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Abstract: Bio-based polymers have been considered as an alternative to oil-based materials for their
“carbon-neutral” environmentally degrative features. However, degradation is a complex system in
which environmental factors and preparation conditions are involved, and the relationship between
degradation and these factors/conditions has not yet been clarified. Moreover, an efficient system that
addresses multiple degradation factors has not been developed for practical use. Thus, we constructed
a decomposition degree predictive model to explore degradation factors based on analytical data and
experimental conditions. The predictive model was constructed by machine learning using a dataset.
The objective variable was the molecular weight, and the explanatory variables were the moisture
content in a compost environment, degradation period, degree of crystallinity pre-experiment, and
features of solid-state nuclear magnetic resonance spectra. The good accuracy of this predictive
model was confirmed by statistical variables. The moisture content in the compost environment
was a critical factor for considering initial degradation; specific scores revealed the contribution of
degradation factors. Furthermore, the optimum decomposition degree, various analytical values, and
experimental conditions were predictable when this predictive model was combined with Bayesian
optimization. Information obtained from virtual experiments is expected to promote the material
design and development of bio-based plastics.

Keywords: solid-state nuclear magnetic resonance; measurement informatics; polymer properties;
machine learning; Bayesian optimization; degradable polymer

1. Introduction

Plastics, which are lightweight and stable, are essential materials that support our
daily lives most widely in the form of containers, such as plastic bottles and synthetic fibers.
By contrast, owing to their high stability, pollution due to plastic disposal has become
an apparent problem in many countries worldwide [1,2]. Furthermore, “carbon-neutral”
bio-based polymers, such as polylactic acid (PLA), polybutylene succinate (PBS), and
polycaprolactone (PCL), have become a focus in the era of biorefinery materials as an
alternative to oil-based materials [3,4]. Here, we focused on PLA, which is one of the
most common bio-based plastics. It is known that the degradation rate of PLA changes
depending on the amount of moisture, temperature, and hydrogen ion concentration (pH)
in the surrounding environment [5]; moreover, degradation factors are intricately entwined,
including environmental factors and preparation conditions, and the relationship between
degradation and these factors/conditions has not yet been clarified. The elucidation was
considered to be extremely meaningful in predicting the degree of degradation. Moreover, a
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computational degradation predictive method could overcome the time and cost constraints
to experimentally demonstrate bio-based plastic decomposition.

We considered how to comprehensively obtain the data for the sample and surround-
ing environment to solve the relationship between these complex systems, and data science
analysis could be useful for this process [6–11]. In the measurement method, solid-state
nuclear magnetic resonance (NMR) reflects both crystalline and amorphous structures in
chemical shifts [12,13]; in particular, PLA emits broad signals for the amorphous compo-
nent and sharp signals for the crystalline component in cross-polarization and magic angle
spinning (13C-CP/MAS) spectra [14,15]. Therefore, we decided to use solid-state NMR
as the analysis method. In the analysis method, we focused on Bayesian optimization.
Bayesian optimization has already been used in material science [16–19] and is an effec-
tive method, particularly for complex systems such as preparation conditions, chemical
composition, and microstructure. Moreover, this analysis method can be applied to a
small number of experiments, as is typical of the design of experiments, and is considered
suitable for the rapid prediction of the degree of degradation. Therefore, we decided to
construct a degradation prediction model, mainly based on Bayesian optimization. Fur-
thermore, because bio-based plastic degradation is also greatly affected by the surrounding
environment, we decided to obtain the environmental conditions and incorporate them
into the dataset. A degradation prediction model focusing on the surrounding environment
is a new attempt.

In this study, we performed degradation experiments on PLA, which is the most
common bio-based plastic; the results were used to construct a model that can predict
the degree of degradation while considering the surrounding environment and degra-
dation factors and their contribution rates. Furthermore, the optimum decomposition
degree, various analytical values, and experimental conditions were explored using virtual
experiments that combined the decomposition degree predictive model with Bayesian
optimization.

