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Abstract: The development of multi-variety, mixed-flow manufacturing environments is hampered
by a low degree of automation in information and empirical parameters’ reuse among similar process-
ing technologies. This paper proposes a mechanism for knowledge sharing between manufacturing
resources that is based on cloud-edge collaboration. The manufacturing process knowledge is coded
using an ontological model, based on which the manufacturing task is refined and decomposed
to the lowest-granularity concepts, i.e., knowledge primitives. On this basis, the learning process
between devices is realized by effectively screening, matching, and combining the existing knowledge
primitives contained in the knowledge base deployed on the cloud and the edge. The proposed
method’s effectiveness was verified through a comparative experiment contrasting manual configura-
tion and knowledge sharing configuration on a multi-variety, small-batch manufacturing experiment
platform.

Keywords: cloud-edge collaboration; edge computing; IoT; manufacturing resources; knowledge
sharing; ontology; smart manufacturing

1. Introduction

In recent years, the manufacturing model has shown a shift in personalized cus-
tomized production, leading to the need for manufacturing companies to complete more
frequent manufacturing task adjustments in a shorter time-to-market cycle, which requires
the manufacturing system to quickly complete the production line planning and scheduling
layer refactoring. In the existing multi-product mixed-flow manufacturing production
line, improving the production ramp-up time during the reconfiguration process will be a
key factor in achieving production reconfiguration. However, traditional manufacturing
resources are limited by their hardware computing capabilities, and a lot of human interven-
tions are required in the process of complex task reconstruction, such as re-programming
and commissioning. With the development of information technology, the Internet of
Things [1,2], cloud computing [3,4], edge computing [5,6], big data, and AI (artificial in-
telligence) [7] technologies have become more and more extensive in the manufacturing
field [8]. In this context, the cloud-edge collaborative architecture has given stronger
computing intelligence capabilities to edge nodes such as manufacturing resources [9],
making it possible to share information and learn knowledge between manufacturing
resources. On this basis, the study of task decomposition and task primitive modeling to
build a resource knowledge base, to realize the sharing of processing experience between
equipment will be able to effectively improve the ramp-up time of production [10].

To optimize the data transmission in the intelligent manufacturing process and meet
the requirements of the complex environment, Li et al. [11] proposed a solution to optimize
the edge computing network through software-defined network management physical
device interfaces and prioritize different data streams. Combine path differences and time
limits to obtain the best routing path. Wan et al. [3] used a vertically integrated four-layer
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CaSF (cloud-assisted smart factory) architecture to combine artificial intelligence and cloud
computing to improve the scalability and reconfigurability of smart factories. Based on the
existing cloud computing, fog computing, and edge computing, Qi et al. [12] proposed a
hierarchical reference architecture for intelligent manufacturing and applied it to the digital
twin workshop to better meet the needs of intelligent manufacturing applications. Aiming
at the complex energy consumption problem of manufacturing clusters, Chen et al. [13]
used energy perception and load balancing methods to effectively schedule equipment
in smart factories. Yang [14] and others introduced an edge gateway that connects and
manages plant equipment on the edge side of the cloud-side collaboration architecture and
uses the edge gateway to respond to delay-sensitive applications in real-time. To realize
the reuse of manufacturing process knowledge, Li et al. [15] proposed a metadata-based
modeling method for manufacturing resource ontology, which solves the problem of hetero-
geneous description of manufacturing resource ontology in the cloud environment through
the standardized description of the ontology. In terms of similar robot service configuration,
Yang et al. [16] proposed an ontology-based service configuration method, which develops
reusable service configuration by combining ontology and standard network interfaces.
Moritz [17] researched the search of semantic environment model and map knowledge
base based on the information exchange network between robots and used the mobile
operation control of robots to reuse service configuration. Through the analysis of the
design process and the manufacturing process, Peter et al. [18] proposed a scheme to use
design experience and equipment failure experience as knowledge to realize experience
reuse through ontology modeling.

