
applied  
sciences

Article

Synthesis of Cobalt Oxide on FTO by Hydrothermal Method
for Photoelectrochemical Water Splitting Application

Siti Nurul Falaein Moridon 1, Mohd Nur Ikhmal Salehmin 1, Khuzaimah Arifin 1,* , Lorna Jeffery Minggu 1

and Mohammad B. Kassim 1,2

����������
�������

Citation: Moridon, S.N.F.; Salehmin,

M.N.I.; Arifin, K.; Minggu, L.J.;

Kassim, M.B. Synthesis of Cobalt

Oxide on FTO by Hydrothermal

Method for Photoelectrochemical

Water Splitting Application. Appl. Sci.

2021, 11, 3031. https://doi.org/

10.3390/app11073031

Academic Editor: João Azevedo

Received: 20 February 2021

Accepted: 25 March 2021

Published: 29 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; sitifalaein@gmail.com (S.N.F.M.);
ikmal@ukm.edu.my (M.N.I.S.); lorna_jm@ukm.edu.my (L.J.M.); mb_kassim@ukm.edu.my (M.B.K.)

2 Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia,
Bangi 43600, Malaysia

* Correspondence: khuzaim@ukm.edu.my

Abstract: Cobalt oxide thin films were successfully grown directly on fluorine-doped tin oxide glass
substrates through a simple, green, and low-cost hydrothermal method. An investigation into the
physicochemical characteristics and photoelectrochemical (PEC) properties of the developed cobalt
oxide thin film was comprehensively performed. At various annealing temperatures, different mor-
phologies and crystal phases of cobalt oxide were observed. Microflowers (Co3O4) and microflowers
with nanowire petals (Co3O4/CoO) were produced at 450 ◦C and 550 ◦C, respectively. Evaluation of
the PEC performance of the samples in KOH (pH 13), Na2SO4 (pH 6.7), and H2SO4 (pH 1) revealed
that the highest photocurrent −2.3 mA cm−2 generated at −0.5 V vs. reversible hydrogen electrode
(RHE) was produced by Co3O4 (450 ◦C) in H2SO4 (pH 1). This photocurrent corresponded to an
8-fold enhancement compared with that achieved in neutral and basic electrolytes and was higher
than the results reported by other studies. This promising photocurrent generation was due to the
abundant source of protons, which was favorable for the hydrogen evolution reaction (HER) in
H2SO4 (pH 1). The present study showed that Co3O4 is photoactive under acidic conditions, which
is encouraging for HER compared with the mixed-phase Co3O4/CoO.

Keywords: cobalt oxide; mixed-phase; photoelectrochemical; water splitting

1. Introduction

Hydrogen (H2) is an ideal future energy carrier to replace fossil fuels. H2 as fuel
in a fuel cell system has been proven to be safe, clean, and environmentally friendly,
and its only byproduct is pure water [1]. H2 can be extracted from water molecules
through photoelectrochemical (PEC) water-splitting using direct solar energy, which has
been actively studied globally [2,3]. Both components, water and sunlight, are abundant
and available everywhere. PEC water-splitting requires a semiconductor material as a
photoelectrode. This photoelectrode is exposed to sunlight and is the site for the initiation
of the catalytic reaction. The results depend on the nature of the semiconductor. The n-type
semiconductors, such as titanium dioxide (TiO2), act as a photoanode; the water molecule
is oxidized to produce oxygen (O2) gas. Meanwhile, p-type semiconductors, such as Cu2O,
act as a photocathode. The proton (H+) is reduced, and H2 is generated [4].

A few requirements need to be fulfilled by photoelectrodes to achieve an efficient PEC
water-splitting process. The bandgap energy should be greater than 1.23 eV and less than
3 eV to allow the utilization of the spectral range of visible light [5]. To electrochemically
split the water molecule, the band edges of the photoelectrode need to be in straddle
position to the water molecule redox potential, which means the conduction band (CB) of
the material should lay at a more negative potential than the water reduction potential.
Meanwhile, the valence band (VB) position should lay at a more positive potential to the
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water oxidation potential. Furthermore, a stable and highly photoactive photoelectrode is
required to achieve an efficient PEC performance [6].

