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Abstract: To provide a more practical method of controlling the frequency and tie-line power flow of
a multi-area interconnected power system (MAIPS), a state observer based on sliding mode control
(SOboSMC) acting under a second-order time derivative is proposed. The proposed design is used to
study load frequency control against load disturbance, matched and mismatched uncertainty and
parameter measurement difficulties of power systems that exist in the modern power plant, such as
multi-area systems integrated with wind plants. Firstly, the state observer is designed to optimally
estimate system state variables. The estimated states are applied to construct the model of the MAIPS.
Secondly, a SOboSMC is designed with an integral switching surface acting on the second-order
time derivative to forcefully drive the dynamic errors to zero and eliminate chattering, which can
occur in the first-order approach to sliding mode control. In addition, the stability of the total power
system is demonstrated with the Lyapunov stability theory based on a new linear matrix inequality
(LMI) technique. To extend the validation of the proposed design control for practical purposes, it
was tested in a New England system with 39 bus power against random load disturbances. The
simulation results confirm the superiority of the proposed SOboSMC over other recent controllers
with respect to overshoot and settling time.

Keywords: renewables plants; state observer; sliding mode control; load frequency control

1. Introduction

Recently, more electrical power can be generated from wind turbines due to improve-
ments in technology. Many power companies are investing in wind farms to supply
electricity to their end0users. Moreover, remote geographical locations that are outside of
grid services have been fed by wind farms. Efforts are on-going to integrate wind turbines
with the existing MAIPS in order to increase grid services. However, wind farms integrated
with the existing power network raise some concerns due to frequency deviations. These
concerns are intermittent problems associated with the wind energy source, which involve
maximum power point tracking, synchronization problems, uncertainty, difficulty in sys-
tem parameter measurements (since the dynamic behaviors are different from conventional
power plants), etc. These are additional to the existing disturbances, such as nonlinearity,
random and step-load disturbances, matched and mismatched uncertainty, etc., which are
found in conventional MAIPSs. Thus, these factors give rise to large frequency errors and
affect the power quality. The load frequency control (LFC) scheme has been utilized to take
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care of the frequency deviation and to ensure the quality of the power supply. Moreover,
the concerns, characteristics and behaviors of MAIPSs, as mentioned above, are vital issues
in LFC design [1]. Classical, intelligent and optimal control techniques have been applied
to LFC of MAIPSs in the past and are discussed in [2–17]. A major problem with the
interconnection of the power systems is increasingly related to the system and system
parameter uncertainties. Therefore, the control approaches outlined in [2–17] exhibit some
limitations, as discussed in [18]. Thus, a robust LFC technique for MAIPS was proposed
in [18].

The sliding mode control (SMC) scheme is one of the robust control approaches
proposed in order to solve the above problem. It was selected because of its robustness
against load disturbances and parameter variations. The SMC scheme was designed for the
LFC of MAIPSs in various operating conditions, which are presented in [19,20]. Recently,
the adaptive technique combined with sliding mode control has been developed to study
the LFC of MAIPSs [21]. Adaptive event-triggered SMC was used to investigate the LFC of
an MAIPS under a deregulated environment [22]. More recently, double-integral SMC was
applied for the decentralized adaptive LFC of an MAIPS, presented in [23]. However, these
above SMC approaches act under the first-order time derivative. In further studies, the first-
order SMC may suffer from the chattering phenomenon, which can cause inaccuracies in
LFC due to the discontinuous control signal in the SMC controller, which causes harmonics
and affects the system performance and the power quality. Therefore, second-order SMC is
used to eliminate the above chattering problem. Second-order SMC was applied for the
LFC of an MAIPS to solve the chattering problem and discussed in [24]. An adaptive SMC
combined with the higher-order SMC for the LFC of an MAIPS was invented to improve
the elimination of chattering, as presented in [25–27]. However, in a real MAIPS, the LFC
design is better when load disturbances are not required to be measured. To solve this
difficulty, the use of a disturbance observer has been applied for the LFC of MAIPSs [28]. In
addition, the disturbance observer combination with SMC for the LFC of MAIPSs was also
discussed in [29–31]. Recently, a state observer was used to estimate the non-measurement
system state variables for designing the LFC of MAIPSs [32]. A non-linear SMC based on a
generalized observer was developed to regulate frequency in a large power system [33,34].
However, there are some limitations of the above approaches for the LFC of the MAIPS.
First, the system state variables need to be measured for the feedback of the load frequency
controller [23–31]. Second, the controller suffers from the chattering problem inherent in
the first-order SMC [32–34]. Therefore, this article focuses on a more realistic LFC design for
an MAIPS integrated with a wind plant. Thus, the estimated system state variables (SSVs)
from the observer are used in the sliding surface, along with a decentralized second-order
SMC, so that the SSVs are not required to be measured. The novelties of the paper are
discussed below.