Although the above literature has made certain research on edge computing and
knowledge sharing, there are still some problems: (1) In the traditional cloud edge structure,
the cloud carries more computing and control tasks. When the amount of data increases
rapidly, it will put a lot of pressure on the transmission network, and the centralization
of control and storage will increase the dependence of the entire system on the cloud;
(2) the existing ontology modeling in the industrial field is mostly based on equipment
self-generation, which cannot fully implement the manufacturing process; (3) the generality
of the existing learning process knowledge is not strong, and most of them can only learn
the same or highly similar process. Therefore, based on the processing environment of
multi-variety manufacturing, this paper proposes a cloud-side collaborative manufacturing
resource knowledge sharing mechanism, which provides a new solution for the mutual
learning and knowledge-sharing of manufacturing resources. The contribution of this
article mainly includes the following three aspects.

• Adopting an overall communication architecture based on cloud-edge collaboration,
and deploying an intelligent manufacturing knowledge sharing system at the edge,
realizing the combination of local learning and cloud learning between devices.

• Combining ontology to standardize, formalize and abstract the equipment attributes,
manufacturing process, environmental restrictions, and equipment action execution
effects involved in the field of intelligent manufacturing, and provide a fine-grained
decomposition plan for the manufacturing process.

• A matching mechanism of knowledge search and reuse is proposed so that the pro-
cessing experience of manufacturing resources can be reused.

The remainder of this article is organized as follows. Section 2 proposes a data
communication network architecture based on cloud-edge collaboration. Section 3 defines
the manufacturing resources’ ontology structure and combines the production process
elements to establish a semantic model enabling task decomposition. Section 4 puts forward
the similarity matching algorithm for knowledge reuse based on task decomposition.
Section 5 verifies the proposed knowledge sharing mechanism’s effectiveness in a multi-
variety mixed production line prototype platform and discusses the current problems and
future research directions. Finally, Section 6 briefly summarizes the work.
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2. System Architecture

As the number of communication data nodes in the manufacturing system rises, the
data volume increases and the equipment description becomes more detailed. This pa-
per adopts the concept of cloud-edge collaboration and constructs data communication
network architecture in a manufacturing environment to enable the reuse of multi-variety
mixed-flow manufacturing and processing experience. The edge functions include con-
structing the processing actions’ knowledge ontology, decomposing different task execution
processes’ actions, orderly combining the existing knowledge action primitives to obtain
complex task-oriented processing procedures, storing the local resources and knowledge,
and performing the matching for knowledge reuse. The cloud functions include deploying
the overall manufacturing environment knowledge base, enabling the interaction between
users and managers and the system, and supplementing and timely updating the edge-side
knowledge.

The system’s framework is shown in Figure 1, which is composed of three parts: the
manufacturing resource layer, the edge layer, and the cloud layer. The current manufac-
turing processes are shaped by the requirements regarding products’ multi-variety, small
batches, and high personalization and customization. In such multi-variety mixed-flow
manufacturing systems, user needs are obtained directly through the cloud. After the user
places an order on the web page, the order data is passed through the cloud, which, in
turn, communicates with the edge server responsible for processing control. The edge
server disassembles and refines the orders’ processing tasks. After the processing proce-
dure is determined, the specific execution plan is passed to the lowest layer (i.e., physical
manufacturing resources). Once the manufacturing resource processing terminates, the
processing completion status is set. The processing procedure’s data is summarized, and
the edge layer’s and cloud layer’s knowledge bases are updated. Compared with the
existing cloud-edge collaboration three-tier architecture, to realize the knowledge sharing
in the manufacturing environment better, we have deployed task-related functions on the
edge side. In the data upload process, in addition to data preprocessing, the edge side will
also decompose the processing tasks, extract reusable knowledge from the processing data
and update the knowledge base. During the downward process of the control instruction,
the edge side will decompose the task and find the knowledge primitives that can complete
the task from the knowledge base. Effectively control the operation of manufacturing
resources after the combination of knowledge primitives.
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Figure 1. Data communication network architecture based on cloud-edge collaboration. 
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the edge side. Contrary, when the edge knowledge base does not find a matching task, 
the knowledge can be obtained through cloud communication for a wider search. 
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Manufacturing process data is characterized by large transmission volume [19], low
latency, and high security. Using conventional cloud solutions for data communication
results in high data transmission bandwidth costs and large delays. Therefore, the edge
layer is deployed on the resource side to perform data preprocessing and caching, alleviat-
ing the transmission network’s pressure. The edge layer is composed of two functional
modules responsible for data transmission and data processing. The data transmission
module includes intelligent edge gateways and wireless network cluster head nodes. The
data processing module includes edge computing servers and edge knowledge bases,
which perform processing tasks on the near-resource side, decompose and reorganize
the equipment, and enable the equipment ontology modeling and knowledge extraction.
The cloud-edge collaborative system architecture extracts knowledge that is suitable for
manufacturing resources. The knowledge that is frequently used can be directly obtained
on the edge side. Contrary, when the edge knowledge base does not find a matching task,
the knowledge can be obtained through cloud communication for a wider search.