TiO2 [7,8], Cu2O [9], WO3 [9], Fe2O3 [10], and perovskites [11] are among the semi-
conductor materials that have been extensively investigated as photoelectrodes, because
these materials are highly abundant and require simple fabrication techniques and low-cost
preparation processes. However, recently, cobalt oxide itself has also received considerable
attention as a photocatalyst material. Cobalt oxide is attractive because of its suitable
optical band gap of ~2.00 eV, which falls within the favorable band gap range for visible
light absorption [9,12–15]. Co3O4 and CoO are reportedly the most stable phases of cobalt
oxide and are the most investigated materials for PEC water-splitting applications [13].
Hong et al. (2017) reported that photocurrent densities produced by Co3O4 for PEC perfor-
mance at−0.4 V bias vs. Ag/AgCl could be achieved at−0.50 mA cm−2, approximately [9].
Liao et al. (2016) revealed that CoO can cleave water molecules without the addition of
cocatalysts or sacrificial reagents. The photocatalytic process achieved ~5% efficiency of
solar to hydrogen, which is the highest efficiency for a single material.

Cobalt oxide can be synthesized using various methods through a chemical or physical
route [16]. The chemical route includes the sol–gel method [17], hydrothermal method [12],
solvothermal method [18], cathodic reduction [19], and chemical vapor deposition (CVD) [20].
Meanwhile, a physical approach includes sputtering and physical vapor deposition (PVD) [19,21].
Cobalt (II) salts, such as cobalt (II) chloride hexahydrate, cobalt acetate tetrahydrate, and
cobalt (II) nitrate hexahydrate are most used as starting materials [22,23]. The purity of the
cobalt oxide phase depends on the preparation methods and the annealing temperature.
The good crystallinity properties of Co3O4 thin films with preferred orientation along [111]
direction were reported by El Bachiri et al. (2019) using spray pyrolysis technique of an
aqueous solution of hydrated cobalt chloride salt. Prabaharan et al. (2017) synthesized
Co3O4 nanoparticles by using a cheap and easy sol gel precipitation method producing
nanoparticles agglomerated with spherical-shaped particles [24].

Cobalt oxide is a temperature-dependent material; when the cobalt compound is an-
nealed at a low temperature with abundant air, Co3O4 is produced. In an adequate amount
of oxygen, the Co2O3 changes to Co3O4 without any change in the lattice structure [25]. A
cobalt compound forms CoO as the final product at a high annealing temperature (>900 ◦C)
and under inert conditions [12,26,27]. In this study, the cobalt oxide thin film was directly
grown on fluorine-doped tin oxide (FTO) glass through a hydrothermal method. The
phase transformation of directly grown on the FTO will be studied based on the differ-
ent annealing temperatures. We realize that the study of phase transformation directly
grown on fluorine-doped tin oxide (FTO) glass through a hydrothermal method rarely
been reported. The annealing temperatures of 450 ◦C and 550 ◦C were chosen based on
our previous study on powder photocatalysts. The high crystalline Co3O4 produced at
an annealing temperature of 450 ◦C was then transformed to mixed-phase Co3O4/CoO
or pure CoO at higher temperature [12]. This study’s highest temperature was 550 ◦C
because of the temperature limitation of FTO glass. The photoelectrode performance was
then evaluated based on photocurrent generation, which reflected PEC water-splitting
application’s response to an electrolyte.