• The sliding surface and the decentralized continuous load frequency controller are
designed to be fully dependent on the SSVs estimated by the observer; thus, the
limitation of using state variables for the feedback of the control (discussed in [23–31])
has been solved.

• The MAIPS state variables and the estimated MAIPS state variables are asymptotically
stable with the new linear matrix inequality (LMI) method.

• A sliding mode acting under the second-order time derivative is developed to improve
the system performance by eliminating the problem of chattering, in contrast with the
approaches given in [32–34].

• The simulation results show that the MAIPS performance is better in terms of over-
shoot and settling time in comparison with some recent approaches. Therefore, the
proposed method is useful for the LFC of real MAIPSs.
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2. Multi-Area Interconnected Power System (MAIPS) Model in the State Space Form
for Load Frequency Control

For the purpose of LFC, we first derive an MAIPS model. A power network with
three areas is contemplated. Thus, areas 1 and 3 are integrated with a wind plant, whereas
area 2 consists of a non-reheat turbine alone, as shown in Figure 1. In general, if ith area is
considered, then the system is re-sketched as shown in Figure 2.
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Figure 1. A simplified sketch of a three-area integrated wind plant system.
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Figure 2. Schematic block diagram sketch for ith area network, including a wind farm.

For simplicity, we have modeled the conventional and wind power networks sepa-
rately. As we know, the conventional power system considered consists of a speed changer
motor, governor, non-reheat turbine and generation. We model each component of the
conventional MAIPS in the ith area, as displayed in Figure 2, in same way as [24,31]. Fre-
quency change is made to be the output of the generator so that LFC can be achieved. Next,
we determine the dynamic relations, which consist of a speed changer motor, a governor, a
non-reheat turbine and a generator of the ith area model, as expressed by:

∆
.
f i(t) =

Kpi

TPi
∆Pmi(t)−

Kpi

TPi
∆Pdi(t) +

Kpi

TPi
∆PWi(t)−

1
TPi

∆ fi(t)−
KPi

2πTPi

N

∑
i=1,j 6=i

Kij
{

∆δi(t)− ∆δj(t)
}

(1)

∆
.
Pmi(t) =

1
TTi

∆Pgi(t)−
1

TTi
∆Pmi(t) (2)

∆
.
Pgi(t) = −

1
RiTGi

∆ fi(t)−
1

TGi
∆Pgi(t) +

1
TGi

ui(t) (3)

∆
.
Ei(t) = KEiKBi∆ fi(t) +

KEi
2π

N

∑
i=1,j 6=i

Kij
{

∆δi(t)− ∆δj(t)
}

(4)
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∆
.
δi(t) = 2π ∆ fi(t) (5)

where ∆ fi(t) is the individual area frequency deviation, ∆Pmi(t) is the mechanical power
deviation of each area, ∆Pgi(t) is each area turbine valve position deviation, ∆Pdi(t) is each
unit load deviation, Ri is the individual area droop coefficient and Kij is the synchronization
coefficient. ∆PWi(t) is the wind disturbance, ∆δi(t) and ∆δj(t) are small change in power
angle, KBi and KEi are the frequency response coefficient. TPi, TGi and TTi are the subsystem
parameters. ∆

.
Ei(t) is denoted as the area control error. The system state space form of ith

area is shown as follows.

.
xi(t) = Aixi(t) + Biui(t) +

N
∑

j = 1
j 6= i

Hijxj(t) + Fi∆Pdi(t)

yi(t) = Cixi(t)

(6)

The system matrices Ai, Bi, Fi, Hij in the state space model are given below:

Ai =



−1
TPi

KPi
TPi

0 0 − KPi
2πTPi

N
∑

i=1,j 6=i
Kij

0 − 1
TTi

1
TTi

0 0
− 1

RiTGi
0 − 1

TGi
0 0

KBiKEi 0 0 0 KEi
2π

N
∑

i=1,j 6=i
Kij

2π 0 0 0 0


, Hij =



0 0 0 0 − KPi
2πTPi

N
∑

i=1,j 6=i
Kij

0 0 0 0 0
0 0 0 0 0

0 0 0 0 KEi
2π

N
∑

i=1,j 6=i
Kij

0 0 0 0 0



, Bi =


0
0
1

TGi
0
0

and Fi =


− 1

2Hi
1

2Hi
0 0
0 0
0 0
0 0


xi(t) =

[
∆ fi(t) ∆Pmi(t) ∆Pgi(t) Ei(t) ∆δi(t)

]T represent the state variables in
the state space model. ui(t) ∈ Rm is the control input. ∆Pdi(t) is the load uncertainty.