3. System Realization

The use of ontologies enables abstraction, standardization, and formalization of equip-
ment attributes and their relationships within the intelligent manufacturing field. Therefore,
reusable knowledge extraction and storage can be achieved through the equipment’s onto-
logical modeling and processing. Due to its ease of use and maintainability, this research
utilizes the open-source software Protégé with a graphical user interface to construct the
devices’ ontology. Compared with the existing research on ontology modeling in the man-
ufacturing environment, the ontology model construction method proposed in this paper
is developed around the manufacturing task, not only modeling the physical resources
involved in the manufacturing process, but also the surrounding environment elements
related to the resource, the evaluation of the execution effect, and the matching degree
of the action and the task. In the description of the manufacturing process, this article
also proposes a task decomposition scheme that allows it to adopt a more fine-grained
representation method, and also provides more knowledge materials for the reuse of
knowledge.

The data flow of system operation is shown in Figure 2, including two parts: data
uplink and data downlink. When data collection is performed, the edge server will first
check the data collection node. If the local node does not have a mapping relationship with
the mid-node of the ontology model, the mapping relationship will be established based
on the characteristics of the data and the node type, and then enter the task decomposition
steps, and collect knowledge based on the decomposed action primitives. After completing
the storage of the local knowledge base, upload and update the cloud knowledge base.
When reusing knowledge, the local server will first decompose the target task, and then
perform similar task matching based on the action meta-model. If there is not enough
knowledge available locally, it will perform a cloud knowledge query. After finding enough
action primitives, the edge server will combine tasks and complete the configuration of
local resources. As for the establishment of the ontology model and the task decomposition
scheme, it will be described in the latter part of this section.

3.1. Establishing the Semantic Model of Manufacturing Resources

Intelligent manufacturing’s physical resources include equipment used in a series of
intermediate processes such as product processing, packaging, and transportation. The
knowledge sharing realization requires organizing various links between manufactur-
ing resources into a unified knowledge base to facilitate knowledge storage and recall.
This section introduces the integrated ontology and semantic modeling of manufacturing
resources.
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The manufacturing resources’ ontology structure can be represented by a four-tuple
{C, R, S, P} [20], where C is a set of ontological classes, R represents a set of relations between
the ontological classes, S denotes a set of hierarchical relationships between classes (that is,
the inheritance and realization of class relationships), and P is a set of other relationships
between classes. Consider, for example, an ontology model O1 = {(x1, x2, x3, x4), (r1, r2),
((x1, x2), (x1, x3), (x3, x4)), (r1, (x2, x3); r2, (x2, x4))}. Here, the classes involved are x1, x2, x3,
and x4. According to the hierarchical relationship set, x2 and x3 are both subclasses of x1,
while x4 is a subclass of x3. In addition to inheritance and implementation between classes,
there are two other relationships, r1 and r2, of which r1 is the relationship between x2 and
x3, and r2 is the relationship between x2 and x4.

