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Abstract: Light-weight convolutional neural networks (CNNs) suffer limited feature representa-
tion capabilities due to low computational budgets, resulting in degradation in performance. To
make CNNs more efficient, dynamic neural networks (DyNet) have been proposed to increase the
complexity of the model by using the Squeeze-and-Excitation (SE) module to adaptively obtain the
importance of each convolution kernel through the attention mechanism. However, the attention
mechanism in the SE network (SENet) selects all channel information for calculations, which brings
essential challenges: (a) interference caused by the internal redundant information; and (b) increasing
number of network calculations. To address the above problems, this work proposes a dynamic
convolutional network (termed as EAM-DyNet) to reduce the number of channels in feature maps by
extracting only the useful spatial information. EAM-DyNet first uses the random channel reduction
and channel grouping reduction methods to remove the redundancy in the information. As the
downsampling of information can lead to the loss of useful information, it then applies an adaptive
average pooling method to maintain the information integrity. Extensive experimental results on the
baseline demonstrate that EAM-DyNet outperformed the existing approaches, thus it can achieve
higher accuracy of the network test and less network parameters.

Keywords: dynamic neural networks; light-weight convolutional neural networks; channel redun-
dancy in convolutional neural networks

1. Introduction

In recent years, convolutional neural networks (CNNs) have been making great
progress and success in image classification and description [1]. As the computation of
CNNs involves a large number of parameters, they cannot be directly deployed on the
emerging Internet of Things (IoT) end devices, which typically have limited resources [2]
such as mobile phones, wireless sensor nodes, etc. Lightweight networks have gained
great attention, since they require less computation than traditional CNNs (e.g., VggNet [3],
ResNet [4], etc). Consequently, many lightweight networks have been conducted (e.g.,
MobileNet [5–8], ShuffleNet [9,10], etc). However, the number of parameters in lightweight
networks is relatively small, which makes the fitting ability of data distribution insufficient.
Dynamic neural networks (DyNet) [11–13] have been considered as a promising method to
overcome this problem.

DyNet increases the network parameters so that it has powerful feature representation
ability. Brandon Yang [11] added attention weights that are determined by the input of
the convolution layer. Then, these weights are combined to obtain the convolution kernel
weights. Yikang Zhang [12] obtained the attention weight by global average pooling
and a fully connected layer. Yinpeng Chen [13] obtained the attention weight through
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a series of calculations such as compression, linear transformation, and weighing the
sum with the convolution kernel. The models of these dynamic networks are shown in
Figure 1. These dynamic networks use the Squeeze-and-Excitation (SE) attention module
to weight multiple dynamic cores for dynamic perceptron cores. However, the dynamic
convolutional networks have to compress all the feature maps to calculate the attention
weights, which generates a lot of redundant information. A direct consequence is that it
brings massive computation and potential interference. For the purpose of illustration,
Figure 2 shows an example of visualizing the input image and the first layer of the dynamic
convolution. It is obvious that the feature maps marked with the same color are very
similar and have a great certain degree of redundancy. Therefore, it is crucial to extract the
useful feature maps and remove the redundant ones, thereby achieving energy efficiency
for the resource constrained IoT end devices.
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Figure 2. Visualize the input images of the dynamic MobileNet V1 and the feature maps of the 
first layer. Select similar feature maps from them and mark them with red, yellow, and green 
boxes. The feature maps marked with the same color are basically the same, so select representa-
tive feature maps can be used for input, and the remaining redundant information will increase 
the number of network parameters. 

In this work, it tries to extract representative feature information from all downsam-
pled feature maps in every layer. For the extraction method of useful spatial information, 
it has been found that the feature similarity between neighbors is higher through visual 
feature maps. To obtain better features, we used random channel reduction (RCR) and 
channel group reduction (CGR) to extract spatial information to minimize redundancy. 
However, since we extracted the useful spatial information, if we continue to use the or-
dinary average pooling in dynamic convolution to downsample the useful information, 
some of them will be lost. Therefore, we tried to use adaptive pooling to downsample the 
useful information that had been extracted to output a tensor of a specified size to reduce 

Figure 1. Model of dynamic convolutional network. In the figure, C is the channel size of feature
maps; H and W are the size of spatial information; α(x) is the Squeeze-and-Excitation (SE) attention
module; f ′(x) is the dynamic perceptron core; and Wi, bi is the dynamic core.
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Figure 2. Visualize the input images of the dynamic MobileNet V1 and the feature maps of the first
layer. Select similar feature maps from them and mark them with red, yellow, and green boxes. The
feature maps marked with the same color are basically the same, so select representative feature
maps can be used for input, and the remaining redundant information will increase the number of
network parameters.