2. Materials and Methods
2.1. Synthesis of Cobalt Oxide

Cobalt oxides were synthesized on FTO by a hydrothermal method according to a
previous study [15]. Cobalt nitrate hexahydrate (2.90 g) with 99% purity from R & M
Chemical, United Kingdom and urea (0.72 g) from Quality Reagent Chemical (QREC),
Malaysiawere dissolved in 50 mL of deionized water. Subsequently, the homogeneous
solution was placed into a 100 mL volume autoclave made of stainless steel. The autoclaves
were maintained at 100 ◦C for 6 h and naturally cooled to room temperature. Next, the
thin film was rinsed with distilled water prior to annealing in N2 gas at 450 ◦C and 550 ◦C
for 3 h.
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2.2. Characterization

The crystallinity of the sample was determined using X-ray diffraction (XRD) with
Cu Kα radiation at a wavelength of 0.15406 Å (Siemens X-ray Diffractometer D5000,
Munich, Germany). The surface morphology of the samples was observed using a field
emission scanning electron microscope (FESEM) (JEOL JSM-7600F, Tokyo, Japan) and
high-resolution transmission electron microscopy (HRTEM) (JEOL JEM- 2100F, Japan). The
optical properties of the samples were examined using a UV-Vis-NIR spectrophotometer
(UV-3101PC Shidmadzu, Kyoto, Japan). Details of the chemical composition and binding
energy were obtained with an X-ray photoelectron spectrometer (Fourier Kratos Analytical
Axis Ultra DLD/2009, Manchester, UK).

2.3. Photoelectrochemical Measurement and Stability Test

Photochemical (PEC) measurements were performed with a three-electrode config-
uration that comprised the samples, saturated Ag/AgCl, and platinum as the working,
reference, and counter electrodes, respectively. These cables were connected to a poten-
tiostat (Versa stat, Ametex, Oak Ridge, TN, USA). To evaluate the effect of the pH of the
electrolytes on the photocurrent generation, different solutions of 0.5 M KOH (pH 13),
0.5 M Na2SO4 (pH 7), and 0.5 M H2SO4 (pH 1) were prepared as the electrolytes. Prior to
PEC measurement, the electrolytes were degassed with N2 for 10 min. The photocurrent
measurements were conducted under simulated solar light illumination at a power density
of 100 mW cm−2 with a Xenon lamp as the light source (ORIEL). Under similar conditions,
Mott–Schottky data were collected under illumination at a frequency of 1000 Hz. The
electrochemical impedance of the samples was evaluated using electrochemical impedance
spectroscopy (EIS) by scanning from 1 Hz to 100,000 Hz using a similar potentiostat. The
applied potential was converted into the reversible hydrogen electrode (RHE) scale using
the Nernst equation; ERHE = EAg/AgCl + 0.05196pH + 0.1976.

3. Results and Discussion
3.1. Phase and Crystal Structure Analysis

The cobalt oxide thin film on FTO was fabricated using a sequential hydrothermal
method and annealed under inert conditions. The product from the hydrothermal process
that was not annealed (named as a pre-annealed sample) was also analyzed to confirm the
first product produced by the hydrothermal method. XRD analysis was utilized in this
study to fully understand the phase of cobalt oxide produced according to the annealing
temperature. The XRD chromatogram in Figure 1 shows that cobalt (III) oxide (Co3O4)
was formed on the FTO after the hydrothermal reaction (pre-annealed), as indicated by the
diffracted peaks of (111), (220), (311), (511), and (440), which corresponded to the plane of
the cubic crystal structure with the spinel Co3O4 phase (JSPD NO 00-042-1467). In addition,
as the sample was later subjected to an annealing treatment of 450 ◦C, the intensity of
the peaks belonging to the Co3O4 phase markedly increased, indicating an increase in
crystallinity. Interestingly, at 550 ◦C, a mixed phase of Co3O4 and CoO was observed
at approximately 36◦, 45◦, and 59◦, indicating that oxidation of Co3O4 to CoO occurred.
According to previous studies [28], increasing the annealing temperature decreases the
amount of oxygen in the films, which might be explained by the increase in purity and
crystallinity of the as-deposited Co3O4 (pre-annealed) and after annealing at 450 ◦C, and
by the loss of oxygen in the form of water vapor during the annealing treatment.
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CoO was confirmed by the indication of a low appearance of satellites [31]. The Co 2p 
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ples produce oxygen peaks in different binding energy and height. The oxygen peaks of 
pre-anneal sample present at 529 and 530.6 eV. Meanwhile, the position oxygen peaks of 
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indicating that some oxygen atoms bind with different oxidation states of Co. 

