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Abstract: Face morphing poses a serious threat to Automatic Border Control (ABC) and Face Recog-
nition Systems (FRS) in general. The aim of this paper is to present a qualitative assessment of
the morphing attack issue, and the challenges it entails, highlighting both the technological and
human aspects of the problem. Here, after the face morphing attack scenario is presented, the pa-
per provides an overview of the relevant bibliography and recent advances towards two central
directions. First, the morphing of face images is outlined with a particular focus on the three main
steps that are involved in the process, namely, landmark detection, face alignment and blending.
Second, the detection of morphing attacks is presented under the prism of the so-called on-line
and off-line detection scenarios and whether the proposed techniques employ handcrafted features,
using classical methods, or automatically generated features, using deep-learning-based methods.
The paper, then, presents the evaluation metrics that are employed in the corresponding bibliography
and concludes with a discussion on open challenges that need to be address for further advancing
automatic detection of morphing attacks. Despite the progress being made, the general consensus
of the research community is that significant effort and resources are needed in the near future for
the mitigation of the issue, especially, towards the creation of datasets capturing the full extent of
the problem at hand and the availability of reference evaluation procedures for comparing novel
automatic attack detection algorithms.

Keywords: face morphing; morphing attack detection; deep learning; differential attack detection;
single-image attack detection

1. Introduction

Automatic identity verification based on stored biometric features is progressively re-
placing traditional verification procedures based on paper documents. Since 2002, the face
has been selected by the International Civil Aviation Organization (ICAO) as the primary
biometric trait for machine-assisted identity confirmation in electronic Machine Readable
Travel Documents (eMRTD) [1]. In parallel, recent advances in the field of automatic face
recognition and especially the performance breakthrough achieved by Deep Convolutional
Neural Networks (DCNNs) [2], have enabled the deployment of face recognition technolo-
gies in a variety of applications, including critical security applications such as ABC.

Face photos that are eligible for an eMRTD can be provided by the citizen in printed
form to the agency issuing the document, which exposes the system to image-alteration at-
tacks. The vulnerability of automatic FRS has been well-documented, with studies showing
that, while state-of-the-art systems are able to cope with limited alterations [3], the gener-
alizability of (deep) FRS increases their vulnerability against more relevant attacks [4–6].
One of the most severe such image-alteration attacks is based on morphed face images
(also referred to as morphing attacks), a scenario that was first brought into the attention of
the research community by the paper of Ferrara et al. [7].
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The severity of the security threat posed by morphing attacks is nowadays prompting
countries towards legislative acts with the goal of preventing them [8]. It has also turned
Morphing Attack Detection (MAD) into a very active research domain with a plethora of
published articles proposing numerous solutions to mitigate the problem [6].

Based on the information available at the time of detection, MAD techniques can
be categorized into on-line (or differential), and off-line (single-image, or no-reference).
In the on-line scenario (applicable e.g., during authentication at an ABC gate), the detector
is presented with a stored (i.e., passport) test image, and also with a live capture of the
individual, and has to decide whether the test image has been altered or not, by using
also information from the reference live image. On the other hand, in the off-line scenario
(applicable e.g., during an eMRTD application process), the detector has to assess the
authenticity of the input test image, with no other reference available.

As it is the case with the majority of classification/detection problems, morphing attack
detection is carried out in a feature space of the input. Based on the tools used for feature
extraction, namely, whether the features are automatically learned using DCNNs, or pre-
selected (e.g., texture descriptors), a further possible categorization of MAD techniques
(also inherent to many classification tasks since the advent and widespread use of DCNNs)
is that of “deep” vs. “non-deep” detection. In general, promising results have been reported
on both sides, with the main difference being the requirement for large datasets under the
“deep” scenario, which is a prerequisite for feature learning using modern DCNNs.

However, despite the reported results, the general consensus within the research com-
munity is that morphing attack detection remains still an open and extremely challenging
issue [9]. This is simply a reflection of the fact that the detection of morphing attacks is in
its heart an ill-posed problem. Indeed, apart from the general concept of what constitutes
a morphing attack, along with the efforts of the research community to recreate such a
scenario, a clear definition of the morphed image, as well as a documentation of real-life
morphing attacks are still missing (and are difficult to exist, in general). As such, the true
extent of the problem and accordingly, the severity of the measures necessary to address it,
remain largely unknown, as it will be discussed later in the paper.