In this work, it tries to extract representative feature information from all downsam-
pled feature maps in every layer. For the extraction method of useful spatial information,
it has been found that the feature similarity between neighbors is higher through visual
feature maps. To obtain better features, we used random channel reduction (RCR) and
channel group reduction (CGR) to extract spatial information to minimize redundancy.
However, since we extracted the useful spatial information, if we continue to use the
ordinary average pooling in dynamic convolution to downsample the useful information,
some of them will be lost. Therefore, we tried to use adaptive pooling to downsample the
useful information that had been extracted to output a tensor of a specified size to reduce
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the loss of useful information. The network is called Efficient Attention Mechanism for
Dynamic Convolution Network (EAM-DyNet). The main contributions of this work can be
summarized as follows:

• It extracts useful spatial information in proportion to the interval of all feature maps
to remove spatial features with similar features to reduce redundancy and the amount
of calculation.

• It maintains the useful information when downsampling compared to the existing
method of reducing spatial information to a one-dimensional vector.

• Through the verification of different types of networks of different widths, it was
found that our method effectively reduced the value of floating-point operations per
second (FLOPs) and improved the accuracy of the standard lightweight network and
dynamic network.

The rest of this paper is organized as follows. Section 2 reviews the related works.
Section 3 presents the proposed EAM-DyNet network. Section 4 evaluates its performance
by extensive experimental results. Finally, Section 5 concludes this work.

2. Related Works

In this section, we introduce the related works of lightweight networks, DyNet, and
the channel redundancy in CNNs.

2.1. Efficient Work

In recent years, lightweight networks [5–7,9,10,14,15] have been widely researched, re-
ducing complexity and parameters. MobileNet [5–7], SqueezeNet [14], and ShuffleNet [9,10]
are widely used. Among them, SqueezeNet [14] mainly describes that the 1 × 1 convo-
lution kernel replaces the 3 × 3 convolution kernel as the compression module to splice
with the original module to reduce the parameters. MobileNet V1 mainly uses depth-wise
separable convolution [16] instead of traditional convolution, that is, a 3 × 3 convolution
kernel is divided into depth-wise convolution and point-wise convolution [17], thereby
reducing parameters and improving computing speed. Based on MobileNet V1, MobileNet
V2 performs the linear transformation and adds a residual design by borrowing the idea of
ResNet, however, unlike ResNet, MobileNet V2 replaces the standard convolution with
depth-wise convolution to increase the number of channels inside the block. ShuffleNet
reduces the amount of FLOPs and improves the calculation speed of the network by per-
forming channel shuffle on the output of the group convolution. MnasNet [18] introduces
the attention module of Squeeze-and-Excitation [8] to the residual network based on Mo-
bileNet V2. MobileNet V3 uses platform-aware neural architecture [19–26] to optimize
each network block to search for the best network architecture. Later, Daniel et al. [27]
proposed blueprint separable convolution, which is different from depth-wise separable
convolution [16] in that pointwise convolution is performed first, and then depth-wise
convolution. Compared with current networks, DyNet can achieve better results than
static networks.

2.2. Dynamic Neural Networks (DyNet)

To increase the complexity of the model and improve the performance of neural
networks, researchers have tried to make deep neural networks dynamic [28–34]. Among
them, D2NN [29] combines backpropagation and reinforcement learning [35] to achieve
dynamic effects. SkipNet [30] uses reinforcement learning methods to decide whether
to implement a certain layer of the network to achieve dynamic goals. BlockDrop [31]
uses the method of reinforcement learning to determine whether to use residual blocks.
MSDnet [32] will determine whether the classifier outputs the result in advance, according
to the confidence of the prediction. SlimmableNets [33] is to jointly train sub-networks
of different widths in the same network model and share parameters. Once-For-All [34]
uses the progressive shrinking approach to train the network to make the accuracy of the
sub-network consistent with the effect of individual training. The above DyNet all have a
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static convolution kernel, but a dynamic network structure, while the recently proposed
CondConv [11] and dynamic convolution [13] have a dynamic convolution kernel but a
static network structure. CondConv [11] cleverly combines conditional calculation, inte-
gration technology, and attention mechanism, so that the network achieves high efficiency
while having fewer parameters. Its method is similar to that in [8,36–38]. Dynamic convolu-
tion [13] adds dynamic attention weights in the convolution so that the static weight of the
perceptron in the convolution is replaced by the dynamic weight affected by feature maps
to achieve the effect of a dynamic network. However, these DyNet have a lot of redundancy
while inputting feature maps, which increases the number of network parameters and
affects the speed of network operations.