The central concept in the manufacturing resources’ ontology is a manufacturing
task, abstracted in accordance with the four-tuple definition. Based on this abstraction,
the corresponding semantic model is constructed, as shown in Figure 3. The task-based
ontology model (Task-Based Knowledge, TBK) is defined as:

TBK = {Environment, Actions, PhysicalResources, ResultEvaluation}, (1)

and comprises the manufacturing resource objects (PhysicalResources), environmental fac-
tors (Environment), execution actions (Actions), and effect evaluation (ResultEvaluation)
involved in the execution process for conceptual refinement. The objects in the man-
ufacturing process include raw materials and manufacturing resources. The attributes
used include the equipment’s name, number, physical size, capabilities, and the process-
ing operations that can be performed. Environmental factors record the manufacturing
task’s processing environment, such as space, position, and the manufacturing process
requirements regarding, for example, temperature, light, and air quality. The execution
action module includes the action level classification, the action sequence combination,
and the processing procedure record, thus covering the process’s sequence information
and state. Finally, the effect evaluation results from the previous executions using the
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current knowledge and includes each action’s execution time cost, product quality, and
time consumed.
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3.2. Task Model Decomposition

Each product’s manufacturing process includes multiple manufacturing resources’
action coordination. To extract and apply the manufacturing process experience, task and
action models need to be decomposed, hierarchically divided, and described by a basic
combination of action primitives. Additionally, the manufacturing process provides a clear
hierarchical structure for subsequent knowledge reuse. This work embodies the hierarchi-
cal structure and logical relationship between the actions by ontologically modeling the
manufacturing process’s actions.

Specifically, as shown in Figure 4, the execution actions’ levels can be divided into
the following: task-based actions (ActionsOnTask), station-based actions (ActionsOnStation),
and the bottommost action primitives (PrimitiveActions). Task-based actions state the man-
ufactured product’s purpose or a function. Station-based actions are derived from the
higher-level actions according to the processing procedure and are combined with the
manufacturing process’s characteristics. The actions are defined for each manufacturing
station, and the action primitives are used for processing. The process is refined and decom-
posed, and actions are decomposed and combined from the manufacturing resources’ level.
Reusable action control information is obtained by decomposing different manufacturing
processes to the primitive level and then reorganizing the action primitives to construct the
new task.
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As an example, Figure 5 outlines a simplified engraving processing task. The task’s
execution needs to be based on the material information, the processing object’s model,
the processing equipment model, and the manufacturing process information. From the
user’s order, through a series of processes such as order arrival, loading, cutting, product
packaging, and unloading, a product that meet the user’s needs is obtained. These processes
are engraving process’s sub-tasks from the hierarchical structure perspective. Different
processing procedures consist of various multi-action manufacturing resources’ execution
processes (e.g., the cutting procedures’ subdivision). From the material’s arrival to the
end of the processing and returning to the pallet, it is necessary to move the manipulator
and clamp the material successively. The material is obtained, placed, processed using
the manufacturing tools, taken out, and finally put back into the pallet, forming a series
of non-decomposable, primitive actions in the processing procedure. Thus, the complex
manufacturing process involving multiple resources is decomposed into tasks and becomes
a combination of action primitives, each corresponding to a single action of an individual
device. Each new processing task is decomposed and refined, and the original action
primitive combination is used to reuse the original manufacturing resource knowledge.
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4. Knowledge Reuse Matching

When the intelligent manufacturing production line is altered due to equipment failure
or the addition of new manufacturing resources to the process, it is necessary to study and
learn the manufacturing resource processing experience. Thus, similar processing tasks
in the knowledge base should be extracted, which requires establishing a task matching
mechanism. The proposed task-oriented manufacturing resource ontology forms a basis
for the matching mechanism that enables knowledge reuse. This section analyzes such a
mechanism from the perspective of between-device knowledge exchange and finds new
application scenarios for the original resource operation rules.

