calculations.

Keywords: presynaptic bouton; differential diffusive model; numerical three-dimensional simula-
tions; finite elements method; three-dimensional mesh generation; mesh quality measures

1. Introduction

Dynamical processes in the neuron [1] include, among others, those concerning the
release of neurotransmitter (NT) into the synaptic cleft. The release occurs via calcium
channels [2,3] and the amount of the released NT is measured indirectly by the postsy-
naptic potential. In Figure 1A in the cited paper [3] the connection between NT amount
and postsynaptic current is illustrated; in Figure 3C in other work [4] the shape of the im-
pulse in genetically different animals is presented; diminished amplitude means impaired
genotype. The above mentioned dynamical processes are often described by using differ-
ential equations [5–7], including−for a long time−partial ones [8–10]. The equation of this
type can not, usually, be solved analytically, and therefore numerical methods have to be
used [10–13]. In order to perform the calculations quickly and accurately, the appropri-
ately designed mesh, in the nodes of which the calculations will be made, should be
created. In biological sciences the boundary conditions are generated by the modeled
organelles in biological structure of the cell. For example, what the model should take into
account is the work of the active zone of the presynaptic bouton during exocytosis. It is
one of the crucial mechanisms in transmitting nerve impulses and it is accomplished by
means of CaV2 channel (one of three kinds of similar channels: CaV1, CaV2 and CaV3) [4].
Therefore, the design of a good mesh is a difficult problem connected with the mesh
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geometrical properties [14,15]. Tetrahedral meshes are also studied in the context of auto-
matic adjustment [16]. Finite Elements Method, on the other hand, requires a high quality
mesh [17]. This means that a single cell should be as regular as possible−an equilateral
triangle in two dimensions, and in the 3D case−a regular tetrahedron. Generally, it is
impossible to reach this goal in practice because of the geometric properties of the modeled
object. Additionally, regular tetrahedra can not be used as elements of a spatial mesh. In
reality, such tetrahedra differ in shape and size; also, the regions joining different parts of
the model are usually covered with elements of worse quality.

In this paper the problem of dependence of numerics precision on the quality of
the spatial data structure (a tetrahedral mesh) for numerical calculations for processes in
the neuron axon terminal is studied. Various geometrical presynaptic bouton models are
discussed. They are compared by using several different parameters of the quality of the
mesh, one of them formerly introduced [18]. The differences in the results of simulations
for different meshes, with other parameters kept unchanged, are analyzed. The adequate
measure of the differences is the amount of neurotransmitter released to the synaptic cleft.

This paper is a continuation of the studies described in [6,8,11,12,18–22].

2. Model

Since the transport of neurotransmitter (NT) in the presynaptic bouton of the neuron
has to be considered both in spatial and in temporal aspect, the partial differential equation
model has been introduced, derived from the diffusion equation with nonlinear modifica-
tions. The more detailed description of the model is presented in [8]. Main aspects of the
model are given below.

2.1. Diffusive PDE Model

When setting up the model, the following was assumed:
The presynaptic bouton occupies a bounded subset Ω of three-dimensional space.

The NT supply takes places in the bouton subdomain Ω1 (supply zone), thereby increasing
the total amount of NT in the bouton. On the other hand, the release through the subset
Γd of the bouton membrane ∂Ω decreases that amount. The NT flow in the presynaptic
bouton, basing on the similar study [22], was modeled with the following partial differential
Equation (1):

$t(x, t) = a∆$(x, t) + f (x)($̄− $(x, t))+ in Ω× (0, T), (1)

where $(x, t) is the density of NT at time t and at the spatial location x and a is the diffusion
coefficient. The appropriate initial conditions had to be set and, similarly, the boundary
conditions [22] should be modeled by the Equation (2)

−∂$(x, t)
∂ν

= η(t)α$(x, t) on Γd × (0, T) (2)

where α is the permeability coefficient and ∂/∂ν is a directional derivative in the outer
normal direction ν. The function η(t) (depending on time t) takes the value of 1 for
t ∈ [tn, tn + τ] (with the action potential arriving at tn and with the release time τ), and
η(t) = 0 otherwise [19]. In such a way, boundary conditions are a simple model of
exocytosis through a CaV2 type voltage-gated channel.

When the Equation (1) is multiplied by a smooth function v : Ω → R, and after
integrating by parts [22], we obtain∫

Ω
$t(x, t)v(x) dx + a

∫
Ω
∇$(x, t) · ∇v(x) dx (3)

+ αη(t)
∫

Γd

$(x, t)v(x) dS = β
∫

Ω1

($̄− $(x, t))+v(x) dx.

which is valid when $ is sufficiently smooth.
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2.2. 3D Simulations−The Finite Elements Method

Piecewise linear C0 finite elements (tetrahedra) are used to perform the calcula-
tions according to the numerical scheme [22]. The function $h, which approximates $,
is calculated as

$h(x, t) =
K

∑
i=1

$i(t)vi(x),

where vi are the basis functions of the finite elements space. When the following matrices
are introduced: the mass matrix G = {gij}K

i,j=1, the stiffness matrix A1 = {a1
ij}K

i,j=1, and

the release matrix A2 = {a2
ij}K

i,j=1, and when the additional assumption is made that

A(t) = A1 + η(t)A2, and the nonlinear operator B : RK → RK is applied according to [22]:

B($1, . . . , $K)j = β
∫

Ω1

(
$̄−

K

∑
i=1

$ivi(x)

)+

vj(x) dx. (4)

the numerical scheme may be rewritten as

G$′h(t) +A(t)$h(t) = B($h(t)).

