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Abstract: A worldwide increase in the number of vehicles on the road has led to an increase in the
frequency of serious traffic accidents, causing loss of life and property. Autonomous vehicles could
be part of the solution, but their safe operation is dependent on the onboard LiDAR (light detection
and ranging) systems used for the detection of the environment outside the vehicle. Unfortunately,
problems with the application of LiDAR in autonomous vehicles remain, for example, the weakening
of the echo detection capability in adverse weather conditions. The signal is also affected, even
drowned out, by sensory noise outside the vehicles, and the problem can become so severe that the
autonomous vehicle cannot move. Clearly, the accuracy of the stereo images sensed by the LiDAR
must be improved. In this study, we developed a method to improve the acquisition of LiDAR data
in adverse weather by using a combination of a Kalman filter and nearby point cloud denoising. The
overall LiDAR framework was tested in experiments in a space 2 m in length and width and 0.6 m
high. Normal weather and three kinds of adverse weather conditions (rain, thick smoke, and rain
and thick smoke) were simulated. The results show that this system can be used to recover normal
weather data from data measured by LiDAR even in adverse weather conditions. The results showed
an effective improvement of 10% to 30% in the LiDAR stereo images. This method can be developed
and widely applied in the future.

Keywords: autopilot; LiDAR of autonomous vehicles; Kalman filter

1. Introduction

Traffic accidents cause approximately 1.25 million deaths and hundreds of billions of
dollars in economic loss worldwide each year. According to the World Health Organization,
it is predicted that this will become the seventh leading cause of death in the world by
2030. The most important cause of traffic accidents is driver error. The limitations of
human capabilities make it impossible for drivers to quickly make reasonable decisions
in the face of emergencies. In addition, driver fatigue is also an important cause. With
the development of artificial intelligence, along with improvements in computer and chip
technology, it is possible to design autonomous vehicles, which could become one of the
most important ways to reduce traffic accidents. Autonomous vehicles have stimulated a
great deal of research interest [1–3].

Autonomous vehicles use LiDAR (light detection and ranging) systems to sense the
environmental conditions outside the vehicle, but there are limitations to its use. The
LiDAR imaging system can be affected by many factors, including the noise emitted and
received by the LiDAR itself, noise caused by the movement of the vehicle, and background
noise [4–7], which includes signals that are radiated or reflected to the receiving end by
starlight, the earth, the sun, the atmosphere, clouds, and other sources of radiation. Adverse
weather conditions, such as heavy rain, snow, and thick smoke, also produce background
noise, which greatly reduce the detection ability of the LiDAR echoes. This study proposes
combining a Kalman filter and neighboring point cloud segmentation algorithm to improve
the acquisition of LiDAR data in inclement weather.
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Kutila et al. [8,9] proposed a plan for the development of LiDAR in 2016, comparing
two different LiDARs (Ibeo Lux and Velodyne PUCK) in 2018. They evaluated the per-
formance of the LiDAR in a fog chamber under stable foggy conditions. They found the
performance to be affected, leading to a reduction in the visibility range under adverse
weather conditions. Jiannan Chen et al. [10] proposed a 2D LiDAR algorithm for the
detection and tracking of pedestrians. They studied pedestrian tracking and proposed
a multi-person tracking algorithm based on the incorporation of a Kalman filter. Robin
Heinzler et al. [11,12] proposed using a convolutional neural network (CNN)-based LiDAR
system to filter out point cloud noise in bad weather. They observed that in heavy rain
or thick smoke, water droplets may be misinterpreted as an object in front of the vehicle,
causing the vehicle to stop. They focused on a 2D input layer method that usually uses a
birds-eye view (BEV) or image projection view. The PointPillars introduced in this method
are based on the use of a feature extraction network to generate a pseudo image from
the point cloud, which is then used as input for the backbone of the CNN. This method
outperformed the KITTI’s dataset object detection in terms of detection performance and
reasoning time. They proposed a 2D method inspired by LiLaNet’s CNN architecture.
Wallace et al. [13] introduced and discussed the incorporation of full-waveform pixel and
image acquisition and processing that would allow the LiDAR to penetrate the obscuring
medium and reconstruct a 3D map of the surface. Jokela et al. [14] tested and verified
automotive point cloud sensors under severe weather conditions. They documented both
indoor and outdoor conditions and tested how fog and snow would affect the performance
of the LiDAR. They found the accuracy to also be reduced by exposure to environmental
noise [15]. There are numerous examples of the impact of adverse weather conditions on
LiDAR worldwide [16]. Consequently, there has been much research on how to improve
LiDAR data [17,18].