Complete manufacturing process matching involves considering multiple task model
levels. Refining the search objects to action primitives improves the knowledge reusability
and cross-domain practicability. To this end, this article adopts the breadth-first search
method. Specifically, when a new manufacturing task is generated or a new resource
is added to production, the mechanism first obtains the processing knowledge from the
module where the resource is located. A similar task experience is then searched and, if
found, used to build a direct learning data stream in the module. If no similar processing
modules are found, the cloud platform is connected to search for similar tasks. The search
algorithm’s pseudo-code implementation is given in Algorithm 1, and its explanation is as
follows.
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Algorithm1. Knowledge reuse similarity matching algorithm

Input: Target task, set of weights {w1, w2, w3, w4, w5}
Output: Task model with the highest matching degree
01 Start:
02 for i← 1 to m do
03

→
v = (r, s, a, e)→→v h = (rh, sh, ah, eh)

04 if (rhi == 0) then
05 wn ∗ rhi = −wn
06 else
07 wn ∗ rhi = wn
08 end if
09 (rh, sh, ah, eh)→(wrrh, wssh, waah, weeh)
10 Qn = wrrh + wssh + waah + weeh
11 if (Qni > 0) then
12 Sni = 1
13 else
14 Sni = 0
15 end if
16 for j← 1 to n do
17 Calculate the Hamming distance
18 if Dis ≤ 3 then
19 cj ∈ Cl
20 Evaluate the execution effect
21 end if
22 end for
23 Extract matching action primitives
24 Update (model);
25 end for
26 end function

The rapid matching mechanism for knowledge reuse assumes that the target task is
composed of m action primitives. Let n denote the number of action primitive models on
the edge of the knowledge base. The algorithm searches for the task model with the highest
matching degree. At the algorithm’s start, the edge server decomposes the target task and
traverses the action primitives. While learning action primitives, the feature vectors

→
v

are extracted based on action i’s ontology model and include the equipment resources r,
related skills s, action description a, and environmental conditions e. Thus, the vector
can be expressed as

→
v = (r, s, a, e). The ontology model involves various data types. To

facilitate subsequent processing and comparison, a variety of data type conversions are
realized by calculating the feature vector’s hash value, and the feature vector is converted
into an n-bit digital signature rh composed of zeros and ones. The feature vectors’ degree of
influence in knowledge learning is different, as indicated by the associated weight values.
The set of weights is denoted {w1, w2, w3, w4, w5}. If the weighting process encounters a
non-zero value (i.e., a one), the hash value is multiplied by the weight wn. Otherwise, the
weight wn is multiplied by −1. After the weighting calculation is completed, it is added
vertically and merged into an n-bit sequence string signature Qn. After dimensionality
reduction, the action primitive’s standardized signature Sn is obtained. The Hamming
distance Dis between the standardized signatures is utilized to judge the similarity between
the actions. Once a similar action sample set Cl is found, the knowledge reuse impact
is evaluated on qualified samples. The action primitives with high similarity and good
execution effect should be reused. Each action primitive’s execution plan is determined and
then reorganized to obtain the task-oriented execution plan’s completeness. The definition
of all symbols is shown in Table 1.
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Table 1. Definition of Symbols.

Symbol Definition
→
v Feature vector
i Action
r Resource
s Skill
a Action Description
e Environment
rh Digital signature
wn Weight
Qn Serial signature
Sn Standardized signature
Cl Action collection

5. Experiment

This section uses a multi-variety, personalized, and customized mixed production
line prototype platform to verify the feasibility of the proposed cloud-edge collaborative
mechanism for knowledge sharing between manufacturing resources. The conducted
experiment contrasts the newly added equipment’s technological processes after learning
the manufacturing and processing cycle with those of the original equipment.