2.3. The Channel Redundancy in Convolutional Neural Networks (CNNs)

In DyNet, there is a lot of redundancy because feature maps are used as the input
for calculating dynamic weights. In recent years, there are many models for solving
redundancy. GhostNet [39] first generates inherent features from ordinary convolutions,
and then obtains redundant feature maps through “cheap” linear operations to enhance
features and achieve the effect of reducing redundancy. SPConv [40] divides all input
channels into two parts; one part uses a k× k convolution kernel to extract the internal
information from the representative part, and the other part uses point convolution to
extract the detailed differences hidden in the uncertain redundant information. Through
this operation, the features with similar patterns, but less calculation can be determined,
thereby solving the problem of redundancy between feature maps. SPConv needs a
relatively large amount of calculation while extracting internal information. Therefore,
our model will compress the input feature information and extract the useful spatial
information in the channel. Based on solving the redundancy problem, it also reduces the
network calculation amount.

3. Proposed Efficient Attention Mechanism for Dynamic Convolution
Network (EAM-DyNet)

This section first describes the standard model of dynamic networks, then proposes
the network (denoted as EAM-DyNet) to address the issue of redundancy in the atten-
tion mechanism.

3.1. Lightweight Neural Networks

Lightweight neural networks use some convolution operations such as depth-wise sep-
arable convolution to make neural networks more lightweight. The depth-wise separable
convolution is composed of a depth-wise convolution and a point-wise convolution, and
the parameters of the convolution are smaller than that of standard convolution. Figure 3
shows these three convolution methods. Therefore, compared with the ordinary CNNs, it
has a smaller number of parameters and less calculation.
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Figure 3. (a) Standard convolution filters, (b) depth-wise convolution filters, (c) point-wise convolution filters. In the figure,
K× K is the kernel size; C is the number of input channels; H ×W is the size of spatial information; and N is the number of
output channels; * is a convolution operation.

In a lightweight neural network, it supposes an input image of size C× H ×W and
defines the training set as

Dimage
label = {(xt, yt)}, (1)
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where xt is the tth input image and yt is the label corresponding to this image.
In the training process, it will estimate the parameter θ = {W, b}, and its representa-

tion is:
θ = argmin

{W,b}
L( f (xt), yt), (2)

f (xt) = W ⊗ xt + b, (3)

where L(·) is the loss function; W is the weight during linear transformation; and b is the
corresponding bias.

3.2. The Standard Model of Dynamic Network

To increase the complexity of the network, DyNet process the weight matrix. DyNet
form a dynamic perceptron by adding an attention module to weight multiple dynamic
cores. The static convolution weights will become dynamic weights by adding an atten-
tion mechanism, so that the neural network will also become a dynamic network. The
calculations are as follows:

f ′(x) = W(x)⊗ x + b(x), (4)

W(x) =
k−1

∑
i=0

(αi(x)× kerneli), (5)

b(x) =
k−1

∑
i=0

(αi(x)× bi), (6)

k−1

∑
i=0

αi(x) = 1, (7)

Among them, kerneli is the input information in the ith convolution kernel; αi(x)
is used as the weight of attention to perform a weighted summation on the convolution
kernel information, and its value is between 0 and 1. W(x) is the dynamic weight matrix.
After that, the dynamic weight matrix and the convolution kernel are convolved. Finally, it
outputs the results after the activation function and optimized through batch processing.
Figure 4 shows the model diagrams of standard dynamic convolution (DyNet) and channel
reduction convolution (EAM-DyNet).
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3.3. Efficient Attention Mechanism for Dynamic Convolution Network (EAM-DyNet)

While calculating the attention weights, the networks need to compress the informa-
tion by the pooling layer and pass through two fully connected layers. A ReLU activation
function is required in the middle of the fully connected layer. The size of the output from
the fully connected layer should be consistent with the number of attention weights, that
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is, k, and finally, obtain the attention weight after softmax. In this process, we can select a
part of the size of the information as the input of the attention weight to better reduce its
redundancy because the input image will have a lot of redundant information. Therefore,

we conducted the following processing for the spatial information of channel size
_
C :

_
C = βC, (8)

Among them,
_
C is the channel size of the selected channel information, where β is a

value from 0 to 1, and the size of the picture information should be β× C× H ×W. As it
also verified different sizes of β and selected different spatial information through different
experiments, the accuracy rate will also change.