The rest of this paper is organized as follows: In Section 2 we describe the morphing
attack scenario. Subsequently, in Sections 4 and 5 we present a selected bibliography
on the creation and detection, respectively, of morphed images. In Section 6 we present
the metrics used for evaluating the capability of the attack detection. Section 7 holds a
discussion on the recent advances and open challenges posed by the morphing attack
problem, and finally, Section 8 holds our conclusions.

2. The Morphing Attack Scenario

The main idea behind morphing attack is based on blending face images from two
individuals, so that the resulting “morphed” image can be used for the verification of
both involved participants [7]. In other words, the biometric information extracted by
the morphed image resembles the true information of both participants enough to yield a
successful match of both, by the FRS.

In more detail, the morphing attach scenario can be generally described as follows [6,7]:
A wanted “criminal” with the goal of travelling without alerting the authorities, morphs
his/her facial image with that of a lookalike accomplice. The accomplice, having no
criminal record, applies for an eMRTD by presenting the morphed face photo as his/her
own. If the image alteration is not detected at the time of eMRTD issuance, he/she will
receive a perfectly valid eMRTD. At the time of verification at an ABC, a face image
(acquired live) of the person presenting the travel document (in this case, the criminal)
is matched against the face image stored in the eMRTD. If the morphing is successful,
this means that the criminal can use the eMRTD issued to the accomplice, to overcome the
security controls and travel freely.
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3. The Posed Threat

Considering the fact that high-quality morphed images, such as the ones shown in
Figure 1 can be realistic enough to fool even the trained eye [10,11], the security threat
posed by the morphing attack scenario becomes readily apparent.

From a technological standpoint, as digital image manipulation techniques become
more and more advanced, the resulting morphs are expected to be increasingly more
difficult to detect. Fortunately, technological advancements work also in favor of miti-
gating the problem, with increasingly more sophisticated approaches being developed
for the automatic detection of morphing attacks. Many of these techniques are going to
be presented in the subsequent sections. However, despite these efforts, the proposed
techniques are yet to be deployed or even tested under “real” attack scenarios, nor is there
a standardized procedure in place for evaluating their performance, as it is going to be
explained later in more detail.

What is more, the decision to accept or reject an ID image in face matching scenarios
is usually left to a human operator, since, even in cases where automated techniques are
initially employed, human users are often required to make the final selection from an
automatically selected list of candidates.

Unfortunately, despite the belief that humans are “experts” at face identification,
numerous studies have shown that we are basically familiar-face experts but are prone to
errors when dealing with unfamiliar faces [12–14]. Surprisingly (and worryingly), these
studies also point out that trained passport officers perform at similar levels to untrained
university students when dealing unfamiliar faces, which is especially problematic when
dealing with various types of fraudulent identification [15].

Concerning the issue of morphing attacks, this is perhaps best emphasized by the
recent work in [11] (following similar studies presented in [16,17]), aiming at evaluating
the performance of humans (with and without training) for the detection of morphed
images, in a series of carefully designed experiments using high-quality morphs. In the
first two experiments, the participants were asked to identify morphs, before and after
receiving training regarding the detection of morphed images. In the first experiment,
the task was to correctly classify entries in ten-image arrays containing both morphs and
genuine photographs, while the participants of the second experiment were presented with
a single image and had to decide on its authenticity. In their third experiment, the authors
tested the participants’ performance with respect to live face-matching, i.e., their ability to
identify whether the person presenting a photograph is the one depicted in it. The general
conclusion in all three experiments was that “naive participants were poor at detecting high-
quality morph images and that providing training or tips aimed at improving performance
resulted in little or no benefit”. In fact, with few exceptions, the morphing detection
performance was barely above chance levels. Furthermore, the authors concluded that
“morphs were accepted as ID photos often enough that they may be feasible as tools for
committing fraud.”