5.1. Prototype Platform and Manufacturing Tasks

A prototype platform of a multi-variety, mixed-flow intelligent manufacturing pro-
duction line is shown in Figure 6. The main system workflow is as follows. First, the user
utilizes a web page or a mobile app to select the product’s type, quantity, and personalized
pattern. The user order is completed in the cloud. Once recorded, the order is issued
directly to the manufacturing resource edge, generating the control flow related to the
processing task. The control flow drives each manufacturing resource to perform the
current processing task. The equipment utilization is optimized through a high degree of
coordination and knowledge obtained in previous processing operations. The manufactur-
ing production line’s efficiency is reflected in the multi-task collaborative production and
dynamic production line reconfiguration. The mixed-flow manufacturing functions incor-
porated in the prototype platform to date include, for example, custom wood carving crafts
processing, personalized U disk customization, and Bluetooth remote control assembly.
In the prototype platform, Robot1 and CNC1 are matched, as well as Robot2 and CNC2,
and are responsible for the clamping and engraving process of wood carving originals.
The laser machine performs laser printing according to the pattern and text selected by
the user when placing the order. Loading machine loads the product packaging/box.
Robot3 and Robot4 cover the processed product packaging, whereas Robot5 uses machine
vision to select the required raw materials for loading operations. The final products in the
packaging box are uniformly unloaded. The specific functions of manufacturing resources
are shown in Table 2. The prototype platform involved in this experiment is a multi-variety
mixed-flow platform, so the order of each station in the processing process cannot only
satisfy a single product manufacturing process. To solve this problem, we have adopted
a method of station matching. When the product passes through the station, the product
manufacturing information will be read. If the product needs to be processed by this
station, it will enter the corresponding production branch line, and if it is not needed, it
will move directly to the next station.
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Table 2. Manufacturing resource function description.

Manufacturing Resource Function Description

Robot1(2) Pick up the raw materials into the CNC1(2) and put the
finished products back on the conveyor belt

Robot3 Put the processed product in the box

Robot4 Select the box cover that matches the box and perform
the capping operation

Robot5 Select raw materials and add to the conveyor belt
Laser machine Laser printing personalized patterns
Loading boxes

machine Add boxes to the conveyor belt

Storage machine Unload the packaged product
CNC1(2) Carve the raw materials

The experiment starts by the loading machine that reads the products’ order informa-
tion. The loading machine writes the packaging boxes’ RFID tags, including the involved
process and the corresponding processing actions. The pallets carrying the packaging
boxes and materials pass through various stations. The RFID tags are read at the station,
and the processing actions that can be performed at the current station are executed. The
relationship between the physical manufacturing resources in the prototype platform and
the action primitives that can be executed is shown in Table 3. It can be seen from the table
that each physical resource processing can be regarded as a collection of actions, and the
action primitives it contains have a similar composition structure.

Table 3. Correspondence between manufacturing resources and action primitives (“+”means “con-
tain”).

Robot ID Robot1 CNC1 Laser Loading Robot3 Robot5 Storage

Moving + + + + +
Clamping + + + + + +

Placing + + + + +
Cutting +
Printing +

Absorbing +
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5.2. Experimental Results and Discussion

The presented multi-variety, mixed production line serves as an experimental platform.
The equipment is manually configured and debugged to generate the equipment’s initial
processing experience (i.e., initial input). Once the ontology modeling on the manufacturing
resources’ edge is completed, the equipment that has not been manually debugged is
configured by relying on the existing knowledge. More precisely, the existing process data
model and control instructions are automatically configured. The proposed knowledge
sharing mechanism’s effectiveness is verified by the experimental results that compare the
manually configured action cycle with the automatically configured result.

Since Robot1 and Robot2 have similar processing procedures, the two manipulators’
action cycles can be read separately for comparison, as shown in Figure 7. Robot1 is
manually configured and debugged, and Robot2 is automatically configured based on
the knowledge sharing mechanism. The manipulators’ main processing procedure can be
detailed and decomposed into: conveyor belt material clamping, moving the material to
the processing equipment CNC, placing the material, exiting the CNC, waiting for the CNC
to enter after the processing is completed, clamping the processed material, and moving
the material. The raw materials arrive at the conveyor belt pallet. Figure 7a demonstrates
that there is only a slight difference between the two manipulators’ action cycles, indicating
that Robot2 successfully learned Robot1′s existing processing knowledge and experience.
Nevertheless, certain differences in the configuration results can be found. In particular,
Robot2 chose a more efficient execution plan through comparing the two actions’ execution
effect evaluations during the learning process. In order to reflect the reduction degree
of knowledge reuse, we define the reduction degree Si = |Ti−Ti |