For the channel selection method, the main methods are channel adjacent reduction,
channel equal interval reduction, random channel reduction (RCR) and channel group
reduction (CGR).

The compression method is shown in Figure 5. If we assume the input channel
D = {D0, D1, · · · , Di, · · · , DC−1}.
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selection methods are as follows: (a) Channel adjacent reduction:
_
C channels are selected from

adjacent channels; (b) Channel equal interval reduction: 1/β channels are selected at every interval,

and βC channels are selected, namely
_
C channels; (c) Random channel reduction (RCR): take out

k channels randomly from C input channels; (d) Channel group reduction (CGR): divide C input
channels into k blocks and take out one channel from each block, when k channels are taken out at
random, it is recorded as CGR-Random; when taken out, the k largest channels from each block are
denoted as CGR-MAX.

Channel Adjacent Reduction: This method selects continuous spatial information

from the spatial information of channel size C. When selecting the channel of size
_
C , we

can select the first, middle, or last βC channels, and select that these channels are adjacent
and continuous. The formula can be expressed as:

_
D =

{
Dj, Dj+1, Dj+2, · · · , D

j+
_
C

}
, (9)

0 ≤ j ≤ C−
_
C − 1, (10)

Channel Equal Interval Reduction: To avoid the possibility of redundant information
generated between adjacent channels, it selects spatial information at equal intervals. When

selecting
_
C channels from the spatial information of channel size C, we will take one time
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every 1/β channels, then β× C channels are taken out, that is,
_
C channels. Its expression

is shown in Equation (11).

_
D =

{
D0, D 1

β
, D 2

β
, · · · , D β×C−1

β

}
, (11)

Random Channel Reduction (RCR): To reduce redundancy to a greater extent, it

randomly takes out
_
C from the spatial information of channel size C in this method. When

the value of
_
C is equal to the number of attention cores k, the effect is best by a series of

experiments. Its expression is shown in Equation (12).

_
D =

{
_
D0,

_
D1, · · · ,

_
D_

C

}
, (12)

_
D ⊆ D, (13)

Channel Group Reduction (CGR): In the RCR-based method, we can optimize it by
grouping these channels to avoid the uncertainty of using the RCR method. To obtain
the best spatial information of the k channels, it equally divides the C channels into k
blocks, selects one channel from each block, and selects k channels in total. When randomly
selecting from each block, it is called group random compression (CGR-Random). When
the maximum spatial information is selected from each block, it is called CGR-MAX. Its
expression is shown in Equation (14).

_
D =

{
_
D0,

_
D1, · · · ,

_
Dj, · · · ,

_
Dk

}
, (14)

_
Dj ⊆

{
D j×C

k
, · · · , D (j+1)×C

k

}
, (15)

In the process of addressing the attention weight, DyNet use pooling to compress
the images, but the ordinary pooling layer compresses an H ×W size image into a 1× 1
size image, which leads to the loss of spatial information due to the reduction in channels.
Therefore, to address this problem, EAM-DyNet uses adaptive pooling to compress the
channel information to output the channel information of the specified size. Finally, after
pooling, the size of the spatial information will be reduced by β2 times, that is, the size
of the spatial information should be β2 × H ×W at this time. In the adaptive pooling
layer, the output tensor size is determined by the input size, kernel size, and stride. The
calculation of the output size is as follows:

outputsize =
(inputsize + 2× padding− kernelsize)

stride
+ 1, (16)

Therefore, to obtain the output size we need, the adaptive pooling layer will automati-
cally adjust its kernelsize and stride to achieve an adaptive effect.

However, the choice of different pooling also has a certain impact on the experimental
results. Commonly used adaptive pooling layers include the adaptive average pooling
layer and adaptive maximum pooling layer. The average pooling layer divides the input
information into several groups, compresses these groups of data by averaging them, and
finally outputs the required results, while the maximum pooling layer compresses each
group of data by taking the maximum value. We can find which pooling layer is more
effective by comparing the accuracy of two pooling layers experimentally.

After this, we input the feature map with the size of β2 × C× H ×W into the fully
connected layer. After passing through the first fully connected layer, we reduced the
channel size to 10, then the channel size was reduced to k by the second fully connected
layer, which is the number of attention cores. In addition, there is the ReLU activation
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function between two fully connected layers. Finally, it uses softmax to obtain the attention
weights. However, when the softmax is set to 1 and multiple kernels cannot be optimized at
the same time, this will lead to slow training convergence speed and affect the experimental
results. Therefore, to address this low-efficiency problem, we set it to a larger temperature,
and the calculation method is as shown in the formula:

αi =
exp(

ci
τ
)

∑
j

exp(
cj

τ
)

, (17)

Among them, ci is the output result of the ith attention weight from the second fully
connected layer, and τ is the temperature. By setting the size of different temperatures, we
finally found that the training result would be more effective when τ is 30, and the final
accuracy rate will reach the highest.