Appl. Sci. 2021, 11, 3207 4 of 15

Subject 1 Morphed Subject 2

Subject 1 Morphed Subject 2

Figure 1. Morphing examples using women (top row) and men (bottom row) subjects, from the
AMLS Dataset [18]. Original data are from the datasets in [19,20], while the morphing approach
reported in [21] was used for the creation of morphs. It is noted that in both cases, the morphed
image would yield a successful verification to both contributing subjects, by an automatic face
recognition system.

4. Morphing Face Images

The original face images used for the production of morphed photographs should
meet certain criteria so that the resulting morph complies with the ICAO requirements for
the issuance of travel documents. These requirements entail for example that the involved
originals should be frontal images exhibiting a neutral facial expression and all faces are
represented equally with respect to resolution, exposure, etc.

The process of morphing face images can be generally divided into three main steps,
with the likely addition of pre− and/or post− processing steps for facilitating the morphing
process and removing possible morphing artefacts in order to achieve more realistic results,
respectively [6,7,22]. The main morphing steps are: (a) face landmarking, (b) image
alignment/warping, and (c) image blending. These steps are summarized in Figure 2.

Face 
2

Landmark 
Detection

Blending

Landmark 
Detection

Face 
1

Image 
Alignment

Image 
Alignment

Target 
Face

Figure 2. The main steps for creating morphed face images.
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4.1. Landmark Detection

Face landmarking, refers to the detection and localization of characteristic points
on the face, and constitutes an important intermediary step for many subsequent face
processing operations, such as morphing. Although in the general case, this computer
vision problem has proven extremely challenging due to inherent face variability as well
as factors such as pose, expression, illumination and occlusions, the issue is simplified to
some extent in the case of morphing applications since the involved (ICAO compliant)
face photographs are taken in controlled environments, with good lighting conditions and
devoid of specific poses or expressions.

With a few exceptions, face landmarks do not generally correspond to salient points
in the image, meaning that low-level image processing tools are not sufficient for their de-
tection, and higher-order face shape information is required. More specifically, the corners
of the eyes, of the mouth, the nose tip, and sometimes the eyebrows are referred to as the
primary or fiducial landmarks and can be detected directly using low-level image features
such as gradient information, cornerness or local information extracted, e.g., with scale
invariant feature transform (SIFT) [23], histogram of gradients (HOG) [24], and generic
information on the face morphology. The fiducial landmarks, are primarily important in
facial identity and face tracking. The detection of other landmarks, such as nostrils, chin,
nasion, cheek contours, non-extremity points on lips or eyebrow midpoints, eyelids etc.
is often guided by the primary landmarks.

According to the taxonomy presented in [25], landmarking methods can be split into
two broad categories, namely model or shape based, which consider the ensemble of
facial landmarks as a whole shape and learn “face shapes” from labeled training images,
and texture based whose goal is to detect each facial landmark or local groups of land-
marks independently, without the guidance of a model. Techniques based on active shape
models (ASM), which seek the best-fit of predefined landmarks in an image [26], active
appearance models (AAM), which constitute generalization of ASM [27,28], and elastic
bunch graph-matching (EBGM), which construcut phase graphs whose nodes represent
40-dimensional Gabor jets at candidate locations [29], are well-known model-based meth-
ods. On the other hand, transform-based schemes where the image is window-scanned to
produce feature vectors which are subsequently compared with learned patterns, constitute
primary examples of texture based methods. Some of the transforms used by this group of
methods include principal component analysis (PCA) [30], Multiresolution Wavelet Decom-
position [31], Gabor wavelet transform (GWT) [32], discrete cosine transform (DCT) [33],
and independent component analysis (ICA) [34].

In face morphing, detected landmarks in both images act as reference points for the
alignment step. The simplest, most accurate, but also the most time-consuming way is the
manual location of features such as, eye corners, eyebrows, nose tip, chin, forehead etc.,
a process followed in [7]. Typically, the detection of landmarks is done in an automated
way using Machine Learning toolkits such as dLib [35] that offers implementations of
well-known landmark detectors including e.g., the regression-trees-based technique in [36].
dLib is used for landmark detection by several morphing-related papers, including [22,37].
Other automatic landmark detection approaches range from model fitting, such as the previ-
ously mentioned ASM, AAM, and EGBM and elastic bunch graph models, to optimization
techniques such as the one proposed in [38].