The model of the wind farm in the ith area is further discussed in the next section.

3. Wind Plant Model

A typical variable speed wind turbine generator system (VS-WTGS) is evaluated. For
the VS-WTGSs, the wind power generates mechanical torque via the turbine generator
shaft; thus, electrical torque is produced. The mechanical system acceleration, deceleration
or constant speed depend on the change in mechanical and electrical torque. Thus, the net
power output is related to the mechanical power.

Building the dynamic equations of the wind plant is based on the relationship of
mechanical output power and wind velocity. The output power is therefore given as [35]

Pm = Cp(λ, β)
1
2

ρAV3
wind (7)

where Pm is the turbine mechanical output (W), Cp is the turbine performance coefficient,
λ is the tip speed ratio, β is the pitch angle of the blade (deg), ρ is the air density (kg/m3),
A is the turbine swept area (m2) and Vwind is the wind speed (m/s).

− The tip speed ratio (λ)

λ =
ωrRr

Vw
(8)

where Rr and ωr are radius and spin speed of the wind plant, respectively.
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− Performance coefficient (Cp) of the turbine is given by.

Cp(λ, β) = c1

(
c2

λi
− c3β− c4

)
e
−c5
λi + c6λ (9)

with
1
λi

=
1

λ + 0.08β
− 0.035

β3 + 1
(10)

where the coefficients c1 to c6 are dependent on the wind plant.
Finally, we can present the equation of the wind plant via a per-unit (p.u) system, as

given below.
Pm_pu = kp × Cp_pu ×V3

wind_pu (11)

Pm_pu is the mechanical power in per unit, kp ≤ 1 is the amplified power factor, Cp_pu
is the power factor and Vwind_pu is the wind speed.

To design the new LFC for the MAIPS, we derive the following basic assumption. A
lemma is also adopted to accompany the progress of the work.

Assumption 1. Load uncertainty ∆Pdi(t) and the differential of ∆Pdi(t) is bounded such that
‖∆Pdi(t)‖ ≤ τi and ‖∆

.
Pdi(t)‖ ≤ τi , where γi and γi are known scalars and ‖.‖ is a matrix norm.

Assumption 2. The eigenvalues of the matrix Ai − TiCi can be chosen arbitrarily by appropriate
choice of the observer gain Ti when the pair [Ai, Ci] is observable.

Lemma 1 [24]. Let X and Y be a real matrix of suitable dimension then, for any scalar µ > 0 , the
below matrix inequality holds:

XTY + YTX ≤ µXTX + µ−1YTY. (12)

4. State Observer Based on Sliding Mode Control Strategies
4.1. Multi-Area Power System State Observer Design

This part, we considered the fact that the power network state variables are difficult
to measure. Therefore, the state observer technique is applied. The original internal state
of (6) is then estimated by the state observer using the experience of the output and input;
therefore, the observer is designed as follows.

.
zi(t) = Aizi(t) + Biui(t) +

N
∑

j = 1
j 6= i

Hijzj(t) + Ti(yi(t)− ni(t))

ni(t) = Cizi

(13)

where zi is the estate of xi and Ti is a matrix gain, which is selected to ensure that the
continuous-time dynamics error converges to zero faster. yi(t) is the output signal of the
power system and ni(t) is the state observer output, respectively.