Figure 1. X-ray diffraction patterns of (a) the pre-annealed Co3O4, (b) the post-annealed Co3O4 at
450 ◦C, and (c) the post-annealed Co3O4 at 550 ◦C.

To confirm the composition of pre-annealed 450 ◦C and 550 ◦C samples, X-ray pho-
toelectron spectroscopy (XPS) analysis was performed as displayed in Figure 2. The
pre-annealed and the annealed 450 ◦C samples have similar full survey spectra. The Co
2p spectra for the pre-annealed appeared at the value of binding energy for 778 ± 0.5
and 800 ± 0.5 eV, whereas the annealed 450 ◦C appeared at the value of binding energy
for 778 ± 0.5 and 793 ± 0.5 eV. The spectra of the pre-annealed are present in a broad
area compared to the Co 2p spectra for the annealed 450 ◦C. The broad value of the pre-
annealed perhaps is caused by water or solvent contaminant. A similar trend was also
reported by Chen et al. (2020) on the annealing effect on MoS2 [29]. The 2p3/2 and 2p1/2

peaks separation for both pre-annealed and annealed 450 ◦C samples are around ± 10 eV.
According to H. Jadhav et al., between the 2p3/2 and 2p1/2 peaks, an energy difference
of ~15 eV is characteristic of the Co3O4 phase [30]. The major peak in Co 2p3/2 for the
sample annealed at 450 ◦C de-convoluted into two peaks centered at 776.96 and 778.90
eV, which corresponded to Co3+ and Co2+ species, respectively. For the Co 2p spectrum
of the 550 ◦C thin film, the Co3+ and Co2+ species were located at 777.07 and 778.95 eV,
respectively. In addition, the presence of CoO was confirmed by the indication of a low
appearance of satellites [31]. The Co 2p spectrum of single-phase Co3O4 showed a clear
image of weaker peaks compared with that associated with CoO in the mixed phase of
Co3O4/CoO [32]. Figure 2c shows the O 1s XPS spectra of the pre-annealed, annealed 450
◦C, and annealed 550 ◦C samples. All samples produce oxygen peaks in different binding
energy and height. The oxygen peaks of pre-anneal sample present at 529 and 530.6 eV.
Meanwhile, the position oxygen peaks of annealed 450 ◦C and 550 ◦C samples are in lower
binding energy, that is, at 527 and 528.6 eV. They differed only in the slight shifting in
intensity and the peak position, thereby indicating that some oxygen atoms bind with
different oxidation states of Co.
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Figure 2. XPS analysis of the pre-annealed, 450 ◦C and 550 ◦C, thin films samples. (a) Full spectra (b) Co 2p spectra (c) O spectra.

3.2. Structure and Morphology Characterization

The structure and morphology of the formed thin films were tested and confirmed
by FESEM analysis. Figure 3 shows the morphology of the photoelectrode prepared at
different annealing temperatures, namely, (a) pre-annealing, (b) 450 ◦C, and (c) 550 ◦C.
The pre-annealed photoelectrode surface formed a uniformly grown flower-like structure.
The high magnification FESEM images in Figure 3a revealed the formation of microscale
flowers, which are composed of micro-sized petals with an average thickness of ~6 µm.
According to Zhu et al., urchin-like spheres are composed of Co3O4. When the annealing
temperature increased to 450 ◦C, the color of the photoelectrode changed from purple to
black. FESEM observation revealed that the Co3O4 produced a microflower that started
to decompose (Figure 3b). With increasing annealing temperature, the Co3O4 changed to
mixed phase Co3O4·CoO, and the morphology of the sample changed to microflowers
with less thick nanowire petals (Figure 3c) [33].
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Figure 3. FESEM images of (a1–a3) pre-annealed sample, (b1–b3) 450 ◦C sample, and (c1–c3) 550 ◦C sample.

