On the Effect of a Rate-Dependent Work of Adhesion in the Detachment of a Dimpled Surface
Abstract
:1. Introduction
2. Griffith Equilibrium Solution for a Dimple
2.1. Elastic Problem
2.2. Effect of a Rate-Dependent Work of Adhesion
3. Results
3.1. Detachment Curves
3.2. Pull-Off Detachment Stress
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hong, S.; Erdogan, G.; Hedrick, K.; Borrelli, F. Tyre–road friction coefficient estimation based on tyre sensors and lateral tyre deflection: Modelling, simulations and experiments. Veh. Syst. Dyn. 2013, 51, 627–647. [Google Scholar] [CrossRef]
- Yu, P.; Zhang, D.; Ma, Y.; Hong, J. Dynamic modeling and vibration characteristics analysis of the aero-engine dual-rotor system with Fan blade out. Mech. Syst. Signal Process. 2018, 106, 158–175. [Google Scholar] [CrossRef]
- Li, X.; Tao, D.; Lu, H.; Bai, P.; Liu, Z.; Ma, L.; Tian, Y. Recent developments in gecko-inspired dry adhesive surfaces from fabrication to application. Surf. Topogr. Metrol. Prop. 2019, 7, 023001. [Google Scholar] [CrossRef]
- Genovese, A.; Farroni, F.; Papangelo, A.; Ciavarella, M. A discussion on present theories of rubber friction, with particular reference to different possible choices of arbitrary roughness cutoff parameters. Lubricants 2019, 7, 85. [Google Scholar] [CrossRef] [Green Version]
- Ciavarella, M.; Joe, J.; Papangelo, A.; Barber, J.R. The role of adhesion in contact mechanics. J. R. Soc. 2019, 16, 20180738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamperman, M.; Kroner, E.; del Campo, A.; McMeeking, R.M.; Arzt, E. Functional adhesive surfaces with “gecko” effect: The concept of contact splitting. Adv. Mater. 2010, 12, 335–348. [Google Scholar] [CrossRef]
- Huber, G.; Gorb, S.; Hosoda, N.; Spolenak, R.; Arzt, E. Influence of surface roughness on gecko adhesion. Acta Biomater 2007, 3, 607–610. [Google Scholar] [CrossRef]
- Pugno, N.M.; Lepore, E. Observation of optimal gecko’s adhesion on nanorough surfaces. Biosystems 2008, 94, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Akerboom, S.; Appel, J.; Labonte, D.; Federle, W.; Sprakel, J.; Kamperman, M. Enhanced adhesion of bioinspired nanopatterned elastomers via colloidal surface assembly. J. R. Interface 2015, 12, 20141061. [Google Scholar] [CrossRef] [PubMed]
- Paretkar, D.; Kamperman, M.; Martina, D.; Zhao, J.; Creton, C.; Lindner, A.; Arzt, E. Preload-responsive adhesion: Effects of aspect ratio, tip shape and alignment. J. R. Soc. 2013, 10, 20130171. [Google Scholar] [CrossRef]
- Violano, G.; Afferrante, L.; Papangelo, A.; Ciavarella, M. On stickiness of multiscale randomly rough surfaces. J. Adhesion 2019, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Ciavarella, M. Universal features in “stickiness” criteria for soft adhesion with rough surfaces. Tribol. Int. 2020, 146, 106031. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, A.; Wang, J.; Persson, B.N.J. Adhesion paradox: Why adhesion is usually not observed for macroscopic solids. Phys. Rev. E 2020, 102, 042803. [Google Scholar] [CrossRef] [PubMed]
- Dahlquist, C.A. Treatise on Adhesion and Adhesives; Patrick, R.L., Ed.; Marcel Dekker: New York, NY, USA, 1969; p. 244. [Google Scholar]
- Zhou, Y.; Robinson, A.; Steiner, U.; Federle, W. Insect adhesion on rough surfaces: Analysis of adhesive contact of smooth and hairy pads on transparent microstructured substrates. J. R. Interface 2014, 11, 20140499. [Google Scholar] [CrossRef] [Green Version]