4.2. Stability Analysis of Whole System in Sliding Mode Dynamic

The new SMC is designed with a better sliding surface for sliding variables to rapidly
reach the surface and remain thereon. The sliding surface is therefore given below

σi[zi(t)] = Lizi(t)−
t∫

0

Li(Ai − Bi Ji)zi(τ)dτ (14)

where Li is a constant matrix and Ji is the design matrix. Matrix Li is selected to guarantee
that the matrix LiBi is invertible. The design matrix Ji ∈ Rmi×ni is given, satisfying the
non-linearity condition

Re[λmax(Ai − Bi Ji)] < 0 (15)
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For the continuous system observability rule, the estimation error defined by ei(t) =
xi(t)− zi(t) must satisfy the below equation

.
ei = (Ai − TiCi)ei +

N

∑
j = 1
j 6= i

Hijej + Fi∆Pdi(t) (16)

If we take the derivative of (13) with respect to time, we therefore obtain

.
σi[zi(t)] = Li[Aizi(t) + Biui(t) +

N
∑

j = 1
j 6= i

Hijzj(t) + Ti(yi − ni)]

− Li(Ai − Bi Ji)zi(t)

(17)

Setting
.
σ(t) = σ(t) = 0, we can see that the equivalent control signal is as below

ueq
i (t) = −(LiBi)

−1[Li Aizi(t) +
N
∑

j = 1
j 6= i

Li Hijzj(t) + LiTi(yi − ni)]− Li(Ai − Bi Ji)zi(t)]

= −(LiBi)
−1[LiBi Jizi(t) + LiTi(yi − ni) +

N
∑

j = 1
j 6= i

Li Hijzj(t)]

(18)
Substituting u(t) into (6) yields the sliding motion:

.
xi(t) = Aixi(t)− Bi Jizi(t)− Bi(LiBi)

−1LiTi(yi − ni)

−
N
∑

j = 1
j 6= i

Bi(LiBi)
−1Li Hijzj(t) +

N
∑

j = 1
j 6= i

Hijxj(t) + Fi∆Pdi(t)

= (Ai − Bi Ji)xi(t) + (Bi Ji − Bi(LiBi)
−1LiTiCi)ei(t)

+
N
∑

j = 1
j 6= i

[
Hij − Bi(LiBi)

−1Li Hij
]
xj(t) +

N
∑

j = 1
j 6= i

Bi(LiBi)
−1Li Hijej(t) + Fi∆Pdi(t)

(19)

Combining system (6) and error system (18), the closed-loop system is written as[ .
xi.
ei

]
=

[
Ai − Bi Ji Φi

0 Ai − TiCi

][
xi
ei

]
+

N

∑
j = 1
j 6= i

[
Hij −Λi Hij Λi Hij

0 Hij

][
xj
ej

]
+

[
Fi∆Pdi(t)
Fi∆Pdi(t)

]
(20)

where Φi = Bi Ji − Bi(LiBi)
−1LiTiCi and Λi = Bi(LiBi)

−1Li.
Equation (19) provides the condition that the MAIPS in the sliding surface is stable if

the sliding motion (19) is stable and the observability condition holds following assumption
2. Therefore, the sliding motion (19) is also made Hurwitz, so the observer error e(t)→ 0
when t→ ∞ . To prove the above condition, we postulate a theorem as follows.
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Theorem 1. The sliding motion (19) is asymptotically stable, if there exist symmetric positive
definite matrices Pi , Qi , i = 1, 2, . . .N and positive scalars λi , ρi , γ̂i and γi so that the below
linear matrix inequality is feasible



Xi +
N
∑

j = 1
j 6= i

[
λj(Hji −Λj Hji)

T(Hji −ΛjHji)
]

PiΦi Pi PiFi 0 0

ΦT
i Pi Xi +

N
∑

j = 1
j 6= i

[
λ̃−1

j HT
ji Hji

]
+

N
∑

j = 1
j 6= i

[
λ̂j(ΛjHji)

TΛj Hji

]
0 0 Qi FT

i Qi

Pi 0 −λ−1
i 0 0 0

FT
i Pi 0 0 −γ̂−1

i 0 0
0 Qi 0 0 −ρ−1

i 0
0 FT

i Qi 0 0 0 −ν−1
i



< 0 (21)

where Xi = Pi(Ai − Bi Ji) + (Ai − Bi Ji)
T Pi and Xi = Qi(Ai − TiCi) + (Ai − TiCi)

TQi.