Details of the microstructures of Co3O4 and mixed Co3O4·CoO were examined us-
ing HRTEM, and specifics were examined with selected area electron diffraction (SAED)
(Figure 4). Lattice fringes of Co3O4 annealed at 450 ◦C are shown in Figure 4(a1–a3). The
SAED of Co3O4 shown in Figure 4(a3) reveals the ring and spot pattern in a well-defined
manner, demonstrating that the Co3O4 sample was highly crystalline. However, for the
mixed Co3O4·CoO annealed at 550 ◦C, the SAED showed a small spot that made rings,
which were designated as polycrystalline. According to Andrews et al., (1971) each spot
arising from brag was reflected from individual crystalline [34]. As shown in Figure 4(b3),
a SAED ring demonstrated the presence of a mixed phase that was well-blended at this
phase. The first ring indicated Co3O4, whereas the second ring indicated CoO.

3.3. Optical Measurements

The optical properties of the photoelectrode samples were analyzed using a UV-Vis-
NIR spectrophotometer. The optical absorption of the prepared photoelectrode samples and
their corresponding Kubelka–Munk plots are shown in Figure 5, in which the pre-annealed
samples showed an absorption region at 400–600 nm. Accordingly, the corresponding
K-M plots exhibited a band gap value of 4.30 eV (Figure 5b). The pre-annealed sample
exhibited absorption at much lower wavelengths and a large band gap, because the pre-
annealed sample was not activated. For the sample prepared at 450 ◦C, the intensity of
the light absorption was greater than that of the pre-annealed sample, which covered a
wider range of the light spectrum, ranging from 200 to 900 nm (Figure 5a). Within this light
spectrum range, two main broad peaks were identified, between 200–500 and 580–900 nm.
Correspondingly, two main broad peaks were identified with two band gaps of 2.00 and
2.50 eV (Figure 5b). This observation suggested that a higher temperature was required to
affect the phase transformation of the pre-annealed sample. This suggestion was supported
by the XRD analysis result, in which an identical phase of Co3O4, as identified in the
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pre-annealed sample, was also detected in the sample prepared at 450 ◦C. However, after
annealing, the band gap values significantly shifted to smaller values. This shifting pattern
of the band gap value could be an indication of the intermediate phase transformation.
In general, Co3O4 is known as “Co2O3/CoO,” which represents two constituents in the
material. Therefore, these constituents might contribute to the creation of two optical
absorption peaks. The first band (500–700 nm) can be referred to as the O2− → Co2+

charge transfer process of CoO, whereas the second absorption band (250–500 nm) can be
attributed to the O2− → Co2+ charge transfer of Co2O3 [35,36].
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samples pre-annealed and annealed at 450 ◦C and 550 ◦C.

As the annealing temperature was increased to 550 ◦C, the intensity of absorption
significantly decreased; only one absorption peak that signaled between 200 and 450 nm
remained. Extrapolation of K-M plots on the x-axis found that the band gap value was
narrowed to a single band gap value of 3.1 eV (Figure 5b). When the as-prepared Co3O4
was annealed with a nitrogen gas flow, and the temperature was increased, Co2+ was
protected against oxidation, thereby ensuring the production of CoO nanowire. Oxygen
vacancies occurred during annealing in an oxygen-deficient atmosphere, and this formation
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was associated with the energy band gap. A narrowing of the band gap was the result of
the increase in oxygen vacancies, and hence, the increase in the visible light absorption.

