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Abstract: To achieve efficient personalized production at an affordable cost, a modular manufacturing
system (MMS) can be utilized. MMS enables restructuring of its configuration to accommodate
product changes and is thus an efficient solution to reduce the costs involved in personalized
production. A micro smart factory (MSF) is an MMS with heterogeneous production processes to
enable personalized production. Similar to MMS, MSF also enables the restructuring of production
configuration; additionally, it comprises cyber-physical production systems (CPPSs) that help achieve
resilience. However, MSFs need to overcome performance hurdles with respect to production control.
Therefore, this paper proposes a digital twin (DT) and reinforcement learning (RL)-based production
control method. This method replaces the existing dispatching rule in the type and instance phases
of the MSF. In this method, the RL policy network is learned and evaluated by coordination between
DT and RL. The DT provides virtual event logs that include states, actions, and rewards to support
learning. These virtual event logs are returned based on vertical integration with the MSF. As a result,
the proposed method provides a resilient solution to the CPPS architectural framework and achieves
appropriate actions to the dynamic situation of MSF. Additionally, applying DT with RL helps decide
what-next/where-next in the production cycle. Moreover, the proposed concept can be extended to
various manufacturing domains because the priority rule concept is frequently applied.

Keywords: digital twin; production control; micro smart factory; modular manufacturing system;
resilience; reinforcement learning

1. Introduction

Personalized production has become the core paradigm in manufacturing research
owing to the need for highly diversified products [1,2]. Customized products with af-
fordable quality, cost, and delivery can be manufactured via this production process to
meet customer requirements [1–5]. To realize this personalized production, the following
three limitations need to be addressed: access, cost, and performance hurdles [2,3,6–8].
Among these hurdles, cost and performance are closely correlated. The access hurdle
pertains to the difficulty in accurately judging customer needs through customer interac-
tion; cost hurdle includes increase in cost due to more complex manufacturing systems;
and performance hurdle involves performance degradation caused by the complexity
of the production process, dynamic situation, and increased preparation time [2,3,6–10].
Additionally, personalized production needs to employ make to order (MTO) entirely
or partly. Because the MTO production environment cannot handle inventory, which
allows managing fluctuations within certain margins, it is necessary to address these
limitations [7,10,11].

Modular manufacturing systems (MMSs) enable the management cost hurdles, and
the concept of resilience helps overcome the performance hurdles [10,12–14]. The real-
ization of MMS is expected to restructure the manufacturing system rapidly and easily
and enable personalized production of highly diversified products [14]. In addition, the
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MMS has an advantage in terms of the cost of product change in production and is suit-
able for frequent changes related to production [14,15]. Moreover, the elements in the
physical work center are managed by a module with independent functional units [14].
Resilience is a characteristic that corresponds to robustness and prevents the degradation
of performance indicators. Impermissible events that can cause bullwhip and ripple effects
are managed under the resilient production control [10,12,15]. Resilience needs to satisfy
five core functional requirements for handling the events: (1) action selection, (2) key
performance indicator (KPI) measurement, (3) monitoring, (4) fluctuation notification,
and (5) adjustment [12]. In the production control perspective, requirements 1, 2, and 5
correspond to achieving resilience [10].

By configuring the MMS for personalized production, the micro smart factory (MSF)
produces personalized products [2,5]. The MSF acts as the work center for production of
personalized products that are requested by factory as a service (FaaS) platform [2,5,16].
Additionally, the MSF operates with cyber-physical production system (CPPS) to achieve
resilience [7]. CPPS establishes and revises the production plan and schedule, provides
time-machine monitoring, and extracts off-line programming (OLP) codes to the physical
MSF [5,7]. These technical functionalities satisfy the five core requirements for achieving
resilience and support the production control [7].

Although the MSF overcomes the cost hurdle and CPPS solves the performance
hurdle in the personalized production perspective, there are still limitations that need to be
solved. MMS often reconstructs its configuration to accommodate product change and the
control-related characteristics [14,17,18]. To enable efficient production operation of MMS,
these limitations must be overcome [17,18]. In addition, three functional requirements, as
mentioned above, are necessary to achieve resilience [10]. Thus, the production control of
MMS needs to select an action with restructured configuration, measure the KPI, and adjust
the rule for selecting action with revised plans and schedules. In particular, adjusting the
rule to select action needs to be executed when the impermissible events are detected, and
the reactive plan and schedule are established for handling such events.

To consider the abovementioned roles, the dispatching rule for production control is
also changeable. It is necessary to enable efficient production even after a restructured prod-
uct in production is changed, and production plan and schedule are revised [10,14,17,19].
However, the core functional requirements for resilience cannot be achieved by the tradi-
tional heuristic rule [19]. Therefore, a novel method for the production control of MMS
needs to be proposed. The reinforcement learning (RL) technique enables the adjustment
of parameters by repeating episodes to learn the policy network [19–21]. This technique
is often applied to select a robust action in response to stochastic arrival by replacing the
dispatching rule in a work center [19,22]. To support the adjustment process without user
intervention, a model that reflects the accurate systematic behavior of a work center is
required [19,23,24].

To overcome the limitations of CPPS in MSF, we propose a digital twin (DT) and
RL-based design. This method establishes and adjusts the required parameters for pro-
duction control in MSF when they need to be revised. The RL supports this establishment
and adjustment of parameters through the learning process. Moreover, the KPI, which
represents the configuration of the physical work center, reflecting functional units, and
synchronizing parameters, properties, and current status, can be measured based on the
DT simulation. Furthermore, the asset administration shell (AAS) model is applied and
inherited by this method for interoperability between DT and RL. The core contents of this
study are as follows:

1. The technical requirements for designing the DT and RL-based production control
methods to achieve resilience are defined. To define these requirements, the gen-
eral process of FaaS platform and the existing research studies on FaaS and MSF
are analyzed.