4. Experimental Results

This section describes the experimental setup and numerous results.

4.1. Experimental Setup

This work mainly verified the performance of our model on image classification. All
experiments used the well-known Pytorch deep learning architecture. The experiment was
carried out on an UltraLAB graphics workstation. The workstation is equipped with 192 G
memory, 8 NVIDIA RTX-2080 graphics processors, and each graphics card had 8 G existing
memory. The image workstation used the Windows server operating system. We used
three standard benchmark datasets, namely CIFAR10, CIFAR100, and ImageNet100.

4.1.1. CIFAR10 and CIFAR100

The CIFAR 10/100 datasets [41] contained 10 and 100 categories and have
50,000 training images and 10,000 test images, with a size of 32 px × 32 px. Through [4,42],
we know that two datasets are to be trained for 200 epochs. We used SGD to optimize, and
its momentum and weight decay were respectively set to 0.9 an 10−4. Furthermore, we
used an adjustable learning rate, which was initially set to 0.1 and dropped by 0.1 times at
the 100th, 150th, and 180th epochs. To prevent overfitting [4,42], our image was increased
by up to 4 px during random horizontal flip and shift. For the input image during training,
we padded 4 pixels on each side of the image, and a 32 × 32 crop was randomly sampled
from the padded image or its horizontal flip. Through the above, data augmentation
operates to prevent overfitting during training.

4.1.2. ImageNet100

In the image classification experiment, the public dataset we used was the ILSVRC2012
dataset [43] including training images, evaluation images, and test images. Each group
had 1000 classes, of which 1,281,167 images were used for training, 50,000 images were
used for validation, and 50,000 images were used for the test. We took every 10 classes
from 1000 classes, took out 100 classes, and randomly selected 500 images from each class
in the train-set, and randomly took 50 images from the corresponding class in the test-set
to form ImageNet100.

Furthermore, we also used ratio enhancement [44], horizontal flip, and color dither-
ing [1] to adjust the image, which made the size 256 px. At this time, our batch size was set
to 128.

Training setup for MobilenetV1: We used an initial learning rate of 0.1 to train for
120 epochs and attenuate it by a factor of 0.2 at the 30th, 60th, and 90th epochs. The models
used SGD with a momentum of 0.9 and a weight decay of 10−4 for optimization.
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Training setup for MobilenetV2 and MobilenetV3: The initial learning rate was 0.05,
and was scheduled to reach zero within a single cosine period for 300 epochs. The models
used SGD with a momentum of 0.9 and a weight decay of 10−4 for optimization.

4.1.3. Baseline

This article mainly conducted verification on a lightweight network. The network
mainly selected MobilenetV1 × 1.0, MobilenetV2 × 1.0, MobilenetV3_small × 1.0, and Mo-
bilenetV3_large× 1.0 for verification and selected different widths from MobilenetV1× 0.25,
MobilenetV1 × 0.5, MobilenetV1 × 0.75, and MobilenetV1 × 1.0 for verification on dy-
namic networks with different widths. In addition, two GPUs were used when training
the MobilenetV2 × 1.0 and MobilenetV3_large × 1.0, and the rest of the models used a
single-core GPU.

4.1.4. Model

Suppose we input a picture of size C× H ×W; C is the channel size; and H ×W is
the channel information size. In this article, the number of attention cores k was 4, and we
used RCR and CGR to extract useful spatial information. Since the number of cores k was
4, we extracted the useful information of the four channels. Then, the adaptive average
pool will compress the spatial information of these four channels with the 5× 5 size of
the compressed output. The output passes through two fully connected layers (there is
a ReLU activation function between the two layers), where the output of the first fully
connected layer is 10, and the output of the second fully connected layer is the number
of attention cores k. Then, the input to the softmax function with temperature, where the
temperature τ was set to 30, the four attention weights were output as αi(x), and then

after the
k−1
∑

i=0
(αi(x)× kerneli) weighting operation to obtain the required weight of the

perceptron during convolution. After that, the output of the perceptron is processed by the
Batch-normal and ReLU activation function to obtain our improved convolution output.