4.2. Face Alignment

The goal of the image alignment step is to obtain a warping of the two original images
so that the locations of the corresponding landmarks (detected in the previous step) are
matched. Warping is basically a geometric transformation applied to the pixel locations
of both images. Early morphing techniques relied on scattered data interpolation [39],
whereby the new pixel position pixels is interpolated based on the nearby control points
(landmarks). More advanced approaches include the Free-Form Deformation (FFD) tech-
nique [40,41] in which the image is embedded in a grid of control points (i.e., the pixel
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locations are expressed as a function of the grid-point locations). This way, applying a
desired deformation to the grid, results also to an analogous deformation of the image.
In feature-based image metamorphosis [42], the deformation is controlled by the grid lines,
which is particularly advantageous for manual morphing as the user can position lines
instead of points. In [43] the optimal affine transformation based on either landmarks or
lines via the minimization of the moving least squares, while in [30] a morphing process
by simulating the image as a mass spring system is proposed.

The most widely used warping technique by state-of-the-art morphing algorithms is
based on the Delaunay triangulation of the detected landmarks [5,9,22,44,45]; that is the
partitioning of the images into a set of non-overlapping triangles whose vertices lie on
the detected landmarks. The goal here is to obtain a matching between corresponding
landmarks by applying geometrical transformations (rotations, translations and distortions)
of the obtained Delaunay triangles.

The steps involved in the warping process can be analyzed into the following steps [45,46]:

1. Generate triangular facial mesh: Obtain Delaunay triangulation of the detected land-
mark locations.

2. Create interpolated facial mesh by blending original landmark locations, i.e.,

Li
w = αw Li

1 + (1− αw)Li
2, i = 1, . . . , N

where Li
w, Li

1, Li
2, denote the blended and the (two) original landmark locations,

respectively, while N is the number of used landmarks. αw is a blending coefficient
taking values in [0, 1] that controls the contribution of each of the two original faces in
determining the location of the landmarks on the final morphed face. For example,
αw = 0 (or, 1) signifies that the landmark locations on the morphed image (and loosely
speaking its general form and shape) will coincide with on of the involved originals.

3. Warp both original faces to the interpolated mesh: Apply affine transform to map
the pixel locations of each the original triangles, to the locations of the corresponding
interpolated triangle.

In addition, to avoid ghost and blur artifacts and to obtain more natural warping
results, the projection of the face images into a 3D space prior to warping has been pro-
posed [47,48].

4.3. Blending

Color interpolation can be understood as alpha-blending of intensity values of both
images for each color layer separately. The parameter alpha defines the proportion of pixel
intensity values obtained from source and target images.

After the alignment step, the two contributing images are blended, usually over the
entire image region. The most frequent way of blending for face morph creation is linear
blending, i.e., all color values at same pixel positions are combined in the same manner.
Similar to the warping process the contribution to the blending of each image can be
adjusted via a blending coefficient taking values in [0, 1]; e.g., a value of 0.5 signifies taking
the average of the corresponding pixels in each position.

4.4. Post-Processing

Post-processing steps are often incorporated in the morphing pipeline with the goal of
removing artefacts and generally masking telltale signs of the morphing process. For exam-
ple, the automatically created morphs can suffer from shadow or ghost artifacts, from miss-
ing or misplaced landmarks during the warping process. One way of removing such
artefacts is to blend the problematic area (e.g., eyes, nostrils, hair) with corresponding
content from one of the original images, an approach followed e.g., by the FaceFusion
app [49], as reported in [50]. Hair artifacts can be concealed by an interpolation of the
hair region [51]. Post-processing entails steps towards enhancing or reducing the image
quality. For example, image processing tools such as blurring, sharpening or histogram
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equalization can be used to enhance color and definition, and achieve a more natural
looking final image. On the other hand, unavoidable steps usually employed by issuing
authorities, such as printing and/or scanning the image for its use as a passport photo,
or changing the (lossy) format in which the image is stored, results in information loss that
could mask morphing artifacts.