Calibrated weather sensors have been used to measure the following relevant parame-
ters: (1) transmission measurement of visibility in the range of 5 to 1000 m; (2) particle mea-
surement of the particle size distribution of thick smoke from 0.4 to 40 microns; (3) rainfall
intensity in the range of 0.001 to 1200 mm/h, as measured by a rain gauge and spectrometer.
There have also been some studies on the efficacy of LiDARs of different wavelengths
under different smoke densities. The same behavior is demonstrated at wavelengths from
350 to 1000 nm, regardless of the density or type of smoke, however, above 1000 nm,
differences may appear. Thick smoke, especially convection fog, has an approximately
10% effect in the near-infrared range (1000–2400 nm). The wavelength is higher than the
visible wavelength (400–800 nm) [19], so it is found that severe weather has some degree of
influence on LiDAR [20].

In this current study, we first use LiDAR to make measurements under normal weather
conditions and then simulate adverse weather conditions for rain, heavy smoke, and rain
and heavy smoke. In this way, the difference in the LiDAR response for the different types
of weather can be understood. An algorithm is developed to improve the signals received
during adverse weather. The experiments show that the LiDAR results can be improved
to be comparable to the signals received during normal weather. The results verify the
effectiveness of the algorithm for making improvements in LiDAR systems for autonomous
vehicles.

2. Research Methodology

The Kalman filter was first described in 1960 in a doctoral dissertation entitled New
Approach to Linear Filtering and Prediction Problems published by Hungarian émigré
Rudolf E. Kálmán [21]. Kalman filters are widely used for orbit calculation, target tracking,
and navigation due to their real-time and anti-interference advantages as well as rapid
action and high efficiency. In addition, they are also applied in the fields of integrated
navigation and dynamic positioning, sensor data fusion, microeconomics, and so forth,
especially for digital image processing and the currently hot research fields of pattern
recognition, image segmentation, and image edge detection [22]. The Kalman filter is
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basically a recursive algorithm, with each recursion containing two steps. First, an esti-
mated value is calculated, and then a weighted summation of the estimated value and
the measured value is obtained to get the best resultant state. The process comprises five
steps with five corresponding formulas: (1) predicts the prior state x′k using the corrected
estimate x̂k−1 and using the prior state x̂k−1 predicted at time k-1 to calculate the estimated
value x′k at time k; (2) uses the noise Pk−1 of the resulting state at time k-1 to calculate the
estimated noise Ṕk at time k; (3) uses the estimated value of the noise Ṕk at time k and the
measured value of noise r at time k to calculate the Kalman gain kk at time k; x̂k is the
posterior estimate of the state kk after correction of the prior estimate x′k with the current
measurement zk obtained using (4); Pk is the error covariance of the estimated value x̂k,
which is computed by correcting the previous estimated value P′k with (5), where H is the
parameter of the measurement system Q and R the process and the measurement noise
covariance. The Kalman filter model assumes that the true state at time k is evolved from
the state at time (k − 1), which conforms to the following:

x′k = Ax̂k−1 + Buk−1 (1)

P′k = APk−1 AT + Q (2)

kk = P′k HT
(

HP′k HT + R
)−1

(3)

x̂k = x′k + kk
(
zk − Hx′k

)
(4)

Pk = (1− kk H) P′k. (5)

Here, A and B are system parameters. Initially, x0 is a random vector, with an
average value u0 = E[x0] and covariance P0 = E

[
(x0 − u0)(x0 − u0)

T
]
. Here, wk and vk

are the process noise and observation noise, both of which are assumed to be zero-mean
multivariate Gaussian noise; uk is the control vector. The function f can be used to estimate
the previously predicted value, and the function h can be used to calculate the measured
value from the predicted value. The covariances are, respectively, Qk and Rk expressed as
follows: E

[
wkwT

k
]
= Qk and E

[
vkvT

k
]
= Rk.