The time step is defined as tk = k∆t where ∆t is at least several times smaller than τ.
After the approximation of $k

h by $h(tk), the Crank–Nicholson approximative scheme can
be used

G
$k

h − $k−1
h

∆t
+

1
2
A(tk)$

k
h +

1
2
A(tk−1)$

k−1
h =

1
2
B($k

h) +
1
2
B($k−1

h ), (5)

valid for k = 1, 2, . . .. In the finite element basis {vk}K
k=1, $0 is approximated by $0

h.
The scheme must be solved for $k

h. The problem of the nonlinearity in B is dealt with
by the iterative scheme:

$
k(0)
h = $k−1

h , (6)

G
$

k(m+1)
h − $k−1

h
∆t

+
1
2
A(tk)$

k(m+1)
h +

1
2
A(tk−1)$

k−1
h =

1
2
B($k(m)

h ) +
1
2
B($k−1

h ),

in which the inner iteration step is denoted by the index m. In such a way, the scheme
gives a linear system of equations for each iteration. Iterating stops when |$k(m+1)

h − $
k(m)
h |

is sufficiently small.
For the numerical simulations, the bouton is modeled as a bounded polyhedral do-

main Ω ⊂ R3. The boundary of the bouton, ∂Ω, is represented by a set of flat polygons.
The proper polyhedral subset of the bouton, Ω1, is the domain of vesicles supply. The re-
lease site Γd is modeled as a finite sum of flat polygons.

3. Generation of the Mesh

As it has already been mentioned [18], the problem of generating a mesh of a complex
object is difficult. Firstly, a reasonable compromise must be found between a mesh with a
very large number of small tetrahedra (increased computing time) and another one with a
small number of relatively large elements (errors in simulating flow near tiny substructures).
Secondly, the mesh elements should be as regular as possible [23].

3.1. Mesh Element Quality

The mesh quality parameters, considered below and calculated for each element, are
as follows.

Assuming that S denotes the total surface, and V−the total volume of the tetrahedron,
the following parameters have been used [18]: The first of the defined parameters was
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SV =

√
S

3
√

V

The second parameter was the ratio of the longest edge and the radius of the inscribed
sphere [24]:

ER =
lmax

rins
,

ranging from ERmin = 2
√

6 ≈ 4.89898, for a regular tetrahedron, to infinity.
The third one is the value applied in the TetGen program [25,26] i.e., the longest edge

divided by the smallest height (EH)

EH =
lmax

hmin
,

with the range similar as in the previous example i.e., from EHmin =
√

3
2 ≈ 1.22474 to

infinity, following the same rule as before: “the larger the value, the worse the tetrahedron”.
The last two parameters are MAXS and MINS, and they are computed as the ratios

of the largest (Smax) or the smallest (Smin) face measure, respectively, to the total surface (S)
of the tetrahedron.

The formula for the first of those two parameters is

MAXS =
Smax

S

and its value ranges from 0.25 to 0.5 i.e.,

MAXS ∈ [0.25; 0.5)

The formula for the second parameter is

MINS =
Smin

S

and its value ranges from 0 to 0.25 i.e.,

MINS ∈ (0; 0.25]

The parameters mentioned above (SV, ER, EH, MAXS and MINS) is positive and
dimensionless. All of them, except MINS, have the smallest value for the regular tetra-
hedron. The MINS value behaves differently: the closer to zero, the worse the tetrahe-
dron; the maximum value 0.25 is reached for a regular tetrahedron. Moreover, the value
0.25 of both the MAXS and the MINS does not necessarily mean that the tetrahedron is
regular−it may be a sliver-type (see Figure 8 in [25]). Other irregular tetrahedron with the
vertices at (−0.001,0,0), (0.001,0,0), (0,−0.001,100) and (0,0.001,100) is a wedge-type one
(see Figure 8 in [25]).

The numerical approximation of a gradient of a given function depends strongly
on the largest angle (planar angle for a triangle and spherical or dihedral angle for a
tetrahedron) [27]. Thus, the condition number of the stiffness matrix should be kept
to a minimum.

Theoretically, to solve a partial differential equation numerically, the above mentioned
quality measures Q1–Q5 should be as close to the ideal ones as possible for each of the
mesh elements. However, not all deviations from the ideal have strong negative influence
on the calculations with FEM. Moreover, it turns out that tetrahedrons with faces far from
optimal are still of a quality enough to be used for numerical analysis of the model [23].
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3.2. Mesh Boundary

If the structure to model is complex in a sense that it contains many substructures
with their own surfaces which consist of triangles of very different size and quality then the
generated mesh must take into account these substructures and the joints between them,
which constitutes additional problems during the mesh generation.

The 3D mesh should be of a good quality not only in its 3D aspect but also in its 2D
aspect as well. This concerns the quality of the surface of the mesh and, especially, the
parts belonging to distinct areas.

The quality of a 2D (triangular) mesh of the surface of the bouton which topologically
remains similar to the 3D ball is assessed analogically to the quality of the 3D net.