4.5. Morphing Software

In this section, a brief discussion on the software tools for face morphing, will be
provided (see, also [6,52] and references therein). In general, the available solutions can
be categorized into three groups, namely, (a) commercial (proprietary), (b) open-source,
and (c) online. Starting with the latter, although easy-access, platform independent, online
tools do exist, their use by the research community might be problematic as the proce-
dures that are adopted for morphing faces, are not well-documented. For the other two
categories, solutions that can be deployed on all well-known operating systems (either
for desktop/laptop computers or smart-phones), can be found. In [6], a detailed table
with various tools is provided, in which the presented solutions are characterized in terms
of (a) the methods utilized for achieving the end-goal of face morphing, (b) the level of
automation provided and/or the manual effort required, (c) the level of expertise desired
by the operator, and (d) the achieved quality. As a final note, access to commercial software
might be hindered due to their access policies, while their “black-box” procedures might be
incompatible with research activities aiming to propose new morphing algorithms (either
for creating or detecting morphed images). On the other hand, open-source solutions
provide access to all relevant information, however, the stability of the provided software
might need time for appropriate testing and verification. FaceFusion [49] and FaceMor-
pher [53] constitute two well known examples of commercial and open-source morphing
tools, respectively.

5. Morphing Attack Detection

In this section, we present a summary of the most recently proposed techniques for
the automatic detection of morphing attacks. It must be stressed that it is a problem
that has sparked the interest of many research teams with great efforts being directed
towards its solution. This has turned the relevant bibliography into a very active landscape,
resulting in numerous published articles covering a great variety of feature extraction and
classification techniques.

In general, MAD is treated as a binary classification problem in the bibliography.
Given an input image, the goal is to infer the class it belongs to, namely, decide whether
it represents an original image, or it is the product of morphing. As it is the case with
the vast majority of classification problems, the decision is carried out in a feature space,
i.e., it is performed by utilizing the values of selected features of the input. Based on the
information available at the time of detection, the proposed techniques can be categorized
as on- or off-line. In the first case, the system tries to decide whether an image is the product
of morphing by utilizing a live capture as reference, while in the second case, the decision
is based in the image itself. A further possible categorization is based on the type of the
classification framework used, namely, whether the features used for classification are
automatically learned, or engineered.

5.1. On-Line vs. Off-Line Detection Scenario

In the on-line (or differential) detection scenario (depicted in Figure 3), along with the
input test (i.e., stored) image, the detector is also presented with a live capture, e.g., during
authentication at an ABC gate. The detector then tries to decide whether the test image
has been altered or not, by using also information from the live image. On the other
hand, in an off-line (single-image, or no-reference) detection scenario (depicted in Figure 4),
the detector is only presented with a single test image (e.g., the face image deposited during
an eMRTD application process), and has to decide the authenticity of the input with no
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other reference available. As it is understandable, the no-reference scenario poses a more
challenging problem. It should also be noted that all information extracted by no-reference
morph detectors could also be used in a differential detection scenario.

On-line
MAD

Match
/

NO Match

eMRTD

Live Capture

Figure 3. In the on-line scenario, MAD is based on a test image that is provided via the eMRTD and
a live capture of the person’s face.

Off-line
MAD

eMRTD

Genuine
/

Morphed

Figure 4. In the off-line scenario, MAD is based only on a test image that is provided via the eMRTD.

5.2. Deep vs. Non-Deep Classification

This categorization concerns mainly the approach used for feature extraction
(i.e., whether features are automatically learned as in Figure 5 or engineered as in Figure 6)
and is inherent to almost all classification tasks since the advent and widespread use of
DCNNs in recent years. Nowadays, DNNs have established themselves as prominent
tools for solving Machine Learning (ML) and Artificial Intelligence (AI) problems [54]
(e.g., face recognition, scene analysis and driver state monitoring, autonomous driving etc.),
achieving unprecedented results in challenging competitions such as the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) [55], and even exceeding the accuracy of
human experts in certain classification tasks [56]. As it is to be expected, DCNNs have been
extensively used for morphing attack detection, with the majority of the techniques relying
on the learnt features of well-known, pre-trained networks from the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) [55], such as VGG [57], AlexNet [58], ResNet [59],
and GoogleNet [60]. The main downside of DCNN-based approaches is the requirement
of large morphing datasets, for DCNN training (i.e., feature learning).