Proof. In the analysis of the stability of the sliding motion (19), we choose the below
Lyapunov function

V =
N

∑
i=1

[
xi
ei

]T[ Pi 0
0 Qi

][
xi
ei

]
(22)

where Pi > 0 and Qi > 0 satisfy (20) for i = 1, 2, . . . N. By getting the time derivative along
the system state trajectory of MAIPS, we have

.
V =

N
∑

i=1

[ .
xi.
ei

]T[ Pi 0
0 Qi

][
xi
ei

]
+

N
∑

i=1

[
xi
ei

]T[ Pi 0
0 Qi

][ .
xi.
ei

]
=

N
∑

i=1

{[
xi
ei

]T [
(Ai − Bi Ji)

T Pi 0
ΦT

i Pi (Ai − TiCi)
TQi

][
xi
ei

]
+

N
∑

j = 1
j 6= i

[
xj
ej

]T[ (Hij −Λi Hij)
T Pi 0

(Λi Hij)
T Pi HT

ij Qi

][
xi
ei

]

+
[
(Fi∆Pdi)

T Pi (Fi∆Pdi)
TQi

][ xi
ei

]}
+

N
∑

i=1

{[
xi
ei

]T[ Pi(Ai − Bi Ji) PiΦi
0 Qi(Ai − TiCi)

][
xi
ei

]

+
N
∑

j = 1
j 6= i

[
xi
ei

]T[ Pi(Hij −Λi Hij) PiΛi Hij
0 Qi Hij

][
xj
ej

]
+

[
xi
ei

]T[ PiFi∆Pdi
QiFi∆Pdi

]
=

N
∑

i=1

{[
xi
ei

]T[ Pi(Ai − Bi Ji) + (Ai − Bi Ji)
T Pi PiΦi

ΦT
i Pi Qi(Ai − TiCi) + (Ai − TiCi)

TQi

][
xi
ei

]
+

N
∑

i=1

N
∑

j = 1
j 6= i

[
xT

j (Hij −Λi Hij)
T Pixi + xT

i Pi(Hij −Λi Hij)xj + eT
j (Λi Hij)

T Pixi + xT
i PiΛi Hijej

]

+
N
∑

i=1

N
∑

j = 1
j 6= i

(eT
i Qi Hijej + eT

j HT
ij Qiei)

+
N
∑

i=1

[
eT

i QiFi∆Pdi + xT
i PiFi∆Pdi + (Fi∆Pdi)

T Pixi + (Fi∆Pdi)
TQiei

]

(23)
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Applying Lemma 1 to Equation (22), we have

.
V ≤

N
∑

i=1

{[
xi
ei

]T[ Pi(Ai − Bi Ji) + (Ai − Bi Ji)
T Pi PiΦi

ΦT
i Pi Qi(Ai − TiCi) + (Ai − TiCi)

TQi

][
xi
ei

]
+

N
∑

i=1

N
∑

j = 1
j 6= i

[
λixT

j (Hij −Λi Hij)
T(Hij −Λi Hij)xj + λ

−1
i xT

i PiPixi + λ̂ieT
j (Λi Hij)

TΛi Hijej + λ̂−1
i xT

i PiPixi

]

+
N
∑

i=1

N
∑

j = 1
j 6= i

(λ̃ieT
i QiQiei + λ̃−1

i eT
j HT

ij Hijej)

+
N
∑

i=1

[
νieT

i QiFiFT
i Qiei + ν−1

i ∆PT
di∆Pdi + γ̃ixT

i PiFiFT
i Pixi + γ̃−1

i ∆PT
di∆Pdii

]

(24)

Since
N
∑

i=1

N
∑

j = 1
j 6= i

λixT
j (Hij −Λi Hij)

T(Hij −Λi Hij)xj =
N
∑

i=1

N
∑

j = 1
j 6= i

λjxT
i (Hji −Λj Hji)

T

(Hji −ΛjHji)xi
N
∑

i=1

N
∑

j = 1
j 6= i

λ̂ieT
j (Λi Hii)

TΛi Hijej =
N
∑

i=1

N
∑

j = 1
j 6= i

λ̂jeT
i (Λj Hji)

TΛj Hjiei and

N
∑

i=1

N
∑

j = 1
j 6= i

λ̃−1
i eT

j HT
ij Hijej =

N
∑

i=1

N
∑

j = 1
j 6= i

λ̃−1
j eT

i HT
ji Hjiei, we achieve

.
V ≤

N
∑

i=1

{[
xi
ei

]T[ Pi(Ai − Bi Ji) + (Ai − Bi Ji)
T Pi PiΦi

ΦT
i Pi Qi(Ai − TiCi) + (Ai − TiCi)

TQi

][
xi
ei

]
+

N
∑

i=1

N
∑

j = 1
j 6= i

[
λjxT

i (Hji −ΛjHji)
T(Hji −Λj Hji)xi + λ

−1
i xT

i PiPixi + λ̂jeT
i (Λj Hji)

TΛj Hjiei + λ̂−1
i xT

i PiPixi

]