2. The CPPS architectural framework that includes the proposed method is revised
and proposed. In this CPPS architectural framework, the essential components for



Appl. Sci. 2021, 11, 2977 3 of 20

enabling the proposed method are also suggested. These components coordinate with
the components for the proposed method.

3. The policy network is designed to provide the appropriate action to the specific state
for maximizing the reward. The action is defined with the concept of priority rule
for the efficient replacement of the existing dispatching rule in MSF. Further, the
dispatching rule is designed to ensure robustness and resilience upon changes to
configuration and production operation.

4. Horizontal coordination, which is the service composition between the technical
functionality of DT application and RL technique, is designed to enable the RL policy
network for MSF. This coordination considers the advanced characteristics of DT that
can reflect the current status of MSF. Moreover, the advantage of RL, which includes
efficient adjustment for production control, is also reflected in the design.

5. An industrial case study in MSF is performed to verify and validate the proposed
method. Three experiments related to the industrial case study are conducted to
confirm whether technical requirements are satisfied.

2. Research Background
2.1. Cyber-Physical Production System and Digital Twin

A cyber-physical system (CPS) advances processes in the physical world by approach-
ing, processing, analyzing, and utilizing data through the internet-based connection be-
tween the physical world and virtual components [25–28]. Thus, a CPS can be defined
as “a physical and engineering system that monitors, controls, coordinates and integrates
physical elements by utilizing computing and communication technologies” [26]. Further-
more, a CPPS is a CPS that enhances efficiency of production process of a manufacturing
system. A CPPS is defined as:

“a physical and engineered system, which aggregates resources, equipment and
products by interacting between the physical and the cyber world. This system
utilizes knowledge about the overall product lifecycle to improve the efficiency of
the production process. Here, the interface between the physical and cyber world
is used to monitor, control, coordinate, and integrate resources, equipment, and
products. Knowledge about the product lifecycle is applied for the operation of
CPPS in an appropriate way for a specified time scale. In addition, heterogeneous
advanced engineering applications can improve the value added by the operation
of CPPS” [26,29,30].

The above definition indicates that any study on CPPS must focus on the composition
and interoperation of a complex system, and that the modularization and interoperability of
technology and applications with various levels, layers, and scopes are core issues [29,31,32].
This SoS perspective is related to many issues in architectural design and can follow
modular architectural design [29,33]. A modular architecture consists of modules with one
or several distinct functions that are connected through a simple interface. The overall
system behavior is implemented based on the interactions through this interface, which
can be loosely or tightly coupled [29,34,35].

DT is an advanced virtual factory that represents a heterogeneous configuration,
reflects the functional units, and synchronizes information objects. The advanced attributes
of a DT can improve management accuracy and decision-making efficiency. As a core
technology of CPPS, DT can be used to achieve cyber-physical integration for work-center-
level design and operation. A DT has the following advanced characteristics in comparison
with the traditional simulation model [23,36–42]:

• automatic creation of DT with predefined configurations and functional units,
• transmission or reception of information from physical assets through vertical integration,
• advanced process that applies horizontal coordination to advanced engineering appli-

cations, and
• repeated derivation of performance indicators for prediction and diagnosis.
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A DT application is a software component for creating, synchronizing, and utilizing
a DT. A virtual representation of a DT application (VREDI) is an asset description that
supports vertical integration and horizontal coordination. VREDI considers four core
advanced characteristics for applying a DT to a work-center-level asset administration
shell (AAS), which includes DT-based technical functionality and the concepts of type and
instance. The DT virtual representation is an asset description that abstracts the input
to the DT application, thereby realizing an object through component-manager-enabled
aggregation. The operation module runs the actual DT application; it runs with the DT
engine and uses virtual representation-based objects as the input. The DT engine runs
according to the creation, synchronization, and utilization procedures of the operation
module; therefore, it must be appropriately designed or selected to achieve the required
technical functionality. The configuration data library (CDL) stores the composition of
the resources for an accurate and quick site simulation; the composition of the resources
is divided into base model, metadata, and logic. The logic includes the element logic for
simulating the behavior of the elements and the systematic logic for representing the policy
between the elements [9–11,19].

The procedures for the operation module can be defined as follows: for procedure
creation, the CDL and DT information object is taken as the input to represent the configu-
ration and reflect the functional units of the physical asset. This includes resource-centric,
process-centric, and hybrid creations. In the synchronization procedure, information is
mapped to the represented configuration and the reflected functional units according to the
DT information schema. This includes steps such as snapshot and footprint synchroniza-
tions. In the utilization procedure, the technical functionality of the DT is realized through
two detailed steps: execution and post-processing. This includes steps such as virtual
commissioning, prognostic simulation, reactive simulation, and synchronization-based
representation [10,11].

2.2. Asset Administration Shell

The AAS is a key concept of the reference architectural model industry (RAMI) 4.0
in the Industry 4.0 (I4.0) policy devised in [43–45]. RAMI 4.0 is a three-dimensional
model that reflects technical and economic attributes; it simply shows the main aspects of
different stakeholders and outlines the guidelines for three axes and the required technical
functionality. The three axes are the hierarchy level, value stream, and layer [44,46–48].
The hierarchy level is used to assign functions to the components. The value stream allows
classification based on the current state of the life cycle, which is divided according to the
type and instance. Layers are used to address concerns regarding the interoperability and
common understanding of syntax and semantics from different perspectives; they serve as
an interface between the physical and cyber worlds.

