Different ISO Standards’ Wear Kinematic Profiles Change the TKA Inlay Load
Abstract
:1. Introduction
2. Materials and Methods
2.1. General
2.2. Experimental Setup of the Wear Simulator for Validation of the Finite Element Model
2.3. Computational Model
Kinematic Validation and Basic Model for ISO 14243-1:2002 (Force-Controlled)
2.4. Numerical Model Validation
2.5. Model Variation 1: New ISO 14243-1:2009 (Force-Controlled)
2.6. ISO 14243-3:2014 Model (Displacement-Controlled)
3. Results
3.1. Validation
3.2. Comparison of FC-2002, FC-2009, and DC-2014 with the CR Inlay
3.3. Comparison of Different Inlay Designs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grimberg, A.; Volkmar, J.; Melsheimer, O. Jahresbericht 2019; EPRD Deutsche Endoprothesenregister: Berlin, Germany, 2019. [Google Scholar]
- Kurtz, S.; Ong, K.; Lau, E.; Mowat, F.; Halpern, M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J. Bone Jt. Surg. Am. 2007, 89, 780–785. [Google Scholar] [CrossRef]
- Schwenke, T.; Orozco, D.; Schneider, E.; Wimmer, M. Differences in wear between load and displacement control tested total knee replacements. Wear 2009, 267, 757–762. [Google Scholar] [CrossRef]
- Brockett, C.L.; Abdelgaied, A.; Haythornthwaite, T.; Hardaker, C.; Fisher, J.; Jennings, L.M. The influence of simulator input conditions on the wear of total knee replacements: An experimental and computational study. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2016, 230, 429–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sutton, L.G.; Werner, F.W.; Haider, H.; Hamblin, T.; Clabeaux, J.J. In vitro response of the natural cadaver knee to the loading profiles specified in a standard for knee implant wear testing. J. Biomech. 2010, 43, 2203–2207. [Google Scholar] [CrossRef] [PubMed]
- Mell, S.P.; Fullam, S.; Wimmer, M.A.; Lundberg, H.J. Finite element evaluation of the newest ISO testing standard for polyethylene total knee replacement liners. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2018, 23, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-H.; Li, H.; Dong, X.; Zhao, F.; Cheng, C.-K. Comparison of ISO 14243-1 to ASTM F3141 in terms of wearing of knee prostheses. Clin. Biomech. 2019, 63, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Kretzer, J.P.; Jakubowitz, E.; Sonntag, R.; Hofmann, K.; Heisel, C.; Thomsen, M. Effect of joint laxity on polyethylene wear in total knee replacement. J. Biomech. 2010, 43, 1092–1096. [Google Scholar] [CrossRef] [PubMed]
- International Organization for Standardization. International Standard, Implants for Surgery—Wear of Total Knee-Joint Prostheses—Part 1: Loading and Displacement Parameters for Wear-Testing Machines with Load Control and Corresponding Environmental Conditions for Test; ISO: Geneva, Switzerland, 2002. [Google Scholar]
- Gispert, M.; Serro, A.; Colaco, R.; Saramago, B. Friction and wear mechanisms in hip prosthesis: Comparison of joint materials behaviour in several lubricants. Wear 2006, 260, 149–158. [Google Scholar] [CrossRef]
- Kyomoto, M.; Iwasaki, Y.; Moro, T.; Konno, T.; Miyaji, F.; Kawaguchi, H.; Takatori, Y.; Nakamura, K.; Ishihara, K. High lubricious surface of cobalt–chromium–molybdenum alloy prepared by grafting poly (2-methacryloyloxyethyl phosphorylcholine). Biomaterials 2007, 28, 3121–3130. [Google Scholar] [CrossRef] [PubMed]
- Woiczinski, M.; Steinbrück, A.; Weber, P.; Müller, P.E.; Jansson, V.; Schröder, C. Development and validation of a weight-bearing finite element model for total knee replacement. Comput. Methods Biomech. Biomed. Engin. 2016, 19, 1033–1045. [Google Scholar] [CrossRef] [PubMed]
- International Organization for Standardization. International Standard, Implants for Surgery—Wear of Total Knee-Joint Prostheses—Part 1: Loading and Displacement Parameters for Wear-Testing Machines with Displacement Control and Corresponding Environmental Conditions for Test; ISO: Geneva, Switzerland, 2009. [Google Scholar]
- International Organization for Standardization. International Standard, Implants for Surgery—Wear of Total Knee-Joint Prostheses—Part 3: Loading and Displacement Parameters for Wear-Testing Machines with Displacement Control and Corresponding Environmental Conditions for Test; ISO: Geneva, Switzerland, 2014. [Google Scholar]