Ti
of action i, where Ti

represents the action execution cycle of the knowledge source, and Ti represents the action
execution cycle of the device after learning the existing knowledge. The reduction degree
of the whole process adopts a weighted average ∑ Si· Ti

Ta
, where Ta represents the total

processing time of the whole process. Combining the calculation of the specific execution
cycle data of each action, it can be concluded that the reduction degree of Robot2 for the
same task of Robot1 is 95.8%.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 15 
 

the parts that are not included in the learning samples input from the edge. The entire 
platform can directly carry out multi-variety mixed-flow processing after learning. The 
successful operation of the platform fully demonstrates the rationality of the process and 
the effectiveness of the cloud-edge combined knowledge reuse system used in this article. 
(2) It can be seen from the experimental results in Figure 6 that under the same task sce-
nario, the knowledge reuse method we proposed has high accuracy, and the quantitative 
index of action reduction effect reaches 95.8%. The high reduction of the action proves 
that the knowledge matching algorithm we proposed is reliable. (3) In the second set of 
experiments, the selected equipments’ functions are different, but because we have 
adopted the task decomposition strategy in the process of knowledge extraction and re-
use, more fine-grained knowledge decomposition makes it possible to learn between dif-
ferent tasks. The learning of action control also confirms the superiority of our proposed 
task decomposition strategy. 

  
(a) (b) 

Figure 7. (a) Action cycles’ comparison for similar manufacturing processes. (b) Multi-process action cycle comparison. 

6. Conclusions and Future Work 
In the face of the current growing demand for personalized customization in the 

manufacturing field, the importance of dynamic reconfiguration of production lines is be-
coming more and more important. To solve the problem of knowledge reuse of manufac-
turing re-source processing experience in the production process, this paper builds on the 
existing cloud-edge collaboration architecture and deploys services for manufacturing 
process tasks on the edge side, reducing the system’s dependence on the cloud; the task 
decomposition scheme makes knowledge reuse granular and enhances the versatility of 
knowledge; the knowledge matching algorithm has high accuracy and can well meet the 
needs of the existing manufacturing environment. In the case study, we manually config-
ure part of the equipment on the production line to achieve the effect of learning sample 
input. After the knowledge extraction is completed on the edge side, the knowledge is 
learned and reused according to the requirements of each equipment processing task. The 
experimental results selected two groups of control groups for comparison. The experi-
mental results well prove the effectiveness of our proposed scheme and reflect the accu-
racy of the learning process through the action reduction degree, and through the learning 
between different tasks, it reflects the improvement of the generality of knowledge by task 
decomposition. 

However, there are still some noteworthy issues in this study that need to be men-
tioned. First of all, regarding the establishment of the manufacturing process knowledge 
model, this article only proposes a reference plan for specific processing tasks and scenar-
ios. If you want to apply it to large-scale practical applications, you need to establish a 
unified standard for the model. Secondly, in terms of knowledge matching, the initial 

0
2
4
6
8

10
12
14

Ti
m

e/
S

Robot1 Robot2

0

2

4

6

8

10

12

14

Clamping Moving in Placing Moving out

Ti
m

e/
s

Robot1 Loading boxes machine Storage machine

Figure 7. (a) Action cycles’ comparison for similar manufacturing processes. (b) Multi-process action cycle comparison.