The core components of an AAS are virtual representation and technical functionality.
The ‘manifest’ is the metadata, and the ‘component manager’ supports information man-
agement to enable loosely coupled integration with the service-oriented architecture (SOA).
The most important feature of AAS is that it realizes I4.0 components with various hierar-
chy levels [44,45]. An AAS can use a web service to refer to the information and functions
of another AAS. In addition, a high level of decentralization and object-orientation allows
an AAS to dynamically integrate small amounts of information. Factories that become I4.0
components can be accessed and utilized even if they do not match the descriptions and
functionalities of their subunits (i.e., equipment and products) [44,45,48].

In this study, an AAS was applied as a reference model to achieve a high level of
interoperability and efficient information management between the DT and heterogeneous
components. The key characteristics of the SOA principle in AAS were used to support
service composition for DT and RL-based resilient production control with loosely coupled
integration. Further, the component-manager-enabled support of vertical integration and
horizontal coordination establishes robust and efficient RL-based production control. The
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application of this AAS concept to the proposed method enables the development and
operation quality of the target physical asset.

3. Cyber-Physical Production System for Resilient Personalized Production

FaaS is a service platform and model that supports personalized production. The main
purpose of the FaaS platform is to overcome access, cost, and performance hurdles. This
platform has six sequential processes to produce and deliver personalized products to the
end-customer: (1) the end-customer provides the computer-aided design (CAD) file of the
product and requests production order. (2) Based on the CAD file, the engineering experts
consult and revise the design of the product. (3) The essential parts are procured from the
suppliers. (4) According to the final design of personalized product and the procured parts,
the MSF produces the product. (5) The product is shipped after the production operation
ends. (6) The final product is delivered to the end-customer [2,5].

To ensure successful operation of the FaaS platform, studies have been conducted to
address the three limitations specified above. To solve the access hurdle, the customers
and engineering experts interact through a web client in steps 1–2 of the abovementioned
process. In a previous study, the CAD model was uploaded to derive a bill of materials
(BOM) from a client [5,49]. Furthermore, 3D printing machines have been proposed
to address the cost hurdle in step 4. This is because several different products can be
more easily produced via the proposed method than the traditional mold manufacturing
method. Thus, the MSF is included as the work center for step 4 of generation process
of FaaS platform. In addition, the MSF in FaaS allows for post-processing rather than
only providing outputs; thus, it can be configured to generate products based on customer
requirements with limited facilities [5,16].

Several studies have been conducted to mitigate the performance hurdle. Kang et al. [16]
used the DT to improve the layout and logistics of the MSF so that the transport robots
can produce a variety of products and respond to different scenarios. Park et al. [2] imple-
mented a DT through vertical integration between factory sites and information systems.
This enabled time-machine monitoring of the entire MSF, which includes past tracking, real-
time monitoring, and future predictions. In our previous work, the CPS service composition
was studied in terms of an SoS rather than as a stand-alone application. Five service-
composition-based technical functionalities for problem solving in MSF were defined.
Production planning and scheduling, and automated execution are the technical functionalities
performed in the production operation planning stage. The remaining technical functional-
ities are included in the production execution stage, also referred to as the instance stage.
The criteria for determining work-center-level abnormalities include determining if the due
date is being met and if there are any problems with specific performance indicators [7].
These criteria form part of the abnormal situation notification. The five service-composition-
based technical functionalities, implemented using DT through horizontal coordination,
which is one of the requirements for DT in MSF, are as follows:

• Production planning and scheduling: It involves determining the production plan based
on orders that are input/fed from the FaaS service platform.

• Automated execution: It involves deriving and executing OLP instructions for executing
the production plan.

• Real-time monitoring: It involves synchronization of the MSF status to support the
user’s decision-making.

• Abnormal situation notification: It involves providing notifications of the detected events,
such as quality defects, equipment failures, and work-center-level abnormal situations.

• Dynamic response: The technical functionality involves deriving and executing alterna-
tives after the occurrence of work-center-level abnormal situations.
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The schematic configuration of an MSF is shown in Figure 1. It consists of seven
process modules and two types of material handling robots (MHRs). The seven process
modules perform additive manufacturing, fumigation, polishing, inspection, packaging,
and assembly processes. Furthermore, modules performing the assembly process are
divided into two types: Assembly No. 1 with a three-axis robot and Assembly No. 2
with a six-axis robot [5,7,16]. These modules can be controlled by a platform based on IoT
devices or middleware [2,5,16]. The two MHRs perform material handling operations in
each station, and the six-axis handler executes the production plan according to the first
come first served schedule. Further, the tower handler is an MHR with agent decision
and determines the dispatching process related to the entities in the buffer and in the
post-processing station. Thus, the MSF operates with a single decision-making agent in an
MHR. Hence, tower handler is an important component that controls the overall process
and system efficiency.
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The implemented CPPS and MSF are illustrated in Figure 2 [7]. On the left side of
Figure 2, an MSF manufactured by Daejeon-si, Republic of Korea, is shown. On the right in
Figure 2, the CPPS for resilient production control is illustrated. The five abovementioned
technical functionalities are implemented for the production operation of the MSF based
on the DT-based CPPS. The proposed method is also applied to this CPPS for enhancing
the dispatching rule of the MSF. Thus, the proposed method addresses the limitation of
current research studies on MSF.
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4. Method for Resilient Production Control in Modular Manufacturing System
4.1. Problem Definition