- Grupp, T.M.; Saleh, K.J.; Mihalko, W.M.; Hintner, M.; Fritz, B.; Schilling, C.; Schwiesau, J.; Kaddick, C. Effect of anterior–posterior and internal–external motion restraint during knee wear simulation on a posterior stabilised knee design. J. Biomech. 2013, 46, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Grupp, T.M.; Schroeder, C.; Kim, T.K.; Miehlke, R.K.; Fritz, B.; Jansson, V.; Utzschneider, S. Biotribology of a mobile bearing posterior stabilised knee design-effect of motion restraint on wear, tibio-femoral kinematics and particles. J. Biomech. 2014, 47, 2415–2423. [Google Scholar] [CrossRef] [PubMed]
- Barnett, P.I.; Fisher, J.; Auger, D.D.; Stone, M.H.; Ingham, E. Comparison of wear in a total knee replacement under different kinematic conditions. J. Mater. Sci. Mater. Med. 2001, 12, 1039–1042. [Google Scholar] [CrossRef] [PubMed]
- Knight, L.A.; McEwen, H.M.; Farrar, R.; Stone, M.H.; Fisher, J.; Taylor, M. The Influence of the Wear Path on the Wear Rates in Total Knee Replacement. In Proceedings of the 2003 Summer Bioengineering Conference, Key Biscayne, FL, USA, 25–29 June 2003. [Google Scholar]
- McEwen, H.M.; Barnett, P.I.; Bell, C.J.; Farrar, R.; Auger, D.D.; Stone, M.H.; Fisher, J. The influence of design, materials and kinematics on the in vitro wear of total knee replacements. J. Biomech. 2005, 38, 357–365. [Google Scholar] [CrossRef]
- Zietz, C.; Reinders, J.; Schwiesau, J.; Paulus, A.; Kretzer, J.; Grupp, T.; Utzschneider, S.; Bader, R. Experimental testing of total knee replacements with UHMW-PE inserts: Impact of severe wear test conditions. J. Mater. Sci. Mater. Med. 2015, 26, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Godest, A.C.; Beaugonin, M.; Haug, E.; Taylor, M.; Gregson, P.J. Simulation of a knee joint replacement during a gait cycle using explicit finite element analysis. J. Biomech. 2002, 35, 267–275. [Google Scholar] [CrossRef]
Inlay Design | ISO Norm 14243-1:2002 (FC) | ISO Norm 14243-1:2009 (FC) | ISO Norm 14243-3:2014 (DC) | |
---|---|---|---|---|
- | - | Without PCL | With PCL | - |
Cruciate-Retaining (CR) | anterior/posterior spring: 30 N/mm torsional spring: 600 Nmm/° | - | anterior spring: 44 N/mm posterior spring: 9.3 N/mm torsional spring: 360 Nmm/° Note: First ±2.5 mm (a/p spring) and ±6° (torsional spring) without constraint | No spring—defined via displacement control |
Deep Dish (DD) | anterior/posterior spring: 30 N/mm torsional spring: 600 Nmm/° | - | anterior spring: 44 N/mm posterior spring: 9.3 N/mm torsional spring: 360 Nmm/° Note: First ±2.5 mm (a/p spring) and ±6° (torsional spring) without constraint | No spring—defined via displacement control |
Ultra-Congruent (UC) | anterior/posterior spring: 30 N/mm torsional spring: 600 Nmm/° | anterior spring: 9.3 N/mm posterior spring: 9.3 N/mm torsional spring: 360 Nmm/° Note: First ±2.5 mm (a/p spring) and ±6° (torsional spring) without constraint | - | No spring—defined via displacement control |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bauer, L.; Kistler, M.; Steinbrück, A.; Ingr, K.; Müller, P.E.; Jansson, V.; Schröder, C.; Woiczinski, M. Different ISO Standards’ Wear Kinematic Profiles Change the TKA Inlay Load. Appl. Sci. 2021, 11, 3161. https://doi.org/10.3390/app11073161
Bauer L, Kistler M, Steinbrück A, Ingr K, Müller PE, Jansson V, Schröder C, Woiczinski M. Different ISO Standards’ Wear Kinematic Profiles Change the TKA Inlay Load. Applied Sciences. 2021; 11(7):3161. https://doi.org/10.3390/app11073161
Chicago/Turabian StyleBauer, Leandra, Manuel Kistler, Arnd Steinbrück, Katrin Ingr, Peter E. Müller, Volkmar Jansson, Christian Schröder, and Matthias Woiczinski. 2021. "Different ISO Standards’ Wear Kinematic Profiles Change the TKA Inlay Load" Applied Sciences 11, no. 7: 3161. https://doi.org/10.3390/app11073161
APA StyleBauer, L., Kistler, M., Steinbrück, A., Ingr, K., Müller, P. E., Jansson, V., Schröder, C., & Woiczinski, M. (2021). Different ISO Standards’ Wear Kinematic Profiles Change the TKA Inlay Load. Applied Sciences, 11(7), 3161. https://doi.org/10.3390/app11073161