DCNN Inference

Learnt features

Classification Decision

Training 
input

Training 
labels

DCNN 
Training

Σ

Input image(s)

Figure 5. In deep classification, feature extraction relies on an automatic learning procedure that
utilizes deep learning.
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Feature Extraction

Pre-selected/Engineered 
features

Classification DecisionInput image(s)

Figure 6. In non-deep classification, the features to be used, are derived via an engineering procedure
with the intervention of a human designer.

On the other hand, the techniques following an “non-deep” approach, rely on engi-
neered features for classification, with the majority of them employing general-purpose
texture descriptors, widely used in Computer Vision tasks, such as the Local Binary Patterns
(LBP) and the Scale-Invariant Feature Transform (SIFT).

A categorization of the MAD-related works included in the following sub-section,
is presented in Table 1.

5.3. MAD-Related Literature

In the following, some indicative works treating the problem of automatic morphing
attack detection will be outlined.

In [22], VGG19, AlexNet, and GoogleNet were employed for the detection of morphs,
while focusing on digital morphed face images. Tests were conducted using both pre-
trained (on the ILSVRC dataset) and trained-from-scratch (using morphed images) versions
of the DCNNs. Unsurprisingly, the pre-trained versions, having learned rich feature sets
from the extensive ILSVRC dataset, outperformed the trained-from-scratch versions in the
conducted experiments.

In [44], the authors aim at overcoming a known issue related to DCNNs, which
makes them vulnerable to attacks on their decision-making process and can worsen their
generality. Simply put, neural networks tend to use only what they need for a task
(e.g., classification), ignoring the rest of the information that is available in the training
data. For example, to recognize a rooster, a network might only considers the rooster’s
red comb and wattle and ignores the rest of the animal. Towards mitigating this problem
(in relation to morphing detection), the authors propose training schemes which are based
on different alternations of the training data (morphed images), by limiting the amount and
position of information available to the neural network for the decision making process.
An example would be to use partial face morphs (i.e., a forged face image in which only
some regions are taken from a morphed face image and the remaining part from an aligned
input image), during training. A recently proposed technique called Layer-Wise Relevance
Propagation (LPR) [61] was used in order to interpret the results (prediction scores) of
the DCNNs, with the goal of analyzing the differences in the decision making process
of the differently trained neural networks. LPR redistributes the prediction of the model
backwards, using local redistribution rules, until it assigns a relevance score to each input
variable (e.g., image pixel).

In [62], a face morphing attach method is proposed in which the live capture is
employed in a process that aims at reverting the morphing transform, if exists, in the stored
image. In the following, the so-called “demorphed” image that is produced, is decided
whether is impaired or not. Ref. [63] proposes a face morphing detection method by
exploiting the so-called sensor pattern noise in the Fourier domain. Using the Fourier
spectrum of the two face images (live capture and stored image), facial quantification
statistics are extracted that differentiate the two images due to the considered pattern
noise. A linear support vector machine classifier is employed for the final decision. In [64],
the face morphing detector aims to identify differences in the geometry of the two face
images under consideration. This is done by analyzing the locations of facial landmarks
that are biologically meaningful. The evaluation was performed for a variety of image
sources and experimental settings.
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The authors in [65] propose a detection technique, specifically designed for passport-
scaled morphed images, comprising a pre-processing module that, if required, transforms
a given face image into a passport-like image, followed by a feature extraction and a classi-
fication module (for which four statistical models are trained and evaluated). The work
studies the impact of two different feature spaces, one in the frequency domain and another
in the spacial domain. In [66], an “evaluation” issue is identified in the literature according
to which the performance assessment of the proposed face morphing attack methods is
commonly based on datasets of limited scope, namely, either a few types of morphing
attacks are considered or a single dataset is employed. There, a new, richer dataset is
created and an assessment of two detection techniques based on support vector machines
and local binary patterns, is provided.