3.4. Photoelectrochemical Testing
3.4.1. The Effect of the Type of Electrolyte on the Photocurrent Generation

The photoelectrochemical activity of the samples was measured based on different
types of electrolytes that represented different pH values, namely, 0.5 M Na2SO4 (pH 6.7),
0.5 M KOH (pH 13), and 0.5 M H2SO4 (pH 1) (Figure 6). Based on the linear sweep
voltammetry data, both photocathode samples exhibited similar patterns of photocurrent
generation with similar photocurrent density values in all types of electrolytes. Based
on Figure 6a–c among the electrolytes under investigation, the photocurrent generation
measured in H2SO4 solution was the highest. Photocurrent produced by the pre-annealed
sample is ~−0.023 mA cm−2. This photocurrent value was approximately four-fold greater
than that achieved in neutral and basic electrolytes. Meanwhile, the highest photocurrent
produced by sample 450 ◦C (~−2.3 mA cm−2 at−0.5 V vs. RHE) was much higher than the
Co3O4 pre-annealed sample. According to Zhao et al. (2012) increasing annealing tempera-
ture may improve catalytic activity because high temperature may increase the structural
defects and the number of active sites, which would have positive impacts on the catalytic
activity. However, at sample 550 ◦C, the photocurrent degreased to ~−1.2 mA cm−2 at
−0.5 V vs. RHE because the phase of the sample has changes. These results suggest that
H2SO4 electrolyte solution enriched with protons (H+) could sufficiently attract opposite-
charged electrons. The present study suggested that the recombination rates of electrons
and holes were remarkably reduced, leading to enhanced photocurrent generation. Fur-
thermore, a chronoamperometry stability test was conducted for samples of 450 ◦C and
550 ◦C in 0.5 M H2SO4 electrolyte (Figure 6c). Sample 450 ◦C shows better stability com-
pared to sample 550 ◦C. Under constant simulated solar illumination and fixed current
density of 0.4 mA cm−2, the 450 ◦C sample was stable until 4000 s of irradiation time before
slowly decreasing. Meanwhile, the 550 ◦C sample was only stable for less than 500 s and
decreased drastically.

3.4.2. Electrochemical Impedance Studies

Electrochemical impedance analyses (EIS) of the as-prepared samples were conducted
to qualitatively examine the charge transfer resistance (Rct) through Nyquist plotting,
as shown in Figure 7a. The pre-annealed sample had high resistance compared to the
annealed samples at 450 ◦C and 550 ◦C. The Rct was evaluated based on the size of the
semicircle, wherein the smallest size of the semicircle represented the lowest Rct. The
effect of electrolyte on the Rct was further conducted to the annealed 450 ◦C sample, where
the smallest semicircle was produced when EIS testing was conducted in H2SO4 solution.
Correspondingly, the extent of Rct evaluated herein explained the results obtained in the
measurement of photocurrent generation, as shown in Figure 6. In this case, the lowest Rct
improved the efficiency of charge transfer from the semiconductor to the electrolyte and
vice versa, consequently yielding the highest photocurrent.
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550 ◦C using H2SO4 at pH 1, and (c,d) Mott–Schottky plots of the thin films annealed at 450 ◦C and
550 ◦C in 0.5 M H2SO4.
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3.4.3. Mott-Schottky (M-S) Plot

M-S Analysis was done to study the charge carrier concentration of samples. The
implementation of M-S analysis on annealed samples of 450 ◦C and 550 ◦C was performed
in H2SO4 (pH 1). The charge carrier was analyzed from the flat band, wherein flat band
is the potential at which the potential drop between the electrode surface and the bulk is
zero. This can establish the position of semiconductor energy band with respect to the
redox potential. The intrinsic value of flat band (VFB) and carrier density (NA) for both
samples can be extracted from the x-intercept and slope of the plot between the reciprocal
of the square 1/C2 and the bias potential (Figure 7c), in accordance with the Mott–Schottky
equation, as follows (Equation (1)) [37]

1
C2 =

(
2

eεεo NA

)[
V −VFB −

KbT
e

]
(1)

where e is the electronic charge, ε is the relative permittivity of CoO (12.9), εo is the
permittivity of vacuum, Kb is Boltzmann’s constant, and T is the absolute temperature [38].
A negative slope from all samples implied a p-type semiconductor. The extrapolation of
slopes from the M-S plot (Figure 7) when integrated into the gradient of Equation (1) gives
the NA. The interception of slopes at x-axis represents the VFB. In this case, the calculated
value of NA was 1.24 × 1011 and 3.99 × 1016 for 450 ◦C and 550 ◦C samples.