Since the mid-channel in MobilenetV2 is very large, when using the CGR method
to reduce the channel, if a channel is randomly selected from each group, some useful
information will be lost and the experimental results will be affected. Therefore, the channel
with the largest tensor is extracted from each group, so that the extracted information is
more useful and the accuracy rate is higher. We marked this method as CGR-MAX in
the table.

4.2. Numerous Results
4.2.1. Baseline Results

For an input picture of size Cin × H ×W, if we assume that the output of convo-
lution is Cout and the kernel size is DH × DW , then it has Cin × DH × DW × Cout + Cout
parameters. In the dynamic convolution kernel, it is composed of dynamic attention and

dynamic convolution. If the input and output of the first fully connected layer are
_
C and

Cout1, the output of the second fully connected layer is k, and the output of pooling is

λ2 × H ×W. Therefore, the attention needs
_
C × Cout1 + Cout1 × k + Cout1 + k parameters

and the parameters of dynamic convolution are k × Cin × DH × DW × Cout + k × Cout.
Similarly, for the FLOPs of the network, the FLOPs required by each attention is O(α(x)) =

λ2 × H ×W ×
_
C + 2×

_
C × Cout1 + 2× Cout1 × k and the FLOPs of dynamic convolution

is O( f ′(x)) = (2× k× Cin × DH × DW + k− 1)× H ×W. For DyNet, when solving at-

tention parameters and FLOPs,
_
C = Cin. As the network depth increases, the value of

_
C

is larger. However, for EAM-DyNet, the size of
_
C is always equal to k. As the network

gets deeper, the value of
_
C of DyNet is much larger than k, so the parameters and FLOPs

are also higher than EAM-DyNet. For example, EAM-DyNet’s parameters and FLOPs
were reduced by 1.38 M and 6.15 M, respectively, relative to DyNet on MobilenetV1. On
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MobilenetV2, the parameters and FLOPs of EAM-DyNet were reduced by 2.27 M and
8.92 M relative to DyNet. However, the accuracy of EAM-DyNet was increased by 0.43%
and 0.56% compared to DyNet on two baselines.

The results of the top-1 accuracy on the baseline are shown in Table 1, in addition
to comparing the parameters and FLOPs of DyNet MobilenetV1 × 1.0, EAM-DyNet
MobilenetV1 × 1.0, DyNet MobilenetV2 × 1.0, and EAM-DyNet MobilenetV2 × 1.0. The
comparison results are shown in Table 2. From the experimental results, it was found
that the EAM-DyNet reduced the number of network parameters and the FLOPs value
compared to the DyNet. In addition, the accuracy of EAM-DyNet was lower than that of
DyNet. Among them, the CGR method was better on the CIFAR dataset, and the RCR
method on the ImageNet100 dataset was better. For MobilenetV1 × 1.0, the accuracy of the
CIFAR dataset can be increased by 0.45% and the accuracy of the Imagenet dataset could
be the largest increase by 0.43%. For MobilenetV2 × 1.0, it greatly reduced the number of
network parameters and increased the characterization ability of the network.

Table 1. The accuracy of different architectures on CIFAR10, CIFAR100, and ImageNet100.

Network
CIFAR10 CIFAR100 ImageNet100
Top-1 (%) Top-1 (%) Top-1 (%)

MobilenetV1 × 1.0 93.83 74.41 75.27
DyNet MobilenetV1 × 1.0 93.99 74.76 75.94

EAM-DyNet MobilenetV1 × 1.0 + RCR 93.61 74.83 76.37
EAM-DyNet MobilenetV1 × 1.0 + CGR 93.93 75.21 76.11

DyNet MobilenetV1 × 0.75 93.50 73.54 74.14
EAM-DyNet MobilenetV1 × 0.75 + RCR 93.49 73.88 74.67
EAM-DyNet MobilenetV1 × 0.75 + CGR 93.55 74.04 74.51

DyNet MobilenetV1 × 0.5 93.15 72.31 72.27
EAM-DyNet MobilenetV1 × 0.5 + RCR 92.70 72.85 72.93
EAM-DyNet MobilenetV1 × 0.5 + CGR 92.78 72.42 72.15

DyNet MobilenetV1 × 0.25 91.14 68.30 66.76
EAM-DyNet MobilenetV1 × 0.25 + RCR 91.01 68.61 68.50
EAM-DyNet MobilenetV1 × 0.25 + CGR 91.12 68.71 67.25

MobilenetV2 × 1.0 93.60 74.90 77.66
DyNet MobilenetV2 × 1.0 94.09 75.50 78.11

EAM-DyNet MobilenetV2 × 1.0 + RCR 94.07 75.23 78.67
EAM-DyNet MobilenetV2 × 1.0 + CGR-MAX 94.22 75.44 78.26