2. Materials and Methods
2.1. Materials

PLA was purchased from Nature3D (http://nature3d.net/, accessed on 24 Febru-
ary 2021) in pellet form and, using a press molding machine (H300-01, AS ONE Corp.,
Osaka, Japan), sheet samples were formed from the PLA pellets to a standardized size
of 10 mm × 30 mm and a thickness of 0.5 mm. Samples of different crystallinity were
obtained by varying the descending temperature conditions or adding an annealing treat-
ment. Three types of prepared samples which had different initial crystallinities, named
R/N, R/A, and S/A, were used for decomposition experiments (Table S1).

2.2. Degradation Experiment

The degradation experiment was performed by burying the samples in containers
filled with commercial composting tip materials along with targets for compost degradation
of raw waste, which was purchased from Eco Clean Co., Ltd. (https://www.gotonet.co.jp/
products/detail.php?product_id=8710491, accessed on 24 February 2021), storing them in a
thermostatic chamber at 60 ◦C, and exposing the samples to a degradation environment that
mimicked composting. In this experiment, we obtained samples after the decomposition
experiment as well as information on the moisture content and decomposition period. The
moisture content was calculated based on the water content in the soil (Ww) and the dry
weight of the soil (Ws) according to the following equation:

Moisture content [%] = Ww / (Ww + Ws) (1)

As a preliminary experiment, the approximate Ws used in the experiment was obtained
for one sample by freeze-drying the soil in the container used for the experiment. Then,
based on the weight of each sample, container, and Ws, we calculated the theoretical value
of how much weight should be used to achieve the desired moisture content. Then, the
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total weight was periodically measured, and pure water was added to reach the theoretical
value. The desired moisture content was adjusted every 48–72 h. After the experiment,
the soil was freeze-dried to obtain the actual value of Ws, and the exact moisture content
was calculated for each weighing day. For the decomposition degree predictive model,
the averaged moisture content for all measurement days was used. The decomposition
experiment was conducted for three weeks, and sample collection was performed every
week. Information on the moisture content in the compost environment and decomposition
time obtained from the above process was used as an index of the external environment.

2.3. Measurements of Samples

Before and after the decomposition experiment, the samples were subjected to various
measurements. After the samples were collected, they were washed with water to remove
the attached soil, freeze-dried, and stored in a desiccator until the amount of water adsorbed
was equal to that before the decomposition experiment. The weight-loss ratio was then
calculated by measuring the weight and comparing it with that before the decomposition
experiment. The solid-state NMR spectra in this study were recorded using an Avance III
HD-500 instrument (Bruker Corp., Billerica, MA, USA) equipped with a double-resonance
4.0 mm MAS probe operating at 500.13 MHz for 1H and 125.76 MHz for 13C. In solid-
state NMR measurements, 13C-CP/MAS measurements and 1H static measurements were
performed to collect data on the structural information of NMR spectra [20]. The 13C-
CP/MAS spectra of PLA were recorded at an MAS frequency of 12 kHz at 299 K. In
the 13C-CP/MAS measurements, the spectral width was 200 ppm, the observed points
were 2048, and the number of scans was 1024. The 1H wide-line NMR spectra of PLA
were recorded at an MAS frequency of 0 kHz at 299 K. In 1H static measurements, the
spectral width was 400 ppm, the observed points were 32,768, and the number of scans
was 32. All NMR spectra were pre-processed using TopSpin and Mnova software. The
weight average molecular weight (Mw) of the sample was determined by gel permeation
chromatography (GPC) analysis using LaChrom Elite system (Hitachi, Tokyo, Japan)
equipment with a Shodex GPC K-805L column. Chloroform was used as the eluent,
and the sample concentration was 10 mg/mL. When the measurement was taken, the
column temperature was 30 ◦C, the sample injection volume was 50 µL, the flow velocity
was 1.0 mL/min, and the relative molecular weight distribution was measured using an
ultraviolet detector. Polystyrene standard was used for the calibration curve. Differential
scanning calorimetry (DSC) was performed using DSC3500 Sirius (Netzsch Gerätebau
GmbH, Selb, Germany). A sample of approximately 12 mg was weighed in an aluminum
pan and measured at a nitrogen flow rate of 40 mL/min. The temperature was lowered from
room temperature to 20 ◦C at 10 ◦C/min, stabilized for 10 min, and then raised to 200 ◦C at
10 ◦C/min. For sample exchange, the sample was kept at 200 ◦C for 5 min and then cooled
to 25 ◦C at 20 ◦C/min. Cold crystallization enthalpy (∆Hcc) and melting enthalpy (∆Hm)
were measured. Then, crystallinity was evaluated according to the following equation:

Crystallinity [%] = (∆Hcc + ∆Hm) / 135 (2)

where 135 J/g is the theoretical maximum value of ∆Hm [15].