Although the MSF, which is an MMS for FaaS platform, is a concept designed to handle
the cost hurdle in personalized production, its increased complexity creates performance
hurdles. The performance hurdle in the type and instance phases of the work center-
level value stream must be solved to achieve production efficiency. As described in the
introduction, this includes dynamic selection of parameters, evaluating and improving
the dispatching rule, and adjusting the reactive plan and schedule improvement efficiency.
The detailed requirements for resilience in MSF are as follows:

• One of the main characteristics of MMS is the ability to restructure. Therefore, the
MSF has also the ability to restructure to enhance the production efficiency. From the
control perspective, the policy also changes when the configuration is restructured.
The number and relationship of elements in the physical work center are also changed,
and it is necessary to revise the functional units to enable production operation.
Therefore, dynamic selection of parameters is necessary, but the traditional heuristics-
based production control cannot respond to this dynamic selection.

• In personalized production, high product diversity affects the management of pro-
duction operations. The MTO production environment leads to an increase in the
complexity of decision-making and control. To overcome this performance hurdle,
the dispatching rule for production control must be updated when the product for
production is changed. As mentioned above, heuristics-based production control
cannot revise this dynamic update.

• To achieve resilience in production control, the core functional requirements need to
be satisfied. Action selection, KPI measurement, and adjustment are required for the
proposed method. The proper estimation of parameters for selecting action needs to
be provided in the operation planning phase, which is the type phase of the instance
stage in the work center-level value stream. Dynamic adjustment of parameters
for meeting the revised production plan and schedule in the operation execution
phase, which is the instance phase of the instance stage in the work center-level value
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stream. Furthermore, the KPI needs to be measured for evaluating the policy network
alternative in both phases in the instance stage of the work center-level value stream.

• The dynamic estimation of parameters for the reaction to an abnormal situation needs
to be synchronized with the current information in the physical work center. Without
synchronizing the production operation, the estimated dispatching rule might cause
a gap in the physical work center. The production volume, work in process (WIP),
machine status, and changed situation are to be synchronized to decrease the gap.

To support the five service-composition-based technical functionalities, production
planning and scheduling, automated execution, and dynamic response should be considered
to design the method. The production planning and scheduling and dynamic response are
established to plan and schedule to the required time point. In addition, the result of this
method is applied to the automated execution and needs to consider the tool center points
for extracting OLP codes.

4.2. Cyber-Physical Production System Architectural Framework for Resilient Production Control

The proposed method applies DT and RL to satisfy the abovementioned requirements.
The DT can provide the evaluation result to the learning process of the policy network. The
policy network is an RL-based network model that selects action a according to state s to
maximize reward r. In addition, the RL policy network is denoted as πR(a|s) and is learned
from the initial solution πC(a|s). Through the learning process, the RL policy network
πR(a|s) is adjusted to maximize reward r, and the virtual event logs for this network are
returned by DT. Moreover, the RL technique enables the estimation of parameters that
are suitable for the product diversity in the production operation, the revised plan and
schedule, and the current situation of the physical work center.

In the proposed method, the DT plays a role in providing the virtual event trace and
KPI for learning the RL policy network πR(a|s). The virtual event trace is the pair of action
a and state s during the DT simulation. RL uses state s as inputs and action a as an output
for indicating the derived entity in the MMS. In addition, the reward r is also required
for DT application to maximize the specific KPIs from the production control perspective.
Moreover, the current information from the physical work center needs to be synchronized
to minimize the gap between DT and the physical work center. If the current information,
such as progressed production volume, WIP, and machine status, is not considered in the
DT simulation, the simulation result might support the learning of RL policy network
πR(a|s) with the inappropriate solution space.

To satisfy the abovementioned requirements, the DT application is designed, as shown
in Figure 3. The architectural framework follows an AAS model with SOA principles.
To enable the interoperability in the heterogeneous development environment, the entire
system considers loosely coupled integration based on web services. Following the CPPS
architectural framework, which was proposed by Park et al. [7], the advanced planning and
scheduling (APS) application and device control application are included. Moreover, the
P4R information model is applied for efficient information management and application
of ‘type and instance’ concept based on the VREDI [9]. The following are the detailed
descriptions of elements in this architectural framework:

• Component manager: This element is a centralized coordination component and takes
the role of a service bus in the SOA principle. The component manager is a subject
of vertical integration and horizontal coordination and controls the entire service
composition and engineering applications.

• DT application: This is a core element in this architectural framework. The operation
module creates, synchronizes, and utilizes DT with DT engine. This application
provides simulation-related technical functionalities and visualization according to
the request from the service composition.

• Policy generation module: This element learns and deploys the RL policy network
using the virtual event logs from the DT application. The RL policy network is learned
to maximize reward r and is deployed in the format of a systematic logic library (SLL).
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• APS application: This application returns the production plan and schedule alternative
that needs validation and objective values. The APS algorithm is necessary to establish
alternative and simulation-based optimization, metaheuristics, and heuristics can be
an option for the core functional engine.