The nearest neighbor segmentation algorithm is described below. This filtering method
uses statistical filtering and radius filtering to remove noise. Statistical filtering refers to
statistical analysis of the distance between the query point and the neighboring point cloud,
and removes some noise that is not within the set range [23]. The n-th point in the LiDAR
point cloud model is marked qn, n = 1, 2, 3, . . . , S. Assuming that the distance from qn to
any point is di, then the average distance from qn to all its k neighboring points Davr−n is
represented by the Gaussian distribution (the mean is µ, the standard deviation is σ) as
in [24]:

Davr−n =
∑k

i=1 di

k
. (6)

Set the standard range Spa−n to determine whether the point cloud in the model is
noise. The calculation is as follows:

Spa−n = µ± g·σ, g = 1, 2, . . . (7)

Select the corresponding point according to the average distance Davr−n and the
standard range Spa−n. That is, when the average distance qn corresponding to the point
Davr−n is greater than the standard range Spa−n, the point is deleted; otherwise, the point
is retained [24]. Radius filtering is used to further eliminate noise. Radius filtering refers to
the point cloud model stipulating that each data point must have at least a certain number
of nearest neighbors within a specified range. Assuming that in the point cloud model,
data point qn is the center, then the number of nearest neighbors within a sphere whose
radius is r is m, and the minimum number of nearest neighbors is set to M. According to m
and M, judge whether to keep the corresponding point qn. When m is greater than M, keep



Appl. Sci. 2021, 11, 3018 4 of 16

the point; otherwise, remove the point [21]. The description is shown in Figure 1. When
the radius (indicated by the green circle) specifies that there are at least three neighbors,
only point b will be deleted. If it is specified that there must be at least five neighbors, both
point a and point b will be deleted.
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3. Laboratory Equipment

The Velodyne LiDAR PUCK VLP-16 used in this study, as shown in Figure 2, allows
full-time data transmission and reception, 360-degree full coverage, 3D distance measure-
ment, and calibration reflection measurement. The farthest effective range of the VLP-16
sensor is 100 m, and the nearest effective range is 30 cm. It has low power consumption,
is light weight, and has a small footprint and dual return functions. The structure of the
LiDAR includes the LiDAR host, central processing system, power supply, and computer,
as shown in Figure 3. Figure 4 illustrates the process of LiDAR signal transmission. An
EFG-1400 wireless remote-control fog machine was used to simulate thick smoke; see
Figure 4. This model has a remote-control distance of 8–10 m. The power is 1500 cu ft/min.
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4. Algorithm Simulation Verification

Two algorithms were used in this study: the neighbor point cloud segmentation
algorithm and the Kalman filter. The MATLAB software was used to combine calculations
for the two algorithms. The filtering algorithms were written for the following:

(1) Simulation space;
(2) Simulate the interference of rain or snow, which will cause noise in the space;
(3) Neighboring point cloud segmentation algorithm;
(4) Simulate normal weather LiDAR measurement;
(5) LiDAR measurement disturbed by adverse weather;
(6) Kalman filter reconstructs the LiDAR measurement results disturbed by adverse weather.

In the calculations, the size of the space was first established, which was set to 800 cm
on the x-axis and the y-axis; the height of the z-axis is 50 cm, as shown in Figure 5a.
Some point cloud noise was added to this space to test whether the two algorithms are
appropriate. Nearest neighbor segmentation was tested first, then some point clouds were
added for noise processing, as shown in Figure 5b. Using radius filter for filtering, we set
the radius to be within 2 cm and the number of neighboring point clouds to be at least
10. Anything less than 10 would be filtered out as noise. The filtered result is shown in
Figure 5c.

Figure 6a shows the simulated LiDAR signal. First, the LiDAR signal was simulated
using the software. Gaussian white noise was simulated. The mean parameter was set to
0, and the parameter for the random number of standard deviations was set to 0.03. Real
LiDAR will also produce a little error during measurement, but the value of the error will
be within a certain range. Figure 6b shows the LiDAR signal with noise. In future, we will
add Gaussian white noise for testing. The mean parameter was set to 0, and the random
number of standard deviations was set to 0.1. Figure 6c shows the simulation results after
Kalman filtering. The selection of Q and R is related to the statistical characteristics of the
measurement and system noise. The current theoretical approach is to make an estimation
based on experimental data. The parameters of the Kalman filter were set to matrix [1,0,0,0;
0,1,0,0], Q was set to a 4 × 4 matrix, and R was set to [2,0; 0,2]. The five steps comprising
Equations (1)–(5) of the Kalman filter process were calculated to restore the original data.
The input was noise. We first calculated the estimated value and the estimated value of the
noise, then the Kalman gain. The original data were restored after the Kalman gain was
used to calculate the best result.
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5. Experimental Setting