DyNet MobilenetV3_small × 1.0 91.97 73.10 69.22
EAM-DyNet MobileneV3_small × 1.0 + RCR 91.93 72.14 69.65

EAM-DyNet MobileneV3_ small × 1.0 + CGR-MAX 92.13 72.42 70.64
MobilenetV3_large × 1.0 93.70 75.20 76.36

DyNet MobilenetV3_large × 1.0 94.15 75.03 76.37
EAM-DyNet MobileneV3_large × 1.0 + RCR 94.00 74.77 76.62

EAM-DyNet MobileneV3_large × 1.0 + CGR-MAX 94.20 75.15 76.37

DyNet is a standard dynamic network, and EAM-DyNet was our model. After the ‘+’ is the method used to select
the channel. After the ‘×’ is the width of the network.

Table 2. The parameter value and FLOPs value of MobilenetV1 and MobilenetV2 in ImageNet100.

Network ImageNet100
Top-1 (%) Parameters FLOPs

DyNet MobilenetV1 × 1.0 75.94 14.27M 589.70M
EAM-DyNet MobilenetV1 × 1.0 + RCR 76.37 (+0.43) 12.89M (−9.6%) 583.55M
EAM-DyNet MobilenetV1 × 1.0 + CGR 76.11 12.89M (−9.6%) 583.55M

DyNet MobilenetV2 × 1.0 78.11 11.25M 336.34M
EAM-DyNet MobilenetV2 × 1.0 + RCR 78.67 (+0.56) 8.98M (−20.17%) 327.42M
EAM-DyNet MobilenetV2 × 1.0 + CGR 78.26 8.98M (−20.17%) 327.42M
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4.2.2. Ablation Studies Results

A series of ablation experiments were conducted on MobilenetV1 × 1.0. In these
experiments, we set the default number of attention cores k to 4, and the temperature τ of
softmax to 30.

The number of channels: The choice of channel size and number of channels determine
the degree to which the model reduces its redundancy. It defaults the pooling layer to
adaptive average pooling, and the output size of the pooling is 5× 5 spatial information.

When EAM-DyNet uses the RCR method with different sizes of channel on different
datasets, namely two channels, four channels, and eight channels. The experimental results
are shown in Table 3. After experimental verification, it was found that when the selected
channel was the same size as the attention core, and its accuracy rate reached the highest.
Compared with the standard static and standard dynamic networks, the EAM-DyNet
network increased by 1.1 and 0.43 percentage points.

Table 3. The accuracy of standard static network, standard dynamic network, and EAM-DyNet
when using the Random Channel Reduction (RCR) method to take out channels of different sizes on
MobilenetV1.

The Number of Channels (RCR)
CIFAR10 CIFAR100 ImageNet100

Top-1 (%) Top-1 (%) Top-1 (%)

DyNet MobilenetV1 × 1.0 93.99 74.76 75.94

EAM-DyNet MobilenetV1 × 1.0 (2 channels) 93.95 74.50 75.78
EAM-DyNet MobilenetV1 × 1.0 (4 channels) 93.61 74.83 76.37
EAM-DyNet MobilenetV1 × 1.0 (8 channels) 94.07 74.70 75.45

The methods of channel reduction: For the selection method of different channels, EAM-
DyNet uses 1/4C as the default size, and chooses 0 ∼ 1/4C, 1/4C ∼ 1/2C, 1/2C ∼ 3/4C,
3/4C~C, then takes every four channels to compare their results with the RCR and CGR
methods, and the results are shown in Table 4. In addition, it calculates the parameters and
FLOPs when choosing the channel of 1/4C size and choosing the channel with the RCR and
CGR method, the result of calculation is shown in Table 5. After comparing the FLOPs, the
parameters, and the accuracy rate of different methods, we found that when using the RCR
and CGR methods, the parameter amount and FLOPs were the lowest, but the accuracy
rate was high. The reason why the calculation amount is too high when 1/4C is selected
is because as the network becomes deeper, the number of channels will increase, and the
calculation amount will increase. However, the channels selected by RCR and CGR were
always four channels. Through the results in the two tables, we found that the parameters
and FLOPs of the RCR and CGR methods were reduced by 4.5 M and 257.75 M, but the
accuracy remained flat or even greater than the other method.

Table 4. The accuracy of standard static network, standard dynamic network, and EAM-DyNet in
different channel selection methods on MobilenetV1.