+
N
∑

i=1

N
∑

j = 1
j 6= i

(λ̃ieT
i QiQiei + λ̃−1

j eT
i HT

ji Hjiei)

+
N
∑

i=1

[
νieT

i QiFiFT
i Qiei + ν−1

i ∆PT
di∆Pdi + γ̃ixT

i PiFiFT
i Pixi + γ̃−1

i ∆PT
di∆Pdii

]

=
N
∑

i=1



[
xi
ei

]T



Xi + λiPiPi + γ̃iPiFiFT
i Pi +

N
∑

j = 1
j 6= i

[
λj(Hji −Λj Hji)

T(Hji −Λj Hji)
]

PiΦi

ΦT
i Pi Xi + ρiQiQi + νiQiFiFT

i Qi +
N
∑

j = 1
j 6= i

[
λ̃−1

j HT
ji Hji

]
+

N
∑

j = 1
j 6= i

[
λ̂j(ΛjHji)

TΛj Hji
]


[

xi
ei

]


+
N
∑

i=1
[(ν−1

i + γ̃−1
i )∆PT

di∆Pdi

]

(25)

where λi = (N − 1)(λ
−1
i + λ̂−1

i ), ρi = λ̃i(N − 1), Xi = Pi(Ai − Bi Ji) + (Ai − Bi Ji)
T Pi and

Xi = Qi(Ai − TiCi) + (Ai − TiCi)
TQi.
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In addition, using the Schur complement, the LMI (20) is equivalent to the below
inequality

Ωi = −



Xi + λiPiPi + γ̃iPiFiFT
i Pi +

N
∑

j = 1
j 6= i

[
νj(Hji −ΛjHji)

T(Hji −Λj Hji)
]

PiΦi

ΦT
i Pi Xi + ρiQiQi + νiQiFiFT

i Qi +
N
∑

j = 1
j 6= i

[
λ̃−1

j HT
ji Hji

]
+

N
∑

j = 1
j 6= i

[
λ̂j(Λj Hji)

TΛjHji
]


> 0 (26)

According to Equations (24) and (25), we obtain

.
V ≤

N

∑
i=1

(−λmin(Ωi)‖x̂i(t)‖2 + µi) (27)

where the constant value µi =
N
∑

i=1
[(ν−1

i + γ̃−1
i )τ2

i

]
and the eigenvalue λmin(Ωi) > 0.

Therefore,
.

V< 0 is achieved with ‖x̂i(t)‖ >
√

µi
λmin(Ωi)

. Hence, the sliding motion (19) is

asymptotically stable. �

4.3. Decentralized State Estimator Feedback Integral Sliding Mode Control (DSEFISMC) Design

Previously, we designed the integral surface and proved the power system asymptoti-
cally stability in the sliding motion. Next, a continuous second-order DSEFISMC law is
developed to reduce the chattering inherent in the first-order design. We start by defining
the second-order sliding manifold Si[zi(t)] such that the estimated system state trajectories
are forcefully driven to zero asymptotically, which is given as

Si[zi(t)] =
.
σi[zi(t)] + εiσi[zi(t)] (28)

and .
Si[zi(t)] =

..
σi[zi(t)] + εi

.
σi[zi(t)] (29)

where εi > 0 is a positive constant. Using Equation (16) yields

.
Si[zi(t)] = Li[Ai

.
zi(t) + Bi

.
ui(t) +

N
∑

j = 1
j 6= i

Hij
.
zj(t) + Ti(

.
yi(t)−

.
ni(t))]

−Li(Ai − Bi Ji)
.
zi(t) + εi

.
σi[zi(t)]

(30)

Based on the definition of the sliding surface and sliding manifold, the continuous
DSEFISMC law for the MAIPS is known as follows

.
ui(t) = −(LiBi)

−1{LiBi Ji
.
zi(t) + εi

.
σi[zi(t)] +

N
∑

j = 1
j 6= i

Lj Hji
.
zi(t)

+LiTi(
.
yi(t)−

.
ni(t))− δisat(Si[zi(t)])

} (31)

We propound a theorem to demonstrate the reachability of the estimated system state
trajectories to the manifold in the following.

Theorem 2. Consider Equation (6) with the continuous DSEFISMC law (30). Then, system state
trajectory is directed towards the sliding manifold Si[zi(t)] and once the trajectory hits the sliding
manifold Si[zi(t)] it remains on the sliding manifold thereafter.
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Proof. A Lyapunov function is therefore, obtained:

V(t) =
N

∑
i=1
‖Si[zi(t)]‖ (32)

Now using the time derivative of V(t) yields
.