In the experiments, a space 2 m long, 2 m wide, and 0.6 m high was constructed. The
LiDAR was placed in the middle, 30 cm above the ground, as shown in Figure 7. The space
was surrounded by water pipes to simulate the rain, and a fog-making machine was used
to simulate the heavy smoke. The top of the space was sealed with plastic film, as shown
in Figure 8. Three types of weather conditions were simulated: normal weather, heavy
smoke, and rainy weather with heavy smoke. The response under the different weather
patterns was studied, and the algorithms applied to improve the signal. Under normal
conditions, the LiDAR signal was good and undisturbed, as shown in Figure 9. Figure 10
shows a flowchart of the experimental procedure.
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When simulating rainy weather, the size of the raindrops will also affect the LiDAR
signal. If the raindrops are too small, the effect on the signal will not be obvious. Therefore,
the simulated raindrops were made larger to achieve the required level of interference, as
in Figure 11. In the second condition, dense smoke was simulated using the fog-making
device, as in Figure 12. It was found that dense smoke has a considerable impact on LiDAR
measurement. The denser the smoke, the more the light is dispersed to the surrounding
environment. The third type of weather condition was both rain and heavy smoke, as in
Figure 13. The measurements show that the LiDAR was more affected under the influence
of two types of weather at the same time rather than when exposed to any single weather
condition. The LiDAR’s measurement capability was significantly reduced. Heavy smoke
interfered so much with the signal that there was no signal in the four corners of the space.
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The root mean square error (RMSE) was calculated to find the error value for the
operation as follows:

RMSE =

√
∑n

t=1(ŷt − yt)

n
, (8)

where ŷt represents the data under normal weather conditions and yt is the data under
the influence of severe weather conditions, or the data after improvement. The larger the
value of the RMES, the greater the deviation from the original data; the smaller the value
obtained, the smaller the deviation from the original data. Comparison shows that the
error values of the x-axis and the y-axis are very small. Only the error value of the z-axis is
relatively large, so only the x-axis and the y-axis were compared.

6. Research Results

The above experimental test data (LiDAR point cloud data) were input into the
software for calculation. The results under normal weather conditions are displayed
in Figure 14. The results for rain are shown in Figure 15. The neighbor point cloud
segmentation algorithm described in this research filtered out some noise, as shown in
Figure 16. Finally, after passing through the Kalman filter, excess noise was filtered out, as
shown in Figure 17. The resultant image obtained after using the algorithm is very similar
to that obtained under normal weather conditions.
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Next, the resultant improvement under heavy smoke conditions is explained. Figure 14
shows the 3D view and top view obtained in the normal situation. The influence of dense
smoke can be seen on the image displayed in Figure 18. The lower corner is seriously
affected by the interference of dense smoke. The improvement obtained by using the first
nearest neighbor segmentation algorithm is shown in Figure 19. The result of improving
the filtering model through the Kalman filter is shown in Figure 20. Although the process
described in this study cannot restore the signal to that of normal weather, there was a
significant improvement, and a lot of noise could be filtered out.

The third type of weather examined is the influence of both rain and heavy smoke, as
shown in Figure 21. The results after processing with the nearest neighbor segmentation
algorithm are shown in Figure 22. Although it was not possible to filter out all of the noise,
it was possible to filter out most of it. Further improvement was obtained after Kalman
filtering, as shown in Figure 23. The improvement is obvious, resulting in restoration of
the four corners of the space. A lot of noise has been filtered out.
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The point cloud model data discussed in this research include an environmental frame
with an x-axis, y-axis, and z-axis. The point cloud is located within the environmental frame.
In the process of nearest neighbor point cloud segmentation within the environmental
frame, a number of sampling circles were used to sample the point cloud. Two adjacent
sampling circles overlap locally. When the number of point clouds obtained within the
sampling circle was greater than a critical judgment value, the sampling circle was retained.
The sampling circle has a radius of 2 cm. The critical judgment value is 10. When the
number of point clouds in the sampling circle was less than the critical judgment value, the
point cloud was filtered out as noise. In addition, Kalman filtering was used to improve
the spatial model data to filter and output low-noise environment model data. As a result,
the interference of environmental noise on LiDAR sensing was reduced. Kalman filtering
was especially helpful to filter out the noise caused by dense smoke.