The quality measures that correspond to the ones defined for the spatial meshes are as
follows: the square perimeter divided by the square root of the surface (PS2), the longest
edge divided by the radius of the inscribed sphere (in that case the 2D sphere is a circle)
(ER2), the longest edge divided by the smallest height (EH2) or the function of the ratio
of the largest and smallest edge length, respectively, to the total perimeter of the triangle
(MAXE and MINE).

Similar as in the 3D case, the best (the smallest) attainable values of the above measures
(except MINE) are:

PS2min = 2x271/4 ≈ 4.55901
ER2min = 2x31/2 ≈ 3.4641
EH2min = 2/[31/2] ≈ 1.1547
MAXEmin = 1/3 ≈ 0.3333
and the largest MINE is
MINEmax = 1/3 ≈ 0.3333
For the first three measures the upper bound is infinity whereas for the fourth one

(MAXE) it is equal to 0.5, and the lower bound for the last parameter (MINE) is 0.

3.3. Mesh Inconsistency

One of the possible faults of the mesh results from the fact that its boundary is not a
closed surface and the meshing program is trying to create elements (tetrahedra) outside
the bouton (leaking) which may happen when the intended common vertices of the adjacent
tetrahedra separate, creating the gap between the walls. Another example of “leaking”,
termed as double edge, means that a cleft is created between the edges and the size of the
cleft is less than one thousandth of the edge length. Intersection appears when the edge of
one tetrahedron is intersecting with the face of another one; Some subset of the 3D mesh
volume is then defined twice.

3.4. Mesh Quality

The measures of the mesh quality can by either the extreme values of the quality
parameters or other parameters of the distribution of a parameter e.g., the maximum value
of SV, ER, EH, or MINS, or minimum value of MAXS. These quantities, that are sometimes
used to describe the mesh, and also the distributions themselves, are presented as tables
and histograms.

4. Geometrical Models of the Bouton

The geometry of the bouton was modeled in three various ways, using three
different objects.

Two of them−the geosphere and the ball (globe)−were extremely simplified models.
The basic difference between geosphere surface mesh and globe surface mesh is that the
geosphere surface consists only of triangles, nearly equally-shaped and nearly equilateral,
whereas the globe surface contains two types of polygons: (1) equal isosceles (but not
necessarily equilateral) triangles; and (2) trapezoids. The two above models are known to
differ in some aspects. Two of them are most commonly mentioned. The first one is that
with the globe mesh it is easier to create shapes with edges along meridians and circles of
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latitude. The second one is that with the geosphere mesh it is easier to make a relatively
smooth surface with a smaller number of mesh elements.

The third model, so-called real model, reflected the real geometry of the bouton surface
and accounted for the presence of the inner organelles−see [20] for details.

4.1. Geosphere−The Simplest Model of the Sphere

The two-dimensional geosphere surface mesh, often used, for example in [18], to depict
the surface of a sphere, consists of triangles, which are almost equilateral.
Their characteristics exceed the ideal values by 1.3% to 25.5% which constitutes a good refer-
ence point for comparison of the quality of 3D meshes. The analyzed surface (Figure 1, left)
had 15,680 triangular faces and 7482 vertices.

Figure 1. The surface (left) and the tetrahedral mesh (right) of a geosphere.

The quality of the model of the geosphere surface is presented in Table 1.

Table 1. Geosphere model surface mesh quality.

Name Definition Ideal Min Max Max/Ideal

PS2 P/
√

S 2 4
√

27 ≈ 4.55901 4.55903 4.6104 1.011
ER2 Emax/R 2

√
3 ≈ 3.4641 3.4684 3.9245 1.133

EH2 Emax/Hmin 2/
√

3 ≈ 1.1547 1.1575 1.4527 1.258
MAXE Emax/P 1/3 ≈ 0.3333 0.3337 0.3702 1.111
MINE Emin/P 1/3 ≈ 0.3333 0.2913 0.3325 1.144 1

1 This value is calculated differently−as ideal/min.

The angles of the triangular mesh considered in Table 1 vary between the values
of 48.53◦ and 71.98◦. The range of triangle area was from Smin = 0.001903 µm2 to
Smax = 0.002051 µm2. Therefore, the ratio Smax/Smin was 107.8%. The surface mesh was
then submitted as the input data to the TetGen program which produced the tetrahedral
mesh of the sphere (Figure 1, right).

The parameters of the sphere were as in Table 2.
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Table 2. Mesh quality of the geosphere 3D model.

Name Definition Ideal Min Max Max/Ideal

SV
√

S/ 3
√

V 4
√

3 6
√

72 ≈ 2.6843 2.6844 4.7147 1.756
ER Emax/R 2

√
6 ≈ 4.8989 4.9301 37.4427 7.643

EH Emax/Hmin
√

3/
√

2 ≈ 1.2247 1.2398 14.628 11.944
MAXS Smax/S 1/4 = 0.2500 0.2503 0.4434 1.774
MINS Smin/S 1/4 = 0.2500 0.0639 0.2498 3.912 1

1 This value is calculated differently−as ideal/min.

These parameters are the reference point for the next calculations.