The action cycles of Robot1, loading machine, and storage machine are selected for
comparison. The specific data is shown in Figure 7b. Robot1 and loading machine were
manually configured and debugged, while the storage machine’s process was learned
through the local knowledge base. The figure shows data reading and comparison of the
three devices’ action primitives. The experimental results demonstrate that the storage
machine’s action cycle is very similar to that of the loading machine but significantly differs
from Robot1′s. The storage machine and the loading machine deal with the product’s outer
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packaging. Thus, these machines’ operation accuracy is lower than the value of Robot1
when gripping the engraving materials. Consequently, Robot1 has a lower processing
speed. Regarding the equipment movement, the storage machine and the loading machine
are responsible for the round-trip conveyor belt and the raw material warehousing or
the finished product warehousing. These machines do not involve cooperation with
other equipment. Robot1 needs to place the engraving materials into the CNC processing
area accurately. The CNC’s airtightness further restricts Robot1′s movement. The three
equipment are similar regarding the placement actions: the only difference being the
processed object’s size, the action cycles do not significantly differ. Following the analysis
of the equipment learning process, it can be concluded that the knowledge reuse process
is not a straightforward application, but a matching search for similar processing tasks to
extract the knowledge that meets the similarity requirements.

Analyzing the results of the experiment, we can find that: (1) During the execution
of this experiment, the collection, processing and knowledge extraction of manufacturing
resource information are all completed by the intelligent gateways and servers deployed at
the edge. The knowledge used in the knowledge reuse stage partly uses the knowledge
extracted on the spot, and the system supplements the knowledge through the cloud
for the parts that are not included in the learning samples input from the edge. The
entire platform can directly carry out multi-variety mixed-flow processing after learning.
The successful operation of the platform fully demonstrates the rationality of the process
and the effectiveness of the cloud-edge combined knowledge reuse system used in this
article. (2) It can be seen from the experimental results in Figure 6 that under the same task
scenario, the knowledge reuse method we proposed has high accuracy, and the quantitative
index of action reduction effect reaches 95.8%. The high reduction of the action proves
that the knowledge matching algorithm we proposed is reliable. (3) In the second set
of experiments, the selected equipments’ functions are different, but because we have
adopted the task decomposition strategy in the process of knowledge extraction and reuse,
more fine-grained knowledge decomposition makes it possible to learn between different
tasks. The learning of action control also confirms the superiority of our proposed task
decomposition strategy.

6. Conclusions and Future Work

In the face of the current growing demand for personalized customization in the manu-
facturing field, the importance of dynamic reconfiguration of production lines is becoming
more and more important. To solve the problem of knowledge reuse of manufacturing
re-source processing experience in the production process, this paper builds on the existing
cloud-edge collaboration architecture and deploys services for manufacturing process tasks
on the edge side, reducing the system’s dependence on the cloud; the task decomposition
scheme makes knowledge reuse granular and enhances the versatility of knowledge; the
knowledge matching algorithm has high accuracy and can well meet the needs of the
existing manufacturing environment. In the case study, we manually configure part of the
equipment on the production line to achieve the effect of learning sample input. After the
knowledge extraction is completed on the edge side, the knowledge is learned and reused
according to the requirements of each equipment processing task. The experimental results
selected two groups of control groups for comparison. The experimental results well prove
the effectiveness of our proposed scheme and reflect the accuracy of the learning process
through the action reduction degree, and through the learning between different tasks, it
reflects the improvement of the generality of knowledge by task decomposition.

However, there are still some noteworthy issues in this study that need to be men-
tioned. First of all, regarding the establishment of the manufacturing process knowledge
model, this article only proposes a reference plan for specific processing tasks and scenarios.
If you want to apply it to large-scale practical applications, you need to establish a unified
standard for the model. Secondly, in terms of knowledge matching, the initial primitive
knowledge is heavily dependent, and when there is insufficient knowledge accumulation
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on the cloud and edge, new knowledge primitives need to be manually input. In the follow-
up research, because of the above problems, there can be a clearer research plan: combining
the existing knowledge graph research results, in the process of knowledge extraction, the
existing sample data information is transformed into a semantic model and a knowledge
graph. When a new data source is added, the mapping relationship of data nodes can
be established based on the information on the existing knowledge graph, and a more
complete knowledge system can be formed through the combination of ontology modeling
and knowledge graphs. In terms of knowledge derivation, the method of entity alignment
is adopted to quickly reuse knowledge and transfer knowledge between different fields
and enhance the universality of knowledge.
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