The authors in [67], followed the transfer-learning approach using the VGG19 and
AlexNet DCNNs to detect both digital and print-scanned versions of morphed face images.
The employed DCNNs were pre-trained (for the task of object classification on the ILSVRC
dataset) and then further fine-tuned using morphed face images. At the inference phase,
both AlexNet and VGG19 are fed with the same (test) image and the feature maps produced
at their respective first fully connected layers are fused (i.e., concatenated) to form a
single feature-vector which is provided to the classifier in order to decide whether the
input was a genuine or a morphed face image. The goal was to utilize the full-scale
feature-extraction potential of the concolutional layers of the DCNNs. The Probabilistic
Collaborative Representation Classifier [68] was used for classification purposes.

In [37], the authors achieve high detection ratios (surpassing the performance of
rival deep-learning-based techniques) by pairing high-dimensional Local Binary Patterns
(LBP) descriptors with a linear Support Vector Machine (SVM) for classification. LBPs
are also used in [69]. The authors in [70] propose training SVMs using Weighted Local
Magnitude Pattern, a descriptor similar to LPB, while a detector based on Scale-Invariant
Feature Transform (SIFT) is proposed in [71]. Recently, a different approach, based on
Photo Response Non-Uniformity (PRNU) analysis, is proposed in [9]. PRNU, which refers
to the sensor’s noise pattern, can be considered as a unique fingerprint for each camera
sensor. As such, it presents itself with a number of advantages (large information content,
present in every sensor, robust to lossy compression, filtering etc, but sensitive to non-linear
warping) that make it suitable for morphing attack detection, with greater robustness and
generalization potential than descriptor-based detectors.

Treating the problem under the differential scenario, a generative adversarial network
(GAN) for face de-morphing was proposed in [72] with the aim to restore the face of the
accomplice that collaborated in the face morphing attack. To achieve this, the network
analyses the live-capture and the morphed photo that was used in the utilized eMRTD.
A similar approach for de-morphing has been proposed in [73], where the general idea is to
“subtract” the information captured in-vivo (i.e., the live image) from the passport image
and compare the residual of the de-morphing process, with the live capture. In case the
passport image was the product of morphing between a “criminal” and an “accomplice”,
the residual image would resemble that of the accomplice (not present in the scene) and not
live capture of the criminal. An autoencoder architecture based on VGG-face [74] was used
for de-morphing. The authors in [50] propose a high-performance differential detector by
using the feature vectors produced by ArcFace, a ResNet-based FRS. Detection is achieved
by subtracting the feature vectors of the suspected image and the live capture. In [75] the
authors use convolutional networks for image denoising and pyramid LPB for feature
extraction while the same authors in [76], apart from using a DCNN-based denoising
approach, utilize also AlexNet for feature extraction. Finally, Ref. [77] studied the problem
of morphing attack detection when the morphing faces are produced using GANs instead
of landmark-based approaches.
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Table 1. Categorization of selected works on Morphing Attack Detection.

On-Line Off-Line

Deep Non-Deep Deep Non-Deep

Peng et al. (2019) [72] Ferrara et al. (2017) [62] Seibold et al. (2017) [22] Neubert et al. (2019) [65]
Ortega et al (2020) [73] Autherith et al. (2020) [64] Seibold et al. (2020) [44] Spreeuwers et al. (2018) [66]

Scherhag et al. (2020) [50] Raghavendra (2017) [67] Wandzik et al. (2018) [37]
Venkatesh et al (2019) [75] Ramachandra (2016) [69]
Venkatesh et al (2020) [76] Agarwal et al. (2017) [70]

Kraetzer et al. (2017) [71]
Scherhag et al. (2019) [9]