4.2. The Ball (Globe)−The Simplest Geometric Model of the Presynaptic Bouton

The globe is a sphere divided into spherical polygons by meridians and circles of
latitude. A typical globe is a depiction of the Earth’s surface. For example, one may draw
a globe with 24 meridians and 13 circles of altitude−or rather 11, if we exclude poles
as degenerate circles. The simplest object used for modeling a presynaptic bouton [19]
consisted of two such globes placed concentrically (see Figure 2).

Figure 2. Wireframe structure of the surface of a 3D globe mesh. Bouton membrane—green, neurotransmitter release
area—blue, supply zone boundary—red.

The input parameters for the meshing software were as follows: maximum volume
of a single mesh element (tetrahedron) (VTmax). Another two important parameters are
the maximum aspect ratio (EHmax) which is not standardized but computed directly as the
ratio of the longest edge and the shortest height of a tetrahedron. The last restriction is that
of the minimum dihedral angle (DAmin). It should be stressed that the last restriction is the
most strictly observed in the program.

The 2-dimensional mesh is generated in such a way that each spherical polygon is
replaced by a flat polygon with vertices at the same points. The quality of the globe mesh
was tested in the following subspace of the above parameters:

EHmax ∈ [4.0; 10.0]

VTmax ∈ [0.0006; 4.0]

DAmin ∈ [10◦; 19◦]
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The example results of these tests are presented in Figure 3:

1. for the fixed values of EHmax = 5 and VTmax = 0.001 and for DAmin ranging from
10◦ to 19◦;

2. for the fixed values of EHmax = 5 and DAmin = 13◦ and for VTmax ranging from
0.0006 to 0.0015.

The best quality was achieved when the imposed restrictions were: EHmax = 10.0,
DAmin = 13◦ and VTmax = 0.0012.

Figure 3. Quality of the 3D globe mesh assessed with the following measures: Left−ERmax, EHmax and SVmax. m
right−number of vertices NO_VER and number of tetrahedra NO_TET. The mesh has been generated with TetGen program
with the following parameters: minimum dihedral angle DA, maximum EH value, maximum element volume VT. The
ranges of the axes are are top—fixed values of DAmin and VTmax, bottom—fixed values of EHmax and DAmax.

The input 2D mesh and the results of its tetrahedralization are presented in
Tables 3 and 4.

Table 3. Mesh quality of the globe surface model.

Name Definition Ideal Min Max Max/Ideal

PS2 P/
√

S 2 4
√

27 ≈ 4.55901 4.55910 6.3549 1.394
ER2 Emax/R 2

√
3 ≈ 3.4641 3.4792 9.6114 2.775

EH2 Emax/Hmin 2/
√

3 ≈ 1.1547 1.1647 4.5749 3.962
MAXE Emax/P 1/3 ≈ 0.3333 0.3348 0.4575 1.429
MINE Emin/P 1/3 ≈ 0.3333 0.1617 0.3325 2.061 1

1 This value is calculated differently−as ideal/min.
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Table 4. Mesh quality of the globe 3D model.

Name Definition Ideal Min Max Max/Ideal

SV
√

S/ 3
√

V 4
√

3 6
√

72 ≈ 2.68433 2.68503 4.23589 1.578
ER Emax/R 2

√
6 ≈ 4.89898 4.97976 28.12424 5.741

EH Emax/Hmin
√

3/
√

2 ≈ 1.22474 1.26564 11.40720 9.314
MAXS Smax/S 1/4 = 0.25 0.25037 0.44492 1.780
MINS Smin/S 1/4 = 0.25 0.06135 0.24977 4.075 1

1 This value is calculated differently—as ideal/min.

4.3. The Real Model with Inner Organelles

In the real model, the shape of the bouton surface is created on the basis of the
microscope image [28]−see [20] for details concerning the way the model is generated.
Furthermore, the inner organelles−mitochondrion and microtubules−are also modeled as
the inner structures of the bouton−Figure 4. In the model the following areas have to be
taken into consideration: the area of the synapse membrane in general, the zone of releasing
the neurotransmitter particles, the surface of the mitochondrion which in our model is
connected to the artificially (i.e., numerically) cut bouton, the surface of the microtubules
and of microtubule terminals. The above surfaces are marked with different colors in the
graphs−Figure 5.

Figure 4. Real geometric model of the bouton with inner organelles—cell membrane (black), artificial cut (orange),
mitochondrion (red) and microtubules (yellow) with their endings (bright yellow). The tick marks of the axes are placed at
intervals of 200 nanometers.
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Figure 5. Microtubule with fitted surface mesh. The microtubule terminal−red (−6), the body of the
microtubule−green (−5), mitochondrion−gold (−3), membrane−purple (−1).