2.4. Construction and Evaluation of Decomposition Degree Predictive Models

In this study, random forest (RF) [21] and extreme gradient boosting (XGBoost) [22]
were used as machine learning algorithms to construct the predictive model for degrada-
tion. Mw and the weight-loss ratio were used as indicators of the degree of degradation.
To construct a predictive model to estimate the degree of degradation by machine learning,
Mw obtained by GPC was used as the objective variable. We constructed a decomposition
degree predictive model using the weight-loss ratio as the objective variable and compared
the predictive accuracy of the predictive models constructed by different machine learning
algorithms. The NMR spectra were dimensionally compressed by principal component
analysis (PCA) without centering and scaling the data. Explanatory variables in the dataset
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for machine learning were collected from features of the NMR spectra and initial crys-
tallinity as analytical data, and the degradation period and moisture content in the compost
environment were obtained as the experimental conditions. Dimensional compression
was performed to overcome the cost limitation of Bayesian optimization. If there are too
many variables, the number of search items increases, and the calculation cost becomes
expensive. To factor the moisture content in the compost environment, the moisture weight
was estimated from the total weight of the sample, and the values at each measurement
were obtained and averaged. Accuracy of the decomposition degree predictive model
was evaluated by the coefficient of determination (R2) and the root mean square error
(RMSE) of experimental data and validation data with five-fold cross validation. The best
hyperparameters in machine learning were explored using a three-grid search. In addition,
the NMR spectra and experimental conditions at the optimal decomposition level were
obtained by applying the proposed conditions to the predictive model and performing
iterative calculations using Bayesian optimization. In addition, we compared and discussed
the magnitude of the influence of the moisture content in the compost environment and
other factors considered as experimental conditions based on the factor importance in
the predictive model. The importance of each explanatory variable for prediction was
determined using the filter-based method. The predicted 13C-CP/MAS spectrum was
constructed from the dot product calculation of the PCA loadings and the predicted PCA
scores obtained from the predictive model and Bayesian optimization. The concept of these
experiments in this study is summarized in Figure 1.
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Figure 1. Concept of real and virtual degradable experiments in this study. Actual decomposition
experiments were performed to obtain experimental conditions and various analytical data values
(left). The optimum decomposition degree, various analytical values, and experimental conditions
were explored by virtual experiments combining with a predictive model and Bayesian optimization
method (right).

PCA, machine learning, and Bayesian optimization were performed using the stats
library, caret library [23], and rBayesianOptimization library [24] in R software. The method
name “rf” in the caret library was chosen to use the RF algorithm. The hyperparameter
“mtry” as randomly selected predictors in the RF algorithm was tuned by grid searching,
and the method name “xgbLinear” in the caret library was chosen to use the XGBoost
algorithm. The hyperparameters “nrounds” as boosting iterations, “lambda” as L2 regular-
ization, “alpha” as L1 regularization, and “eta” as learning rate in the XGBoost algorithm
were tuned by grid searching. In Bayesian optimization, the expected improvement was
used as an acquisition function type. The Gaussian process updated the acquisition func-
tion. The search range was from −2 times the minimum value to 2 times the maximum
value of each explanatory variable. Ten points as initial variables were chosen randomly to
sample the target function before Bayesian optimization of fitting the Gaussian process.
The iterative calculation of Bayesian optimization was based on 20 iterations. The program,
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including PCA, Bayesian optimization, and machine learning, and its details, are available
at http://dmar.riken.jp/NMRinformatics/ (accessed on 24 February 2021).