The Methods of Channels Selection
CIFAR10 CIFAR100 ImageNet100

Top-1 (%) Top-1 (%) Top-1 (%)

DyNet MobilenetV1 × 1.0 93.99 74.76 75.94

EAM-DyNet MobilenetV1 (take every 4 channels) 93.72 74.84 76.58
EAM-DyNet MobilenetV1 × 1.0 (0~1/4C) 93.79 74.38 75.92

EAM-DyNet MobilenetV1 × 1.0 (1/4C~1/2C) 93.90 75.18 75.20
EAM-DyNet MobilenetV1 × 1.0 (1/2C~3/4C) 93.62 75.03 75.80

EAM-DyNet MobilenetV1 × 1.0 (3/4C~C) 94.03 74.99 76.23

EAM-DyNet MobilenetV1 × 1.0(RCR) 93.61 74.83 76.37
EAM-DyNet MobilenetV1 × 1.0(CGR) 93.93 75.21 76.11



Appl. Sci. 2021, 11, 3111 12 of 15

Table 5. The parameters and FLOPs of different channel selection methods on EAM-DyNet
MobilenetV1.

Network ImageNet100
Top-1 (%) Parameters FLOPs

EAM-DyNet MobilenetV1 × 1.0 (1/4C) 76.58 13.48M 585.17M
EAM-DyNet MobilenetV1 × 1.0 + RCR 76.37 8.98M 583.55M
EAM-DyNet MobilenetV1 × 1.0 + CGR 76.11 8.98M 583.55M

The selection of pooling and its output size: Pooling is used to compress spatial
information. The pooling selection method and output size determine the degree of
retention of spatial information. In the experiment, our default channel size was 4, and the
channel method was RCR. For the choice of adaptive pooling, experiments were conducted
on adaptive average pooling and adaptive maximum pooling. The output size was set to
5× 5 by default. The experimental results are shown in Table 6. Experiments show that
the effects of the two poolings were not too different. Therefore, it used adaptive average
pooling by default.

Table 6. The accuracy rate when using different pooling on EAM-DyNet MobilenetV1.

The Selection of Pooling
CIFAR10 CIFAR100 ImageNet100

Top-1 (%) Top-1 (%) Top-1 (%)

DyNet MobilenetV1 × 1.0 93.99 74.76 75.94

EAM-DyNet MobilenetV1 × 1.0 (AdaptAvgPool) 93.61 74.83 76.37
EAM-DyNet MobilenetV1 × 1.0 (AdaptMaxPool) 93.89 74.91 76.50

We made an additional experiment without retaining spatial information. This experi-
ment was to train in the ImageNet100 dataset. The baseline was MobilenetV1. It directly
downsampled the reduced channel to one dimension. We found that it caused the loss
of useful information. The experiment found that its accuracy was 76.02%. Therefore,
to preserve the spatial information of some selected channels when downsampling, we
chose adaptive pooling. To verify that adaptive pooling could retain spatial information,
we selected the output spatial information of different sizes for comparison. The selected
sizes were 3× 3, 5× 5, and 7× 7. The comparison results are shown in Table 7. Through
the results, it was found that when it preserved the spatial information on some selected
channels, the accuracy was higher than when downsampling the reduced channel to one
dimension. In addition, when 5× 5 was selected, the effect was better.

Table 7. The accuracy of adaptive pooling with different output sizes on EAM-DyNet MobilenetV1.

The Output Size of AdaptAvgPool
CIFAR10 CIFAR100 ImageNet100

Top-1 (%) Top-1 (%) Top-1 (%)

DyNet MobilenetV1 × 1.0 93.99 74.76 75.94

EAM-DyNet MobilenetV1 × 1.0 (3 × 3) 94.08 74.56 75.84
EAM-DyNet MobilenetV1 × 1.0 (5 × 5) 93.61 74.83 76.37
EAM-DyNet MobilenetV1 × 1.0 (7 × 7) 93.73 74.27 76.27

5. Conclusions

In this work, we found that there is redundant information in the dynamic convo-
lutional network with an attention mechanism. To solve this problem, we proposed an
effective dynamic convolutional network, EAM-DyNet, which can reduce the redundancy
of spatial information by reducing the number of channels in the feature map and extract
useful spatial information. Then, due to the loss of useful information when downsampling
the information, it uses an adaptive average pooling method to maintain the information
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integrity. The effectiveness of our model was verified through experiments on different
datasets and different baseline networks. The results showed that EAM-DyNet not only
increased the accuracy, but also reduced the number of network parameters and FLOPs
compared to the existing approaches.
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