The input mesh was made up of 41,807 vertices and 83610 triangles—Figure 6.
Generation of the three-dimensional mesh in such a way that the triangular faces of
the mesh tetrahedra constitute the two-dimensional mesh covering the surfaces of the inner
structures, especially when small details are concerned, was one of the crucial problems
(Figures 5–9, in particular Figure 5 and Figure 9, see also [17]). The characteristics of the
input mesh are presented in Table 5.
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Figure 6. The two dimensional surface mesh of the real geometric model of the bouton. Microtubule—green, artificial
cut—blue, mitochondrion—gold, membrane—purple.
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Figure 7. The real geometric model of the bouton filled by a three-dimensional mesh fitted to the two dimensional mesh
shown in Figure 6. The mesh has been generated by using TetGen with no optimization. The quality of the mesh is very
low because of the presence of a lot of needle-shaped tetrahedra what can be observed in the cross section. The artificial
cut—blue, the inside of the mitochondrion—yellow, the surface of the bouton—purple, the cut surface—red. An example
tetrahedron that has one vertex in the synthesis zone and the other in the release site is marked with bright lime color.
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Figure 8. The real geometric model of the bouton filled by a three-dimensional mesh fitted to the two dimensional mesh
shown in Figure 6. The mesh has been generated by using TetGen and it has been optimized by applying the operations
such as: node smoothing, edge/face swapping, edge contraction, and vertex insertion. The artificial cut—blue, the inside of
the mitochondrion—yellow, the surface of the bouton—purple. On the right—the section. The cut plane—red, the inner of
the mitochondrion—yellow.
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Figure 9. The membrane of the bouton (purple), the artificial cut surface (blue), fragments of
the microtubules (green) and a fragment of the mitochondrion (yellow) with surfaces covered by
triangles−two-dimensional mesh.

Table 5. Surface mesh quality of the real 3D model.

Name Definition Ideal Min Max Max/Ideal

PS2 P/
√

S 2 4
√

27 ≈ 4.55901 4.55902 21.12052 4.633
ER2 Emax/R 2

√
3 ≈ 3.4641 3.4684 111.47228 32.179

EH2 Emax/Hmin 2/
√

3 ≈ 1.1547 1.15740 55.71270 48.249
MAXE Emax/P 1/3 ≈ 0.33333 0.33372 0.49979 1.499
MINE Emin/P 1/3 ≈ 0.3333 0.04002 0.33296 8.329 1

1 This value is calculated differently—as ideal/min.

The above input mesh was passed as input data to the TetGen program. The program
generated output mesh with no optimization, thereby the result was deliberately of a very
poor quality. The parameters of the output tetrahedral mesh are presented in Table 6.
The mesh had 57,060 nodes, 114,116 boundary faces and 194,064 tetrahedra.

Table 6. Mesh quality of the real 3D model−the worst mesh.

Name Definition Ideal Min Max Max/Ideal

SV
√

S/ 3
√

V 4
√

3 6
√

72 ≈ 2.684 2.703 52.387 19.516
ER Emax/R 2

√
6 ≈ 4.8990 5.7381 52, 443.6 107, 049.6

EH Emax/Hmin
√

3/
√

2 ≈ 1.2247 1.5641 262, 212.2 214, 095.4
MAXS Smax/S 1/4 = 0.25000 0.25002 0.499995 1.99998
MINS Smin/S 1/4 = 0.25000 0.000009 0.24998 28,444.1 1

1 This value is calculated differently—as ideal/min.
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The next step was, as it has been done previously, to generate the optimized mesh.
Its quality was checked for different values of input TetGen parameters. Those parameters
after preliminary tests were set to

EHmax ∈ [70; 100]
DAmin ∈ [1◦; 20◦]
VTmax = 1000 µm3

The best quality was achieved for EHmax = 100; DAmin = 2◦; VTmax = 1000.
The size of the mesh was 391,897 nodes, 4,141,116 faces (296,528 on the bouton surface)

and 1,996,426 tetrahedra.
The distributions of the values of the parameters are given in Figures 10–12 and

in Table 7.

Table 7. Mesh quality of the real 3D model after optimization with TetGen program.

Name Definition Ideal Min Max Max/Ideal

SV
√

S/ 3
√

V 4
√

3 6
√

72 ≈ 2.68433 2.68435 8.83147 3.290
ER Emax/R 2

√
6 ≈ 4.8990 4.9108 605.693 123.636

EH Emax/Hmin
√

3/
√

2 ≈ 1.2247 1.2308 301.5059 246.127
MAXS Smax/S 1/4 = 0.25000 0.25001 0.49804 1.992
MINS Smin/S 1/4 = 0.25000 0.00228 0.24999 109.649 1

1 This value is calculated differently—as ideal/min.

Figure 10. Distribution of the quality measure Q1 (standardized version of SV ), of the mesh of the real model of the bouton.
Probability (percent)−vertical axis.
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Figure 11. Distributions of the quality measures Q2 (standardized version of EH) and Q3 (standardized version of ER), of
the mesh of the real model of the bouton. Probability (percent)−vertical axis.
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Figure 12. Distributions of the quality measures Q4 (standardized version of MX) and Q5 (standardized version of MN),
of the mesh of the real model of the bouton. Probability (percent)−vertical axis.

5. First Comparison of the Models

The quality of all 3D meshes of the models are given in Table 8. The smallest values
are always close to the ideal ones; the relative differences was always below 1.23% so those
minimal numbers are not presented.

For the simplified models of the bouton (the geosphere and the globe) Table 8 the
distance between the mean and the median lay within the range of two standard deviations
of the corresponding parameter.
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Table 8. Mesh quality measures of all the models.