• Device control application: This element extracts the path, kinematics, and estimation
related to the robotics configuration. Based on the locations of the MHRs, the required
extraction is operated to use forward and backward functions in the simulation.
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4.3. Policy Network for Production Control in Micro Smart Factory

The policy network is the result of the proposed method. As described above, the RL
policy network πR(a|s) is learned based on the virtual event trace, which is a pair of states
s and action a. The initial virtual event trace is reported by the DT that reflects the current
policy function πC(a|s). In this study, the RL technique for learning is selected for the
dueling network technique, which was proposed by Wang et al. [50]. The dueling network
technique is an advanced Q-learning technique and has the advantage that the policy
network and value network are in the same network. Additionally, the Q-learning-based
techniques can be controlled in discrete time and coordinated with discrete event simula-
tion [51–53]. Moreover, the dueling networks separately learn V(s), which is determined
only by the state, and the advantage A(s, a), which is determined according to actions, to
derive Q(s, a). This approach has the advantage of being able to divide the information
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of the Q-function into the portion determined only by the state, and that is determined
according to actions. Furthermore, in contrast to a deep Q-network (DQN), it learns the
combined weights that lead to V(s) at every step regardless of action. It also requires fewer
episodes to complete learning compared to a DQN, which results in better performance as
the number of action types increases [50,52,54,55].

With the dueling network exhibiting the abovementioned advantages that make it
suitable for application to this method, the Q-function of the RL policy network is presented
in Equation (1). In addition, the RL policy network πR(at|st) selects the action type with
the highest Q-function among the actions in step t when the decision of the tower handler
in MSF is required. This policy network is designed as a single agent, and it is not necessary
to consider coordination between multi-agents.

Q(s, at) = A(s, at) + V(s) (1)

πR(at|st) = MAX(Q(st, at)) (∀i, ∀j, ∀t) (2)

As described in Equation (3), the action at of each neuron indicates the priority pm,t for
what-next, which is for the selection of the part in buffer. Additionally, the configuration of
MSF is enabled to restructure, and the number of selectable resource types can be changed.
Therefore, because the capacity of all resource types is equal to 1 and the time of material
handling operation is not significant, the number of resource instances can be projected
to the machine capacity of each resource type uk. Until the entire resource instances are
occupied or all feasible actions are finished, the material handling operation from space m
is performed according to the priority pm,t.{

or
k,t ← or

k,t + xk,t

∣∣∣(or
k,t ≤ uk

)
∨ (yk,m,t > 0)

} { xk,t = 1 pm,t = MAXk(pm,t)
xk,t = 0 pm,,t 6= MAXk(pm,t)

(at 3 pm,t, ∀k, ∀m)
(3)

To meet the requirements of the MSF, the state is selected by considering production
and delivery. State s includes the remaining production volume vr

m,t, remaining due date
di,t, the number of WIPs in each resource type or

k,t, the number of WIPs in buffer ob
t , machine

availability yk,t that includes machine failure, processing time tp
i,j,k, and setup time ts

i,j,k. As
illustrated in Equation (4), the information indexed by part i and process j is pre-processed
to information with indexing space m. Thus, the state s is projected to two dimensions for
the efficient representation.

st 3 vr
m,t, dm,t, or

k,t, ob
t , yk,t, tp

k,m, ts
k,m (∀k, ∀m) (4)

The reward function is designed to minimize the makespan Cmax,n and standard
deviation of cycle time σ(ci,n) for enabling the affordable delivery, and to minimize the
number of deadlock case kn for preventing a deadlock. Minimizing the standard deviation
of cycle time σ(ci,n) enables the inspection and packaging process with a constant workload.
As shown in Equation (5), the variable rt

n for deriving the reward variable rn is calculated
based on the three KPIs with normalization. All rt

n of each episode is recalculated when
the episode is finished.

rt
n
= [{Cmax,n −MINn(Cmax,n)}/{MAXn(Cmax,n)−MINn(Cmax,n)}
+{σ(ci,n)−MINn(σ(ci,n))}/[I × {MAXn(σ(ci,n))−MINn(σ(ci,n))}]
+{kn −MINn(kn)}/{MAXn(kn)−MINn(kn)}]

(5)

rn = 1− rt
n/MAXn

(
rt

n
)
·(∀n) (6)
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The ending rule for terminating the learning process is designed to confirm the
appropriation of learning. The episodes for learning this policy network need to be
repeated until the ending value en meets the ending limit el .{

en ← xn(en + 1)
∣∣∣en ≤ el

} { xn = 1 rn/MAXn(rn) ≥ ew

xn = 0 rn/MAXn(rn) < ew

(at 3 pm,t, ∀k, ∀m)
(7)

4.4. Service Composition Procedures to Enable Policy Network

The service composition is a procedure of contacting and receiving the results of
heterogeneous components in CPPS. As all components in this CPPS inherit an AAS model
with the SOA principle, all cases of interaction between the components receive and return
information objects. To support this service composition for learning policy networks
between heterogeneous components in CPPS, the virtual event is logged, and results from
the DT application are provided to the policy network construction module. Otherwise,
the learned policy network after the episode ends, which has to reflect in DT applications.

Figure 4 illustrates the service composition for resilient production control in MSF.
This service composition is referenced from the horizontal coordination method for RL-
based production control in a re-entrant job shop, which was proposed by Park et al. [19].
Additionally, this service composition procedure is implemented when the production
plan and schedule are determined in CPPS. Based on the virtual representation object, the
DT application creates the DT with the current policy function πC(a|s) to reflect systematic
behavior in MSF. After operation procedures of the DT application, the reported states s,
action a, and reward r are delivered to the policy network construction module. Based
on the virtual event logs, the module initiates and learns RL policy network πR(a|s), and
sends it to the DT application.