V =
N
∑

i=1

ST
i [zi(t)]
‖Si [zi(t)]‖

.
Si[zi(t)]

=
N
∑

i=1

ST
i [zi(t)]
‖Si [zi(t)]‖

{Li[Ai
.
zi(t) + Bi

.
ui(t) +

N
∑

j = 1
j 6= i

Hij
.
zj(t) + Ti(

.
yi(t)−

.
ni(t))]

−Li(Ai − Bi Ji)
.
zi(t) + εi

.
σi[zi(t)]}

=
N
∑

i=1

ST
i [zi(t)]
‖Si [zi(t)]‖

{LiBi Ji
.
zi(t) + εi

.
σi[zi(t)] +

N
∑

j = 1
j 6= i

Li Hij
.
zi(t) + LiTi(

.
yi(t)−

.
ni(t))}

+
N
∑

i=1

ST
i [zi(t)]
‖Si [zi(t)]‖

LiBi
.
ui(t)

(33)

Using the DSEFISMC law (30), Equation (32) yields

.
V ≤ −

N

∑
i=1

δi (34)

The above Equation implies that the system state trajectories reach the sliding manifold
Si[zi(t)] and stay on it thereafter. �

5. Result Discussions

In this segment, we simulate the performance of the MAIPS with the proposed state
observer based on sliding mode control (SOboSMC) and the results are compared and
discussed with the load frequency double integral sliding mode controller given in [23]
and the sliding mode controller in combination with the extended state observer in [34].

5.1. Simulation 1

In this simulation, the test was carried out in three cases and the parameters of the
power network considered were the same as those in [23]. The one-line diagram of the
MAIPS integrated with the wind plant is shown in Figure 3.

Case 1. In this case, the initial values of the MAIPS are assumed to be nominal values
at time zero. The load disturbances of the areas 1, 2 and 3 are given as ∆Pd1 = 0.01 p.u. MW,
∆Pd2 = 0.015 p.u. MW, ∆Pd3 = 0.02 p.u. MW at 1 s and the wind variations are neglected.
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Remark 1. Under the assumed initial conditions of the MAIPS, the proposed SOboSMC acted
quickly to converge the frequency error to zero at 3 s, with a maximum overshoot of 0.005 Hz as
compared to the 6-s settling time and maximum overshoot of 0.08 Hz seen in [23]. This validates
that the MAIPS performance is better when using the proposed SOboSMC.

Case 2. This simulation was done with the MAIPS with and without wind turbines.
The load disturbances of the areas 1, 2 and 3 were assumed to be the same as those in case
1 and [23]. The parametric uncertainty is considered in the form of matched uncertainty
∆Ai, which is expressed as

∆A1 =


0 0 0 0 0
0 0 0 0 0

−2.26 cos(t) 2 cos(t) −2.604 cos(t) 3 cos(t) 0
0 0 0 0 0
0 0 0 0 0

 where ∆A1 = ∆A2 = ∆A3.

The wind variation is shown in Figure 7. The frequency error with and without the
wind plant can be seen in Figures 8 and 9, whereas the tie-line power error with and
without the wind farm are shown in Figures 10 and 11. For the MAIPS without wind farms,
the response of the power network is better, pertaining to overshoot and settling time,
and is also chattering-free in comparison with the design presented in [23]. Once more,
the frequency transient is kept within the operational safety range, which is ±0.2 Hz for
the safety of the power system frequency [36]. Therefore, the proposed approach shows
good control performance for the LFC of an MAIPS with load disturbances, parameter
uncertainties and wind variations, without the loss of control accuracy.
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Remark 2. The LFC for the MAIPS with load disturbance and matched uncertainty can be seen
in [23]. However, the above approach cannot be applied to an MAIPS with a wind turbine; therefore,
this new approach is a better choice to handle the LFC in the MAIPS integrated with renewable
plants.

Case 3. The load change and the wind variation were the same as those in case 2. The
parametric uncertainty was in the form of mismatched uncertainty in the system matrix
and in the interconnected matrix [23].