In order to understand the improvement demonstrated in the experiments, error
analysis was conducted. For each weather condition and the improved results, the same
number of point clouds were used for comparison, as shown in Table 1. The results
show that the nearest neighbor segmentation algorithm and Kalman filter have lower
RMES values.
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Table 1. Comparison of RMSE between simulated normal weather and adverse weather before and
after improvement (unit: meters).

Comparison of
Normal Weather and

Adverse Weather.

Adverse Weather
and Used

Algorithms
x-axis y-axis

Rainy weather
Rain 0.0164 0.0134

Nearest neighbor
segmentation

algorithm
0.0132 0.0103

Kalman filter 0.0109 0.0087

Smoky weather
Smoky weather 0.0750 0.0849

Nearest neighbor
segmentation

algorithm
0.0743 0.0841

Kalman filter 0.0634 0.0646

Rainy weather and
smoky weather

Rainy weather and
smoky weather 0.0199 0.0313

Nearest neighbor
segmentation

algorithm
0.0198 0.0312

Kalman filter 0.0166 0.0277

From the above table, it can be seen that after using the nearest neighbor segmentation
algorithm, there was significant improvement in the error value under normal conditions.
After Kalman filtering, the error value was further reduced. After correcting the error value
and comparing it with the normal value, there were obvious corrections. The improvement
rate can be calculated as follows:

Improvement rate =
(Original weather− a f ter improvement)

Original weather
·100% (9)

where original weather represents the RMSE of the original weather, and after improvement
represents the RMSE with improvement results. This equation was used to calculate the
improvement rate under all three weather conditions. The two axes were corrected by
about 30% for the rainy weather simulation, by about 15% in the case of heavy smoke, and
by about 11% in the rainy weather and heavy smoke simulation, as shown in Table 2.

Table 2. Improvement rate after correction under three severe weather conditions.

Rainy Smoky Weather Rainy Weather and
Smoky Weather

x-axis 33.5% 15.5% 11.5%
y-axis 35.1% 23.9% 16.6%

7. Conclusions

The main goal of this study was to use the Kalman filter to improve the application of
automotive LiDAR signals in severe weather. At present, LiDAR is used in many places,
including in autonomous vehicles, but when the weather is bad, they are impossible to
operate. More and more studies focus on how to improve LiDAR data in adverse weather.
This paper used a combination of two methods to filter out undesired noise, first by using
a nearest neighbor segmentation algorithm, and second by Kalman filtering. Both methods
can be used separately, but they were combined here to filter out more noise. The nearest
neighbor point cloud segmentation algorithm was used to filter out the noise of rain, and
the Kalman filter was used to filter out the noise of dense smoke. The results of this study
showed that signals measured in adverse weather can be restored to near normal data. The
method described in this study can be used to obtain improvement, using the raw data for
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comparison of normal weather with the bad weather data. The main objectives completed
in this study are as follows:

(1) This paper combined two algorithms to restore normal weather data more effectively.
(2) Three simulated weather patterns were measured, and the LiDAR response observed.
(3) The improvement rate obtained from the combination of the two algorithms is be-

tween 10% and 30%.

This research describes a LiDAR system capable of reducing environmental noise,
which includes an optical radar and a processing module. The LiDAR obtains point cloud
model data, and a processing module processes it from the self-detection environment. The
processing module includes a nearest neighbor point cloud segmentation algorithm and a
Kalman filtering unit. The nearest neighbor point cloud segmentation algorithm receives
and processes the point cloud model data to output filtered model data, and the Kalman
filtering unit receives the filtered model data to filter and output low-noise environment
model data.

Looking to the future, the current measurements occurred in a controlled laboratory
environment, and whether the system is controllable in real severe weather environments
needs to be discussed via the following scenarios:

1. Use scientific instruments to measure severe weather data, raindrop size, and smoke
concentration and particle size, for quantification of severe weather values.

2. Add different kinds of severe weather for testing and verification.
3. Conduct actual road tests in different adverse weather conditions.
4. All equipment used in this is vehicle-specific. Although they were tested in the

laboratory, they can be installed on vehicles in the future.

If the above items can be thoroughly investigated, actual vehicle testing and ver-
ification will be carried out. If we can overcome the impact of bad weather on Li-
DAR, it will enhance the performance of self-driving vehicles and effectively improve
human transportation.
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