The SLL is the point for contacting from the policy network construction module
of the DT application. Because the SLL is used to create the procedure in the operation
module, the generated RL policy network πR(a|s) is reflected when the DT is created in the
DT engine. The virtual event logs, which include information for describing action a, state
s, and reward r, are delivered as an information object to the policy network construction
module. After the ending rule is satisfied, the automated execution technical functionality is
requested to derive the OLP codes for controlling MHRs.

This implementation and ending of service composition procedures are identical in
the type and instance phases of the instance stage of the work center-level value stream.
In the type phase, the production planning and scheduling, and automated execution technical
functionalities are the start and end points of this service composition. In the instance
phase, the dynamic response technical functionality requires this service composition after
the production planning and scheduling is determined, and the automated execution technical
functionality is executed after this service composition is finished.

The learning process of the RL policy network πR(a|s) is the activity for action selec-
tion in the type phase and adjustment in the instance phase. This service composition takes
the role of action selection with the established production plan and schedule in the type
phase. In contrast, this service composition also takes the role of adjustment with dynamic
response in the instance phase. In addition, the simulation for evaluating and supporting the
RL policy network πR(a|s), which is executed in the DT application, supports the action
selection and adjustment. Moreover, the aforementioned evaluation is the core activity for
KPI measurement.
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5. Industrial Case Study
5.1. Design of Experiments

As shown in Figure 2, the target work center of this experiment was selected as
Daejeon-si, Republic of Korea. To supplement the shortage of dispatching in the CPPS,
the proposed method is applied to the MSF. To validate the DT and RL-based resilient
production control method in MSF, an experiment needs to be designed. The objective
values are the makespan Cmax,n, lead time li,n, and the number of deadlock cases kn. These
objective values need to be minimized by the proposed method. As described above, the
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makespan Cmax,n and lead time li,n are selected to enable affordable delivery of personalized
products. The number of deadlock cases kn is chosen to achieve efficient production control.

The DT and RL-based resilient production control method is proposed to overcome the
limitation of MSF, which is an MMS for personalized production. In addition, the proposed
method is included in the technical functionalities of CPPS. Therefore, the proposed method
needs to be validated from two perspectives. The proposed method needs to improve
the efficiency when the configuration of the MSF is changed. This restructuring is the
characteristic of MMS and the solution for the cost hurdle.

In the experiment, it is also necessary to demonstrate resilience perspective. The
proposed method is realized with the technical functionalities production planning and
scheduling, and dynamic response. For a clear comparison, the results of these technical
functionalities are fixed to each case. Additionally, the experiment is divided into two
scenarios according to the work center-level value stream. In contrast, the experiment for
the reactive production plan and schedule is prepared to validate the proposed method in
the instance phase of the instance stage in the work center-level value stream.

To implement the proposed method from the perspective of the restructuring, the
cases in which each machine type is added to the MSF are defined, and the performance
indicators are compared. To demonstrate resilience in the proposed method, an experiment
for a given production plan and schedule is conducted in the type phase of the instance
stage in the work center-level value stream. In the instance phase of the instance stage
in the work center-level value stream, it is assumed that an event requiring the reaction
occurs 48 h after beginning the production operation. When an event occurs, the reactive
plan and schedule are executed to solve the event.

5.2. Benchmark Sample and Implementation Information

Table 1 describes the product information for the experiments from two perspectives.
The DT and RL-based resilient production control method, proposed in this paper, uses
benchmark samples in the experiment. Additionally, these samples are also used in
production planning and scheduling, and dynamic response technical functionalities. The parts
that have ‘A0’ in Part ID are the base modules of assembly. The process plan must be
executed to produce the products.

Table 1. Benchmark samples for experiment (time unit: hour).

Product
ID

Target
Volume Due Date Part ID Process Plan

P0 30 40
P0A0 Building Polishing Fumigation Assy. 1 Inspection Packaging
P0A1 Building Polishing Fumigation Assy. 1

P1 40 30
P1A0 Building Fumigation Assy. 2 Fumigation Inspection Packaging
P1A1 Building Fumigation Assy. 2

P2 25 20
P2A0 Building Assy. 1 Inspection Packaging
P2A1 Building Assy. 1

P3 40 40
P3A0 Building Fumigation Assy. 1 Assy. 2 Inspection Packaging
P3A1 Building Polishing Fumigation Assy. 1
P3A2 Building Polishing Assy. 2

P4 30 40 P4A0 Building Polishing Fumigation Inspection Packaging

P5 40 50
P5A0 Building Assy. 2 Inspection Packaging
P5A1 Building Polishing Assy. 2

P6 30 30 P6A0 Building Polishing Fumigation Inspection Packaging

P7 40 50
P7A0 Building Assy. 1 Inspection Packaging
P7A1 Building Fumigation Assy. 1

P8 40 40 P8A0 Building Polishing Fumigation Inspection Packaging

P9 40 50
P9A0 Building Polishing Assy. 1 Inspection Packaging
P9A1 Building Fumigation Assy. 1
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Table 2 represents the implementation information for an industrial case study. All
components coordinate with each other based on the windows communication foundation
(WCF) framework. This framework enables a simple object access protocol (SOAP) that
satisfies the SOA principle. The extensible markup language (XML) format is applied to
the SOAP messages, and the VREDI object for the creation and synchronization of DT. In
addition, the DT application uses Plant Simulation as its DT engine to support discrete
event simulation for extracting virtual event logs. The SLL for reflecting the RL policy
network is formatted in XML. The dueling network technique in PyTorch library in Python
is applied in the policy network construction module.