∆A1 =


0 ∆ f1 0 0 0

sin(t) 0 0 0 0
0 0 cos(t) cos(t) 0
0 0 0 0 cos(t)

cos(t) 0 0 0 0

 and ∆H12 =


0 0 0 0 0.178 cos(t)
0 0 0 0 0
0 0 0 0 0
0 0 0 0 −0.296 sin(t)
0 0 0 0 0


We also assumed that ∆H2 = ∆H3 = ∆H1 and ∆A2 = ∆A3 = ∆A1.
Figures 12–15 represent the frequency and tie-line power error of the MAIPS with

and without a wind turbine under the mismatched uncertainties, coupled with load
disturbance. The results indicate that the new approach is highly robust against power
system uncertainties and wind variation in comparison with [23].
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Remark 3. Even with load disturbances, wind variation and matched and mismatched parametric
uncertainties, the results from Table 1 show that the proposed SOboSMC preserves the frequency
of the MAIPS, which is better in terms of overshoot and settling time in comparison with [23].
Thus, the new controller is proven to be a preferred choice to cope with a power system with the
above conditions. Unlike the approach given in [23], the system state variables are not required
to be measured, so the proposed SOboSMC is much easier to apply to a large power network. The
proposed SOboSMC is also intended to be applied to imperfect systems, which are mentioned in [37].

Table 1. Setting time and maximum overshoot of the proposed state observer based on sliding mode
control (SOboSMC) and double-integral SMC [23].

Kind of Controller Proposed SOboSMC Double Integral SMC [23]

Parameters Ts(t) Max.O. S (pu) Ts(t) Max.O. S (pu)
∆ f1 3 −5.8× 10−3 7 −0.06
∆ f2 3 −6.5× 10−3 7 −0.07
∆ f3 3 −11.5× 10−3 7 −0.07

5.2. Simulation 2

In other to test the proposed SOBoSMC for the real MAIPS, a New England 39 bus
power system (PS) was used. The configuration and parameters of the power system in
this simulation were taken from [34].

In addition, the importance of integrating renewable energy with MAIPSs has been
discussed in [32]. Therefore, we considered integrating wind energy with area 1 at bus
5 and area 3 at bus 21 of the New England 39 bus PS. A single line diagram of the New
England 39 bus PS integrated with a wind plant is shown in Figure 16. The proposed
SOBoSMC was tested for the LFC of the New England PS with and without wind plants.
The wind variation was assumed as shown in Figure 17 and the load disturbance was
applied for the MAIPS as shown in Figure 18. On the other hand, the SMC combined with
the disturbance observer was used to increase the damping ratio for the LFC of the New
England PS under random loads, as given in [34]. However, the stability of the frequency
and tie-line power of the PS were attained without wind variation and the controller was
required to measure all the system state variables. IN addition, an observer-based SMC
used for the LFC of a New England PS was also seen in [32]. However, that controller
suffered from chattering problems due to the first-order SMC used and the stability of the
New England device was also achieved while neglecting wind disturbance. Therefore,
there are doubts about the above approaches’ applications in the LFC of a real PS integrated
with renewable energies.
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Remark 4. An SMC based on the observer used for the LFC of the New England PS can be seen
in [34]. However, there are two limitations of the above approach. The first is that the system state
variables need to be measured in order to provide feedback for the controller. The second is that the
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control suffers from the chattering problem inherent in the first-order SMC. In this approach, the
state observer is used in the sliding surface and second-order sliding mode controller. Therefore, the
two above limitations have been solved.

6. Conclusions

The need for the MAIPS integrated with wind plants is increasing day by day because
of the need for efficient power generation. However, the wind variation problem associated
with wind turbines can make MAIPS frequency unstable. Therefore, the LFC is important
in order to regulate frequency and provide better power quality to consumers. In order to
solve the above problem, a new LFC for an MAIPS integrated with wind plants using a
state observer based on sliding mode, acting under a second-order time derivative, has
been developed. The continuous decentralized sliding mode controller guarantees the
control signal accuracy so that the performance of the MAIPS and the power quality are
improved. In addition, the stability of the entire power network was demonstrated by
means of the Lyapunov method based on the new LMI technique. The simulation results
show that the frequency error and the tie-line power error rapidly converge to zero, with
better settling time and overshoot when compared to existing designs. Furthermore, the
proposed controller can handle with the wind variation because the results show less
impact on the power system frequency and tie-line power deviation. In order to verify this
new approach with a real MAIPS, a New England PS with and without a wind plant was
used and the results showed an improvement in the system performance with respect to
maximum overshoot and settling time. Thus, the proposed approach is a better choice for
the LFC of a real MAIPS with a wind plant.
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