However, the valence band (VB) of the samples was determined using the following
equation (Equation (2))

EFB − EVB = kBT ln
NV
NA

(2)

where NV is the effective density of states in the valence band (VB). The NV can be expressed
as follows (Equation (3))

NV = 2
(

2πm∗kBT
h2

) 3
2

(3)

Incorporating the band gap energy (Eg) determined earlier (Figure 7), the conduction
band (CB) of the samples can be determined [39]. The analyzed data of VFB, VB, Eg, and
CB are arranged as depicted in Figure 8. For this purpose, the potential measurements in
Ag/AgCl were converted to the RHE using the following equation (Equation (4))

ERHE = EAg/AgCl + E0
Ag/Agcl + 0.059pH (4)

where E0
Ag/AgCl = 0.197 V at 25 ◦C.

To electrochemically split the water molecule, the band edges of the photoelectrode
need to be in straddle position to the water molecule redox potential, which means the CB
of the material should lie at a more negative potential than the water reduction potential.
Meanwhile, the VB position should lie at a more positive potential to the water oxidation
potential. Based on the calculation, the resultant band edges of CB and VB of both samples
are as illustrated in Figure 8. The energy band structure of sample prepared at 450 ◦C
(Co3O4) is shown in Figure 8; the CB and VB are −1.04 eV and 0.98 eV. The band edges in
this study were found at the more negative potential of our previous study; the CB and
VB of Co3O4 are estimated to be −0.55 and 1.10 eV, respectively [12]. Both the CB and VB
located were at a more negative potential of H+ to H2 and oxidation potential of H2O to O2,
respectively [35]. A similar trend was also found in the sample prepared at 550 ◦C. Given
that the bandgap of the sample prepared at 550 ◦C was bigger than the sample prepared at
450 ◦C, the CB position falls at more negative potential than the 450 ◦C sample. Meanwhile,
the VB position is not much different. This result showed that both cobalt oxides resulting
in this study do not straddle to the redox potential of water splitting, but it can be used to
produce hydrogen only [40].
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4. Conclusions

This work provided the necessary support for the direct growth of cobalt oxide on FTO
thin films, the effect of annealing on the phase transformation of cobalt oxide, and the effect
of electrolyte on the PEC water-splitting application. The annealing temperature affected
the phase of cobalt oxide thin films and changed the morphology from microflower Co3O4
to urchin-like Co3O4/CoO mixed phase. A single phase of CoO could not be produced
by direct growth on FTO through the hydrothermal method due to the sensitivity of FTO
to temperatures higher than 550 ◦C. In addition, the electrolyte affected the performance
of PEC water splitting. H2SO4 resulted in a higher photocurrent density than Na2SO4
and KOH. According to the measured photocurrent generation, the highest value was
contributed by the single-phase sample of Co3O4 from the annealed at 450 ◦C. The stability
test also showed that the Co3O4 from the annealed at 450 ◦C is more stable than the
mixed-phase produced by the annealed at 550 ◦C. This study found that the bandgap and
band edges of the cobalt oxide thin films produced from the direct hydrothermal method
slightly different from the powder results, in which powder cobalt oxide produces a more
appropriate band structure to the PEC water-splitting application.
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Cobalt Oxide Catalysts in the Form of Thin Films Prepared by Magnetron Sputtering on Stainless-Steel Meshes: Performance in
Ethanol Oxidation. Catalysts 2019, 9, 806. [CrossRef]

20. Babar, P.; Lokhande, A.; Pawar, B.; Gang, M.; Jo, E.; Go, C.; Suryawanshi, M.; Pawar, S.; Kim, J.H. Electrocatalytic performance
evaluation of cobalt hydroxide and cobalt oxide thin films for oxygen evolution reaction. Appl. Surf. Sci. 2018, 427, 253–259.
[CrossRef]
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