Table 2. Implementation information for industrial case study.

Component Item Content

Component manager

Development environment Visual studio 2019
Programming language C#

Programming model WCF
Programming framework .NET framework 4.7.1

Service hosts

Development environment Visual studio 2019
Programming language C#

Programming model WCF
Programming framework .NET framework 4.7.1

DT application

Development environment Visual studio 2019
Programming language C#

Programming framework .NET framework 4.7.1
Virtual representation VREDI

SLL XML
Core functional engine Plant Simulation 15

Policy network construction
module

Development environment Visual studio 2019
Programming language Python 3.7
Core functional engine Dueling network (PyTorch)

The control group for comparison is the case with the heuristic rule in the tower
handler of the MSF. This heuristic rule is the current rule for production operations in MSF.
As described in Equation (8), the workload wk,m, t is used as the priority value pk,m,t. The
large workload wk,m, t is prior to being produced to enable efficient production operation.
It has a concept similar to the longest processing time (LPT), which is the state-of-the-art
heuristics rule.

pk,m,t ← wk,m, t = tp
k,m

(
vp

k,m,t + vr
k,m,t

)
/mk (8)

5.3. Experimental Result

The experiments were performed based on the DT application and policy network
construction module. The first experiment results for the restructuring of the MMS per-
spective are summarized in Table 3. Each resource type is added to the empty space in
the MSF, and the performance indicators are compared between the proposed method
and existing heuristics rule, which is described in Equation (8). The makespan Cmax is
decreased in all cases when the number of machine instances is added. In contrast, the
standard deviation of cycle time σ(ci) and the number of deadlock case k are decreased
in some cases. Comparing the proposed method with existing heuristics, there is an im-
provement of 2.585% in makespan Cmax,n, 6.456% in standard deviation of cycle time σ(ci),
and 13.953% in the number of deadlock case k in the proposed method. This experiment
shows that the proposed method can provide an efficient and robust solution in the case of
adding the resource instance.
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Table 3. Result of the experiment for the restructure of MMS perspective (unit: hour).

Proposed Method Existing Heuristics

Type Cmax σ(ci) k Cmax σ(ci) k

Current 37.152 0.198 6 38.075 0.211 7
Polishing 34.521 0.187 8 35.877 0.200 9

Fumigation 33.152 0.176 8 33.962 0.188 13
Assy. No. 1 35.645 0.210 9 36.423 0.226 8
Assy. No. 2 36.329 0.215 6 37.154 0.229 6

Average 35.360 0.985 7.4 36.298 0.211 8.6

The results of the second experiment for supporting resilient production control in the
type phase of the instance stage of the work center-level value stream are summarized in
Table 4. Each case has the same production plan and schedule for comparison according to
the benchmark samples. As summarized in Table 4, the makespan Cmax and the standard
deviation of cycle time σ(ci) are decreased in all cases when the production plan and
schedule are executed. However, the number of deadlock cases k of has improved in four
cases. The proposed method shows an improvement of 3.015% in makespan Cmax, 8.325%
in the standard deviation of cycle time σ(ci), and 9.677% in the number of deadlock cases
k. Thus, the proposed method has shown improvement when the production planning
and scheduling technical functionality is determined, and this resilient production control
method is executed in the CPPS.

Table 4. Result of the experiment for resilience in type phase (unit: hour).

Proposed Method Existing Heuristics

Case No. Cmax σ(ci) k Cmax σ(ci) k

1 37.152 0.198 6 38.075 0.211 7
2 36.613 0.200 6 37.810 0.215 6
3 36.492 0.187 5 37.809 0.193 6
4 37.139 0.196 7 38.428 0.218 5
5 37.172 0.199 4 38.184 0.231 7

Average 36.914 0.196 5.6 38.061 0.214 6.2

The last experiment results for supporting resilient production control in the instance
phase of the instance stage of the work center-level value stream are described in Table 5.
Half of the makespan Cmax of each case was determined to the time point of the event
that decreased production capacity in fumigation. The fumigation module is a bottleneck
process for the production operation with the bottleneck process. This event was assumed
to be solved in three hours. Moreover, the case numbers are matched to the case number in
Table 4. All three performance indicators of the proposed method are better than those of
the existing heuristics rule. The proposed method is improved by 4.617% of the makespan
Cmax, 17.468% of the standard deviation of cycle time σ(ci), and 23.529% of the number
of deadlock case k. These results show the highest improvement because the proposed
method with the synchronization of dynamic situation provides an efficient solution.

5.4. Discussion

The three experiments illustrate the improved performance of the proposed method
over the existing heuristics rule described in Equation (7), which is similar in concept to
the LPT rule—the state-of-the-art heuristics rule for dispatching. Thus, the experiment
can be projected as an experiment between the proposed method and the state-of-the-art
heuristics rule that was modified for appropriate application in MSF. In addition, the
three experiments verify and validate the three aspects discussed below. The verification
is performed based on Plant Simulation, which is the selected DT engine in this study.
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Additionally, the three validation aspects are considered from the perspectives of when
the configuration of MSF is restructured; when the type phase of work center-level value
stream requires resilience for preventing the degradation of performance indicators; and
when the instance phase of work center-level value stream also requires the resilience.

Table 5. Result of the experiment for resilience in instance phase (unit: hour).