Name Definition Ideal Mean SD Median P90 P99 Max

GEOSPHERE:

SV
√

S/ 3
√

V 4
√

3 6
√

72 ≈ 2.68433 2.84749 0.15648 2.79918 3.03451 3.46124 4.71468
ER Emax/R 2

√
6 ≈ 4.89898 7.78874 1.82397 7.38168 9.92162 14.42310 37.44269

EH Emax/Hmin
√

3/
√

2 ≈ 1.22474 2.38374 0.66151 2.24651 3.20865 4.62071 14.62800
MAXS Smax/S 1/4 = 0.25 0.30413 0.02705 0.30016 0.34145 0.37957 0.44339
MINS Smin/S 1/4 = 0.25 0.19808 0.02518 0.20173 0.16303 1 0.15112 1 0.06385 1

GLOBE:

SV
√

S/ 3
√

V 4
√

3 6
√

72 ≈ 2.68433 2.88477 0.20380 2.81796 3.11881 3.74693 4.23589
ER Emax/R 2

√
6 ≈ 4.89898 8.20721 2.40916 7.56507 10.90243 18.32399 28.12424

EH Emax/Hmin
√

3/
√

2 ≈ 1.22474 2.54553 0.85918 2.32799 3.59229 5.75653 11.40720
MAXS Smax/S 1/4 = 0.25 0.30769 0.02907 0.30364 0.34783 0.38617 0.44492
MINS Smin/S 1/4 = 0.25 0.19443 0.02878 0.19953 0.15380 1 0.13958 1 0.06135 1

REAL MODEL:

SV
√

S/ 3
√

V 4
√

3 6
√

72 ≈ 2.68433 2.950 0.329 2.821 3.347 4.284 8.831
ER Emax/R 2

√
6 ≈ 4.89898 9.690 6.777 7.535 15.175 37.042 605.693

EH Emax/Hmin
√

3/
√

2 ≈ 1.22474 3.177 3.046 2.259 5.347 15.732 301.506
MAXS Smax/S 1/4 = 0.250 0.310 0.042 0.299 0.373 0.445 0.498
MINS Smin/S 1/4 = 0.250 0.188 0.048 0.205 0.110 1 0.077 1 0.002 1

1 In this row the values P90, P99 and max are replaced with P10, P5 and min, respectively.

For the real model of the bouton, that takes into consideration the same parameters,
the situation was noticeably worse, although it still remained satisfactory. The specified
90th and 99th percentiles were similar for all three models. The maximal values in the
case of the real bouton mesh were, however, over one order of magnitude (approximately
30 times) larger than the corresponding values for the simpler models which means that
there are some bad quality mesh elements. Nevertheless, their number is extremely low in
comparison to the total number of the mesh tetrahedra.

If the simplest structures are to be taken as the reference points for assessing the quality
of the real mesh, it must be admitted that the extreme values of the quality parameters
(non-standardized) were significantly higher than those reference values. The percentage
of the “bad” tetrahedra was, however, low−below 1%, which means that, in general, the
meshes were suitable as the input for subsequent optimizations.

6. Further Optimizations Involving Modifications of the Surface and Improvement of
Dihedral Angles

The results of examination of the created meshes, particularly the real one, revealed
problems with their quality, mainly concerning the distribution of dihedral angles of mesh
elements, so additional modifications were needed. That was accomplished by using the
Stellar software [29]. Next, the simulation results for the worst mesh were compared with
those for the best one.

The Stellar program performs transformations like inserting and deleting vertices,
edge contraction, smoothing or removing boundary or near-boundary nodes, removal of
boundary edges, multi-face removal and, in addition, compound operations which means
combinations of all the above transformations.

Stellar software focuses mainly on correcting dihedral angles of mesh tetrahedra
which, according to the author, is crucial for numeric calculations (see [29] and the relevant
references therein). The results of improving that parameter are in Table 9 for the three
models presented above.
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Table 9. Mesh quality improvement with Stellar software for all the models (for the real model the worst, “raw”, mesh is
also included).

Improv. Number Number Number of Ideal Min Max Improv. Improv.
Stage of Nodes of Faces Tetrahedra DA DA DA (Min) (Max)

GEOSPHERE:

before 121, 358 63, 196 644, 999 70.53◦ 5.83◦ 164.92 − −
after 125, 915 64, 062 472, 414 70.53◦ 37.50 140.41 6.43 1.17

GLOBE:

before 7567 6354 39, 853 70.53◦ 7.90◦ 162.18◦ − −
after 8850 5096 26, 283 70.53◦ 37.44◦ 139.46◦ 4.74 1.16

REAL MODEL:

worst 57, 060 114, 116 194, 064 70.53◦ 0.0038◦ 179.915◦ − −
before 391, 897 296, 528 1, 996, 426 70.53◦ 0.528◦ 175.383◦ 201.06 1.03
after 572, 775 357, 578 1, 635, 827 70.53◦ 19.727◦ 160.273◦ 37.33 1.09

The extreme values of the parameters SV, ER, EH, MAXS and MINS after improving
the mesh are given in Table 10.

Table 10. Mesh quality measures of all the models after improvement.