3. Results and Discussion

3.1. Features of 13C-CP/MAS and 1H Wide-Line NMR Spectra of PLA

The 13C-CP/MAS spectra were stacked before and after the degradation experiment,
and the signal shape became sharper as the time of exposure to the decomposition envi-
ronment increased (Figure S1a). By comparing the 13C-CP/MAS spectra after the decom-
position experiments with those of previous studies [25,26], it was possible to determine
from which functional groups of PLA the sharpened signals originated. These results
indicated that the crystal ratio of PLA was enlarged by the degradation experiment, which
may be due to the preferential hydrolysis of the amorphous component and the relative
increase in the crystalline component in the sample [14]. From this result, we decided to
use the NMR spectrum as an explanatory variable. The 1H wide-line NMR spectra were
stacked before and after the degradation experiment (Figure S1b). However, no significant
change in signal shape was observed after the decomposition experiment in comparison
with that before the decomposition experiment. Therefore, it was considered that by using
PCA, it is possible to capture minute changes in the signal shape and extract the charac-
teristics of signals related to decomposition. First, Figure S2 shows the results of PCA for
the 13C-CP/MAS spectra. In the PCA score plot, the difference in crystallinity could be
determined by characterizing the difference in sample species. In the PCA loading plot,
PC1 extracted a broad signal and PC2 extracted a sharp signal. In the 13C-CP/MAS spectra
of the polymer, the amorphous-derived signal became broad and the crystal-derived signal
became sharp [14,15]; thus, the characteristics of PC1 were classified as amorphous and
PC2 was classified as crystalline. Figure S3 shows the results of PCA of the 1H wide-line
NMR spectra. In the PCA score plot, the difference in crystallinity could be determined
based on the characterization of the difference in sample species. In addition, in the PCA
loading plot, PC1 extracted a broad signal and PC2 extracted a sharp signal. In the 1H
wide-line NMR spectra of the polymer, the amorphous-derived signal was sharp, and the
crystal-derived signal was broad [9,27]; thus, PC1 was classified as crystalline and PC2 was
classified as amorphous. The total contribution of PC1 and PC2 was 99.5% for the PCA of
13C-CP/MAS spectra and 99.9% for the PCA of 1H wide-line NMR spectra. From this, it
was possible to obtain most of the information on the NMR spectra by using only PC1 and
PC2. If there are many explanatory variables, the calculation cost becomes enormous when
performing machine learning. Therefore, it is possible to construct predictive models that
maximize information while suppressing the calculation cost when utilizing a compression
technique such as PCA.

3.2. Validation of Decomposition Degree Predictive Models and Comparison of Contributing
Factors

Firstly, a dataset for machine learning was created using the weight-loss ratio as an
objective variable and the moisture content of the compost environment, degradation
period, initial crystallinity, and features of 13C-CP/MAS spectra as explanatory variables.
The decomposition degree predictive model was constructed using RF and XGBoost
machine learning algorithms to process these data. The results of the prediction of data
validation are shown in Figure S4. R2 was 0.38 for RF and 0.08 for XGBoost. RMSE was
0.76% for RF and 1.30% for XGBoost. Thus, RF had a higher prediction accuracy than
XGBoost. However, we considered that the degree of decomposition cannot be predicted
accurately, because the bivariate plots of observed and predicted weight-loss ratios did
not follow a diagonal line and the variation was substantial. Therefore, we constructed a
decomposition degree predictive model in which the objective variable was changed to
Mw. The results of the prediction of validation data and a comparison of the factors of
importance are shown in Figure 2.

http://dmar.riken.jp/NMRinformatics/
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Figure 2. The results of predictive modeling of the degree of decomposition using the weight average
molecular weight (Mw), analytical values, experimental conditions, and principal component analysis
(PCA) scores of cross-polarization and magic angle spinning (13C-CP/MAS spectra) using the random
forest (RF) machine learning algorithm. (a) A bivariate plot of the observed and predicted Mw of
validation data. R2 is 0.78 and RMSE is 10.78%. (b) Bar chart of importance in the decomposition
degree predictive model. Details of PC1 and PC2 scores used for machine learning are shown
in Figure S2.