Proposed Method Existing Heuristics

Case No. Cmax σ(ci) k Cmax σ(ci) k

1 42.534 0.455 10 44.743 0.561 8
2 42.326 0.436 8 43.956 0.549 12
3 41.892 0.426 5 44.113 0.488 10
4 43.074 0.448 9 43.278 0.524 9
5 41.846 0.431 7 45.829 0.539 12

Average 42.334 0.439 7.8 44.384 0.532 10.2

In most cases of each experiment and as shown in Table 6, the makespan Cmax shows
an evident improvement because all cases show an improvement in this indicator. To enable
the affordable delivery of personalized products to end-customers, the improvement of
the lead time perspective supports this aspect. In addition, the proposed method also
shows a relatively constant cycle time to balance the workload of inspection and packaging
processes. The last processes that have the appointed capacity can enhance the process
and systematic efficiency by balancing the workload. Moreover, the robustness of the
proposed method is demonstrated when the resource instance is added as a characteristic
of MMS, and the dynamic response is performed to prevent performance hurdles because of
the events.

Table 6. Result of application of the proposed method (unit: %).

Improvement Rate

Experiment Cmax σ(ci) k

Restructure of MMS 2.585 6.456 13.953
Resilience in type phase 3.015 8.325 9.677

Resilience in instance phase 4.617 17.468 23.529

6. Conclusions

To improve the CPPS for enhancing the process and systematic efficiency of MSF, the
DT and RL-based resilient production control methods are proposed in this paper. This
method enables learning of the RL policy network that replaces the dispatching rule in the
post-processing station of MSF. To design an efficient method, the technical requirements
are defined. Because of the restructuring characteristic of MMS, the robustness needs to be
considered. Additionally, the MTO production environment of personalized production
increases the complexity of MSF. Moreover, the technical functionalities of CPPS in MSF
must be considered in the design to achieve resilience. Furthermore, dynamic information,
such as progress production volume, WIP, machine status, and changed situation, needs to
be synchronized in the DT.

With the technical functionalities in CPPS, this method is implemented based on the
coordination between the DT application and policy network construction module. The DT
application creates, synchronizes, and utilizes the DT for providing DT simulation as its
technical functionality. The DT simulation provides the virtual event logs for supporting
the learning process of the RL policy network. In contrast, the proposed policy network
construction module learns the RL policy network using the dueling network technique.
Based on the action, state, and reward in the virtual event logs, the RL policy network
is learned and applied. The creation procedure of DT application reflects the RL policy
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network repeatedly, and the utilization procedure of the DT application evaluates the RL
policy network.

The proposed method has several aspects of originality, contribution, and findings.
This method is an early case of coordination between DT and RL. Using the advanced
characteristics of DT, the RL-based production control, which uses the traditional DES, can
enhance its robustness and efficiency. The advanced characteristics are vertical integration
and horizontal coordination and exhibit the advantage of better representing the environ-
ment from a learning perspective. In addition, this study is also an early case of applying
priority concepts to decide what-next/where-next with DT and RL. Moreover, the event
definition with the CPPS architectural framework can be one of the contributions of the
proposed method. The abovementioned aspects were verified and validated in the three
experiments. Furthermore, the proposed framework and concept can be extended to an
efficient solution in various manufacturing domains because the priority rule concept is
frequently applied.

As a further study, the event definition in the concept of end-to-end integration needs
to be enhanced. This enhancement needs to consider the business and manufacturing
process perspectives in the entire supply chain of personalized production. Because
personalized production has an MTO production environment and an agent supply chain
system, the decision complexity is increased.
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Abbreviations

Indices
i Index denoting a part requiring the production process (i = 1 . . . I)
j Index denoting a process operation in the process plan (j = 1 . . . J)
k Index denoting a resource type (k = 1 . . . K)
m Index denoting a space for a part in buffer (m = 1 . . . M)
n Index denoting an episode (n = 1 . . . N)
t Index denoting a step in a matrix of an episode trace (t = 1 . . . T).
Hyper-parameters
δ Discount factor of policy network
Variables
an,t Action in step t of episode n
Cmax, n Makespan value of episode n
ci,n Cycle time of part i of episode n
di,n,t Remained due date of part i in step t of episode n
dm,n,t Remained due date of part in space m in step t of episode
en Ending value of episode n
el Selected ending limit
ew Selected ending weight
kn Number of deadlock cases of episode n
mk Number of resource instances instantiated by resource type k
ob

n,t Number of works in process (WIPs) in the buffer in step t of episode n
or

k,n,t Number of WIPs in resource type k in step t of episode n
pm,n,t Priority value from space m in step t of episode n
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ri.j,n Reward variable of process operation j of part i of episode n
sn,t State in step t of episode n
tp
k,m Processing time of process operation of part in space m in machine type k

ts
k,m Setup time of process operation of part in space m in machine type k

uk Capacity of resource type k
vp

k,m,n,t Proceeded production volume of part in space m to resource type k in step t of
episode n

vr
i,j,n,t Remained production volume of process operation j of part i in step t of episode n

vr
k,m,n,t Remained production volume of part in space m to resource type k in step t of

episode n
wk,m,n, t Workload of part in space m to resource type k in step t of episode n
xk,n,t Binary variable for indicating the material handling operation to resource type

k in step t of episode n
xn Binary variable for calculating the ending value of episode n
yk,n,t Availability of resource type k in step t of episode n
yk,m,n,t Feasibility from space m to resource type k in step t of episode n
Functions
A(s, a) Advantage functions of states s and action a
Q(s, a) Q-function of states s and action a
V(s) Value function of state s
πC(a|s) Current policy function in a physical asset.
πR(a|s) RL policy network
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