- Kern, M.D.; Qi, Y.; Long, R.; Rentschler, M.E. Characterizing adhesion between a micropatterned surface and a soft synthetic tissue. Langmuir 2017, 33, 854–864. [Google Scholar] [CrossRef]
- McMeeking, R.M.; Ma, L.; Arzt, E. Bi-Stable Adhesion of a Surface with a Dimple. Adv. Eng. Mater. 2010, 12, 389–397. [Google Scholar] [CrossRef]
- Johnson, K.L.; Kendall, K.; Roberts, A.D. Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A 1971, 324, 1558. [Google Scholar]
- Johnson, K.L. The adhesion of two elastic bodies with slightly wavy surfaces. Int. Solids Struct. 1995, 32, 423–430. [Google Scholar] [CrossRef]
- Cañas, N.; Kamperman, M.; Völker, B.; Kroner, E.; McMeeking, R.M.; Arzt, E. Effect of nano-and micro-roughness on adhesion of bioinspired micropatterned surfaces. Acta Biomater. 2012, 8, 282–288. [Google Scholar] [CrossRef]
- Papangelo, A.; Ciavarella, M. A Maugis–Dugdale cohesive solution for adhesion of a surface with a dimple. J. R. Soc. Interface 2017, 14, 20160996. [Google Scholar] [CrossRef]
- Tabor, D. Surface forces and surface interactions. J. Colloid Interface Sci. 1977, 58, 2. [Google Scholar] [CrossRef]
- Waters, J.F.; Guduru, P.R. Mode-mixity-dependent adhesive contact of a sphere on a plane surface. Proc. R. A Math. Phys. Eng. Sci. 2010, 466, 1303–1325. [Google Scholar] [CrossRef] [Green Version]
- Barquins, M.; Maugis, D.; Blouet, J.; Courtel, R. Contact area of a ball rolling on an adhesive viscoelastic material. Wear 1978, 51, 375–384. [Google Scholar] [CrossRef]
- Greenwood, J.A.; Johnson, K.L. The mechanics of adhesion of viscoelastic solids. Philos. Mag. A 1981, 43, 697–711. [Google Scholar] [CrossRef]
- Persson, B.N.J.; Brener, E.A. Crack propagation in viscoelastic solids. Phys. Rev. E 2005, 71, 036123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gent, A.N.; Schultz, J. Effect of wetting liquids on the strength of adhesion of viscoelastic material. J. Adhes. 1972, 3, 281–294. [Google Scholar] [CrossRef]
- Johnson, K.L. Contact Mechanics; Cambridge University Press: Cambridge, UK, 1985. [Google Scholar]
- Maugis, D. Contact, Adhesion and Rupture of Elastic Solids (Volume 130); Springer: New York, NY, USA, 2000. [Google Scholar]
- Persson, B.N.J.; Tosatti, E. The effect of surface roughness on the adhesion of elastic solids. J. Chem. Phys. 2001, 115, 5597–5610. [Google Scholar] [CrossRef] [Green Version]
- Guduru, P.R. Detachment of a rigid solid from an elastic wavy surface: Theory. J. Mech. Phys. Solids 2007, 55, 473–488. [Google Scholar] [CrossRef]
- Dalvi, S.; Gujrati, A.; Khanal, S.R.; Pastewka, L.; Dhinojwala, A.; Jacobs, T.D. Linking energy loss in soft adhesion to surface roughness. Proc. Natl. Acad. Sci. USA 2019, 116, 25484–25490. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papangelo, A. On the Effect of a Rate-Dependent Work of Adhesion in the Detachment of a Dimpled Surface. Appl. Sci. 2021, 11, 3107. https://doi.org/10.3390/app11073107
Papangelo A. On the Effect of a Rate-Dependent Work of Adhesion in the Detachment of a Dimpled Surface. Applied Sciences. 2021; 11(7):3107. https://doi.org/10.3390/app11073107
Chicago/Turabian StylePapangelo, Antonio. 2021. "On the Effect of a Rate-Dependent Work of Adhesion in the Detachment of a Dimpled Surface" Applied Sciences 11, no. 7: 3107. https://doi.org/10.3390/app11073107
APA StylePapangelo, A. (2021). On the Effect of a Rate-Dependent Work of Adhesion in the Detachment of a Dimpled Surface. Applied Sciences, 11(7), 3107. https://doi.org/10.3390/app11073107