6. Evaluation Metrics

Recently, the community has achieved a common standard ISO (IEC 30107-3:2016) [78]
to evaluate presentation attack detection (PAD), and especially morphing attack detection
(MAD) systems. In this standard, the capability of the attack detection is measured with
the following errors: attack presentation classification error rate (APCER) and bonafide
presentation classification error rate (BPCER). This measure can be defined as follows:

• Attack presentation classification error rate (APCER) is defined as the proportion of
presentation attacks that have been classified incorrectly (as bonafide) [78]:

APCERPAIs = 1− 1
|PAI|

|PAI|

∑
ω=1

RESω,

where |PAI| is the number of presentation attack instruments (PAI) and RESω takes the
value 1 if the presentation ω is assessed as attack and 0 if it is evaluated as bonafide.
A PAI is defined as a used object or biometric trait in a presentation attack.

• Bonafide presentation classification error rate (BPCER) is defined as the proportion of
bonafide presentation incorrectly classified as presentation attacks [78]:

BPCERPAIs = 1− 1
|BF|

|BF|

∑
ω=1

RESω,

where |BF| is the cardinality of bonafide presentations and RESω takes the value 1
if the presentation ω is allocated as an attack and 0 if it is analyzed as bonafide.

An APCER vs. BPCER detection error trade-off (DET) curve and the equal error rate
(EER) where both errors are identical, provides a comparison among MAD systems.

7. Discussion

Morphing attacks constitute a well-established and pertinent security issue. The bibli-
ography regarding both morphing algorithms and morphing attack detection, is already in
a mature stage, as it is clear from the works presented in this paper. However, despite the
progress being made, the detection of morphing attacks remains still an open and challeng-
ing issue, both because of the difficulty posed by the problem itself - morphed images can
become so realistic that even trained experts perform poorly in their detection [10,11]—but
also, due to the fact that the attempts to solve it are hindered by the lack of standardized
procedures for creating morphed images, and of benchmarks data, in general.

Mostly, the proposed detection techniques are trained and tested using self-created
datasets, meaning that the presented results are hard to reproduce and difficult to interpret.
This issue is reported widely in the bibliography, with [9,52] being the most recent examples.
Due to this reason, explicit performance comparisons between rival MAD approaches are
left out of this paper, and the interested reader is referred to relevant works included in the
bibliography, such as [6,52].
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Constructing a benchmark dataset of morphed images is a necessary step, albeit a time-
consuming and a painstaking one. It should be also noted that automatically produced
face morphs may not represent a realistic attack scenario. After all, a morphing attack
represents a scenario where the attacker has ample time and resources to produce a “single”
good image that will “fool” the FRS. The dataset needs to be as true-to-life as possible,
and as extensive/representative as possible.

The previous remark is especially important for utilizing the full potential of deep
networks for the problem of automatic morphing detection. The true power of deep
architectures lies in the automatic learning of features, which is only made possible by the
availability of extensive training datasets. To avoid over-fitting, apart from training data,
new, specialized architectures and/or training protocols, tailored to the specific needs of
the morphing detection problem, are required, as noted in the relevant bibliography [44].
Along the same lines, regarding the non-deep classification approach, new specialized
descriptors/features must be devised and used instead of (or in conjunction with) general-
purpose descriptors such as LBP or BSIF that are devised for Computer Vision tasks, which
are very different in nature to morphing detection.

Finally, the need for independent evaluation of the algorithms, using dedicated plat-
forms and testing datasets is also an issue raised in the bibliography with attempts being
already made in this direction [52,79].

8. Conclusions

In this paper, the problem of morphing attacks and the tools used for its mitigation
are discussed. The paper, after the description of the face morphing process, provides a
thorough description of the morphing attack detection bibliography. The particular focus
is on the so-called on-line (differential) and off-line (single-image) scenarios and whether
the features used during the detection of a possible morphing attack are hand-crafted or
automatically generated via deep learning methods. Despite recent advances showing
considerable progress in the fields of face morphing and morphing attack detection, many
open challenges still remain concerning, among others, the availability of representative,
large-scale datasets and reference evaluation procedures of novel detection algorithms.
Addressing these challenges requires considerable time, effort, and resources, but it is a
necessary step towards solving the problem and ensuring border security.
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