Name Definition Ideal Mean SD Median P90 P99 Max

GEOSPHERE:

SV
√

S/ 3
√

V 4
√

3 6
√

72 ≈ 2.68433 2.80129 0.06310 2.79255 2.88640 2.97954 3.33775
ER Emax/R 2

√
6 ≈ 4.89898 7.47835 1.29978 7.26340 9.07162 11.85719 24.99427

EH Emax/Hmin
√

3/
√

2 ≈ 1.22474 2.31219 0.54216 2.21765 2.98423 4.11482 9.75960
MAXS Smax/S 1/4 = 0.25 0.30716 0.02864 0.30297 0.34659 0.38850 0.43438
MINS Smin/S 1/4 = 0.25 0.19643 0.02555 0.19967 0.16305 1 0.14975 1 0.04684 1

GLOBE:

SV
√

S/ 3
√

V 4
√

3 6
√

72 ≈ 2.68433 2.81312 0.06964 2.80272 2.90532 3.01900 3.21246
ER Emax/R 2

√
6 ≈ 4.89898 7.76157 1.49536 7.47481 9.66496 12.82559 19.98282

EH Emax/Hmin
√

3/
√

2 ≈ 1.22474 2.46626 0.66469 2.33056 3.31735 4.71825 7.41859
MAXS Smax/S 1/4 = 0.25 0.31461 0.03285 0.30945 0.36080 0.40590 0.43614
MINS Smin/S 1/4 = 0.25 0.18995 0.02885 0.19390 0.15030 1 0.13593 1 0.06181 1

REAL MODEL:

SV
√

S/ 3
√

V 4
√

3 6
√

72 ≈ 2.68433 2.87951 0.14403 2.84965 3.03650 3.37273 6.39540
ER Emax/R 2

√
6 ≈ 4.89898 9.41086 6.40490 8.34152 12.62199 24.68540 838.46663

EH Emax/Hmin
√

3/
√

2 ≈ 1.22474 3.17968 2.74576 2.71390 4.63019 9.51595 383.60024
MAXS Smax/S 1/4 = 0.250 0.32890 0.03993 0.32307 0.38640 0.43094 0.48228
MINS Smin/S 1/4 = 0.250 0.17597 0.03685 0.18143 0.12600 1 0.10764 1 0.00286 1

1 In this row the values P90, P99 and max are replaced with P10, P5 and min, respectively.

7. Simulations

As it has been mentioned above, the last method applied in this paper to compare the
quality of meshes was to run example simulations for the different meshes of the same
object and comparing the results. The three 3d “real” meshes were chosen: the mesh
with no improvement, the one improved by TetGen and the mesh which was additionally
optimized with Stellar. The parameters for all three simulations were the same: the size
and shape of the surface mesh, the initial density distribution of neurotransmitter (NT), the
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time step assumed for the calculations and the time interval during which the release of
NT took place.

The values determining the results used in this paper were: diffusion coefficient
a = 3.0 µm2/s , permeability coefficient α = 416 µm3/s, the time step t = 0.0001 s and the
time interval during which the release occurred−from t = t0 + 0.0022 s to t = t0 + 0.0027 s.

The criterion used to compare the results was the amount of neurotransmitter released
during the first release time interval i.e., from t = 0.0022 s to t = 0.0027 s, which embraced
6 consecutive time steps. The additional criterion connected with the first one was the total
amount of NT in the bouton.

8. Results

The results are presented in Figure 13. Three plots break down naturally in two
groups. The two lower ones, depicting the total amount of neurotransmitter (NT) in the
bouton varying in time, are almost identical. The values for the mesh improved with
Stellar are only a little lower. This may be attributed to the fact that the total amount of
NT was calculated based from the values of the density function in mesh vertices which
differed in number and location between meshes. The upper plot (black) refers to the initial
unimproved mesh. Its values are remarkably higher and the differences are clearly visible;
nearly doubled values at the beginning of the impulse and equal values at the end.

Figure 13. Comparison of simulation results for three various meshes. The plot represents the amount of neurotransmitter
released during stimulation by a single incoming electrical impulse.

Two out of five values of the real mesh parameters presented in Table 8 increased
remarkably after applying Stellar optimization. Namely, the maximal value of ER changed
from 605.7 to 838.5 and the maximum of EH−from 301.5 to 383.6. The corresponding 95th
percentiles decreased which means that only a very small fraction of the tetrahedra had
worse ER or EH quality. The maximal (in case of MINS, minimal) values and the 95th (for
MINS, the 5th) percentiles of of all other parameters improved after optimization. The in-
teresting outcome of the optimization is that the only parameter that showed substantial
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improvement was the one designed for this paper i.e., the SV parameter which changed
from 8.83 to 6.40 (a nearly 30% better value). The results confirm that the parameter SV
could be calculated instead of six dihedral angles of a tetrahedron. With the improved
mesh, simulation of neurotransmitter flow in the examined model should be performed
with sufficient precision. The detailed inspection of the accuracy of these calculations will
be the subject of further research.

It should be stressed that the mesh analyzed in this paper is quite a complicated one
which can be confirmed by the fact that the output mesh quality measured by dihedral
angles was only in the range of 19 to 160 degrees. When we take into consideration the
statement from [29]: “My implementation usually improves meshes so that no dihedral angle is
smaller than 34◦ or larger than 131◦”, it must be concluded that the mesh considered here is
extremely complicated.

9. Effect of Mesh Quality on the Algorithm Performance and Results of Simulations

The algorithm, basically, consists of two modules. The first one is responsible for
calculations initialization. Among others, it initializes the vector of the unknown variables
i.e., the density vector ρ. The second one performs iterative calculations over time and
space mesh.