R2 and RMSE were 0.78 and 10.78%, respectively. From these results, we found that a
more accurate decomposition degree predictive model could be constructed by using Mw
rather than weight-loss ratio as the objective variable. Next, we discussed the contributing
factors for prediction. The moisture content in the compost environment and decomposition
period had a significant effect on the degree of decomposition. The reason why the moisture
content in the compost environment greatly affected the degradation degree was considered
to be due to the primary degradation of PLA occurring by hydrolysis, and it was confirmed
that the amount of moisture in the surrounding environment was extremely important
during the early stage of degradation. In addition, the PC1 and PC2 obtained by PCA
of the NMR spectra provided information on the crystalline and amorphous structure,
which slightly affected the degree of decomposition. We also examined the construction
of a decomposition degree predictive model using 1H wide-line spectra. The results of
the prediction of validation data and comparison of factors of importance are shown in
Figure S5. R2 and RMSE were 0.73 and 12.42%, respectively. Based on these results, the
predictive model constructed using the 1H wide-line NMR spectra yielded lower predictive
accuracy than using 13C-CP/MAS spectra, which was likely due to the good separability of
the carbon chain signal, and the fact that the crystal structure information could be obtained
more clearly with 13C-CP/MAS. Based on the importance of the predictive model, the
moisture content in the compost environment and decomposition period had a significant
effect on the degree of decomposition, while the factor of the crystalline or amorphous
structure had little effect on the degree of decomposition. Furthermore, these results were
similar to those which were obtained using 13C-CP/MAS.

Finally, the optimum decomposition degree, various analytical values, and experi-
mental conditions were explored from virtual experiments that combined the constructed
decomposition degree predictive model with Bayesian optimization. The NMR spectra
were predicted by calculating the inner product of the PCA loadings and PC1 and PC2
scores at the optimal decomposition degree proposed by Bayesian optimization, and then
calculating the restoration matrix. The stack diagram of the obtained predicted spectra
and actual measured spectra is shown in Figure 3. Based on the comparison of the spectra,
the spectra were predicted to have a higher crystal ratio. Predictions of the experimental
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conditions, such as moisture content in the compost environment, were also possible, but
the predicted values of the degree of decomposition did not exceed the actual measured
values. This was thought to be due to the influence of the range on the objective variables of
machine learning. However, the results may be improved by implementing other machine
learning methods to perform the verification calculations [28–30], which should be tested
in future studies.
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4. Conclusions

Degradation experiments were conducted to obtain the indices for the external envi-
ronment, such as moisture content in a compost environment. The data were obtained from
the experiments used to develop a model for predicting the degree of degradation, which
was constructed by machine learning. The predictive model accurately predicted the degree
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of degradation by using the rate of decrease in Mw as the objective variable. The rank of
importance of the influencing factors on the degree of degradation, from highest to lowest,
was the moisture content in the compost environment, degradation period, information on
crystalline and amorphous structure, and initial crystallinity. Furthermore, by combining
the constructed predictive model with Bayesian optimization, it was possible to predict the
experimental conditions and NMR spectra when the decomposition degree was optimized.
Although the optimized decomposition degree did not exceed the measured value, the
result may be improved by implementing other machine learning methods. In addition, by
adding experimental conditions such as temperature and pH to this predictive model, it
may be possible to construct a more accurate predictive model that can explore the decom-
position factors in more detail. In addition, for virtual experiments on bio-based plastics
other than PLA, the decomposition degree predictive model and Bayesian optimization
used in this study might achieve optimal accuracy. As a result, it may be possible to reduce
the experimental cost and obtain the experimental conditions and analytical values at an
optimum decomposition degree while analyzing the decomposition factors. Knowledge
obtained from such virtual experiments is expected to lead to the design and development
of bio-based plastics.
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7/11/6/2820/s1, Figure S1: Stacked plot of 13C-CP/MAS and 1H wide-line spectra of PLA during
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PCA using the 1H wide-line NMR spectra; Figure S4: The results of predictive modeling using the
weight-loss ratio as the objective variable by RF and XGBoost; Figure S5: Predictive accuracy and
importance of a predictive model of the degree of degradability using 1H wide-line NMR spectra;
Table S1: List of PLA samples molded by the press-molding machine.
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