In the second module, the iterative one, the calculations in each iteration are di-
vided into three steps: the first one, during which the equation system is solved without
taking release and synthesis into consideration, the second one when the values of the
vector ρ are updated with the synthesis, and the third one, that involves the diminishing
the value of the neurotransmitter density by the amount resulting from the exocytosis.
Within the second said step, solving the equation system must be repeated until the status
of each tetrahedron−“producing” or “non-producing”−is established between iterations.
This means, among others, that calculations on a single tetrahedron may cause the program
get stuck in the loop in case when the tetrahedron has one vertex in the release zone and
another one in the synthesis zone. Such vertices exist in the worst, unimproved mesh in
the real model.

In general, the comparison of calculations for different meshes is a difficult task.
The reason is that vertices of different meshes covering the same object, are usually not
identical. Therefore it is not possible to compare results obtained in the same mesh points.
In the case of modeling the dynamics of transmitting signals in synapse, however, the
situation is convenient because the total release of neurotransmitter into synaptic cleft
in the time unit is a direct effect of the run of the processes occurring in the presynaptic
bouton. This directness is guaranteed by the fact that the presynaptic bouton, considered
as a cybernetic system, has the observability property [6].

Referring to the conducted simulations, the phenomena mentioned above are visible
clearly. First of all, for the worst unimproved mesh, the calculations with the synthesis
turned on got stuck in a loop because of existence of tetrahedra that intersect both the
release area and the synthesis area. Such an example tetrahedron is marked bright lime
in Figure 7.

In the case of simulation without synthesis, the total amount of neurotransmitter
released into the synaptic cleft differs by a factor of around two, for the worst mesh
(Mesh 1) compared to the middle-quality one (Mesh 2) and the best mesh (Mesh 3) which
both give practically the same result−see Figure 13 and Table 11. The remarkable difference
in the simulated amount of released neurotransmitter means, among others, that even in
the case of a simple dynamic model−diffusive-reactive PDE model−the use of a mesh of a
poor quality produces results which do not reflect the real solutions. It must be admitted
that the shape of the impulse is maintained, and that can be confirmed by comparing
impulses conducted via calcium channels measured by other authors [2,3] with the result
of our research. In all the papers, including this one, the impulses were V-shaped. It should
be also noted that the amount of the released NT, used in this paper, is a very accurate
indirect measure of the postsynaptic potential (see Figure 1A in the related work [3]).



Appl. Sci. 2021, 11, 2811 22 of 24

The peak of the impulse, however, is higher for the worst mesh (Figure 13) which would
lead to false conclusions. In genetic research this could even favor the object which
produces higher output amplitude as more heterozygous since homozygosity usually
means impairing life processes (see a related paper [4], especially Figure 3C therein).

Table 11. Release of neurotransmitter during exocytosis phase for three different meshes of the
real bouton model [vesicles/time step]. Mesh 1—the worst mesh, Mesh 2—Mesh 1 improved with
TetGen, Mesh 3—Mesh 2 improved with Stellar

Time[s] Mesh 1 Mesh 2 Mesh 3

0.0022 1.67572458 0.93988859 0.91254579
0.0023 2.52562556 1.25460856 1.25423054
0.0024 1.42968640 0.76737063 0.77887697
0.0025 1.01510141 0.71655252 0.71123427
0.0026 0.80204156 0.59739848 0.60125321
0.0027 0.36672566 0.33349662 0.32721117

The performed simulations, furthermore, shed−to some extent−light on the problem
of the mesh quality in the context of dynamical numerics applications. Namely, in the
assessment of the mesh quality the common view is that the dihedral angle between the
tetrahedron faces is a significant parameter determining the mesh quality−for the ideal
mesh the measure of the dihedral angle between any faces should be 70.53◦. Therefore, the
Stellar package is oriented mainly towards improving that parameter The simulations
presented in this paper indicate, however, that at least for the diffusive-reactive model
the improvement of the parameter connected with the quality of dihedral is not of a
great importance−compare the results for Mesh 2 and Mesh 3 in Table 11. Apart from
the fact that after applying Stellar package the dihedral angle parameter of the Mesh 3
is significantly better than that of Mesh 2−Table 9−the results for the both meshes are
practically the same.

10. Concluding Remarks

As it has been aforementioned in Introduction, the main objective of this paper
was to discuss the specifics of the quality measures of the generated mesh with respect
to numerical calculations and fidelity of simulations. The obtained results lead to the
following conclusions.

1. In the situation similar to that considered in this paper, the low quality mesh may
alter the results of numerical simulations by a factor greater than two. In the context
of modeling transmission of signals in the synapse such a low-fidelity result makes
the simulation useless.

2. In the contrary to opinions expressed in a few papers, the dihedral angle in the case
of our simulations did not prove an important parameter determining the quality of
the simulation in the considered case.

The problem of generating the three-dimensional mesh itself is not trivial [30,31].
If the geometry of the simulated object is relatively simple−in our example, a geosphere or
a globe with regular internal structures (like the spherically-shaped domain of neurotrans-
mitter supply)−then generation of a 3D mesh of the object does not cause radical problems.
The tetrahedral mesh generator like TetGen can easily produce a mesh of a satisfying
quality (Tables 2, 4, and Figure 1). On the other hand, if the geometry of the model is com-
plex, then generation of the mesh is faced with essential difficulties. Even such dedicated
software as TetGen is not always capable of dealing with the problem. The quality of the
created mesh is significantly worse (see Table 7 as well as Figures 10–12). However, even
moderately optimized meshes seem to produce satisfying results.
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