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Abstract: Credit scoring is a process of determining whether a borrower is successful or unsuccessful
in repaying a loan using borrowers’ qualitative and quantitative characteristics. In recent years,
machine learning algorithms have become widely studied in the development of credit scoring
models. Although efficiently classifying good and bad borrowers is a core objective of the credit
scoring model, there is still a need for the model that can explain the relationship between input and
output. In this work, we propose a novel partially interpretable adaptive softmax (PIA-Soft) regres-
sion model to achieve both state-of-the-art predictive performance and marginally interpretation
between input and output. We augment softmax regression by neural networks to make it adaptive
for each borrower. Our PIA-Soft model consists of two main components: linear (softmax regression)
and non-linear (neural network). The linear part explains the fundamental relationship between
input and output variables. The non-linear part serves to improve the prediction performance by
identifying the non-linear relationship between features for each borrower. The experimental result
on public benchmark datasets shows that our proposed model not only outperformed the machine
learning baselines but also showed the explanations that logically related to the real-world.

Keywords: softmax regression; neural network; credit scoring application; decision making

1. Introduction

Credit scoring is a numerical expression of a borrower’s creditworthiness that is esti-
mated by credit experts based on applicant information using statistical analysis or machine
learning models. In recent years, many machine learning models have been developed to
achieve higher predictive accuracy for classifying borrowers as bad or good [1,2]. However,
the inability to explain these machine learning models is one of the notable disadvantages.
Financial institutions usually want to understand decision-making process of machine
learning models to trust them [3,4]. Therefore, there is still a need for credit scoring model
that can improve the predictive performance and its interpretation [5,6]. Without model
explanations, machine learning algorithms cannot be adopted by financial institutions and
would likely not be accepted by consumers [7].

From a machine learning perspective, the credit scoring problem is considered an
imbalanced binary classification task because the number of bad borrowers tends to be
much lower than the number of good borrowers in real-life [8–11]. As bad borrowers occur
infrequently, standard machine learning models usually misclassify the bad borrowers
compared to the good borrowers.

In this work, we aim to overcome these tricky issues by proposing a novel partially
interpretable adaptive softmax regression (PIA-Soft) model augmented by deep neural
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networks to make its estimated probabilities adaptive for each class (see Figure 1). We
first compute a linear transformation of input variables based on the softmax regression
to obtain logits for each borrower. Secondly, we also perform a neural network (non-
linear part) to augment logit of each class to make them adaptive for dealing with an
imbalance problem. Finally, the summed linear and non-linear (output of neural network)
transformations are fed into the softmax function to the probability of each class. The linear
part partially explains the fundamental relationship between input and output variables,
and the nonlinear part serves to improve the prediction performance by identifying the
non-linear relationship between features for each borrower. The PIA-Soft architecture
we propose is similar to the residual neural network model (ResNet), with the linear
transformation acting as a residual block [12]. However, the advantage over ResNet
architecture is that the PIA-Soft model can be partially explainable.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 2 of 20 
 

In this work, we aim to overcome these tricky issues by proposing a novel partially 
interpretable adaptive softmax regression (PIA-Soft) model augmented by deep neural 
networks to make its estimated probabilities adaptive for each class (see Figure 1). We first 
compute a linear transformation of input variables based on the softmax regression to 
obtain logits for each borrower. Secondly, we also perform a neural network (non-linear 
part) to augment logit of each class to make them adaptive for dealing with an imbalance 
problem. Finally, the summed linear and non-linear (output of neural network) transfor-
mations are fed into the softmax function to the probability of each class. The linear part 
partially explains the fundamental relationship between input and output variables, and 
the nonlinear part serves to improve the prediction performance by identifying the non-
linear relationship between features for each borrower. The PIA-Soft architecture we pro-
pose is similar to the residual neural network model (ResNet), with the linear transfor-
mation acting as a residual block [12]. However, the advantage over ResNet architecture 
is that the PIA-Soft model can be partially explainable. 

 
Figure 1. Partially interpretable adaptive softmax (PIA-Soft) architecture: where 𝑥 is an input, and 𝑝 and 𝑝ଵ are the predicted probabilities of the first and second classes, respectively. 

To show achievement of the proposed model, we compare our model to high-perfor-
mance machine learning benchmarks such as Logistic Regression, Random Forest, Ada-
Boost, XGBoost, Neural Network, LightGBM, Catboost, and TabNet [13–20]. We apply 
our proposed model to over four benchmark real-world credit scoring datasets. The 
model performance on the test set is evaluated against three theoretical measures, an area 
under the curve (AUC), f-score, g-mean, and accuracy [21]. Our proposed model signifi-
cantly outperformed machine learning models in terms of predictive performance. In or-
der to evaluate the interpretation of PIA-Soft model, we compare our result to logistic 
regression because this model is the most popular white-boxing approach that is com-
monly used on credit scoring application. Here are some properties of logistic regression 

Figure 1. Partially interpretable adaptive softmax (PIA-Soft) architecture: where x. is an input, and
p0 and p1. are the predicted probabilities of the first and second classes, respectively.

To show achievement of the proposed model, we compare our model to high-performance
machine learning benchmarks such as Logistic Regression, Random Forest, AdaBoost,
XGBoost, Neural Network, LightGBM, Catboost, and TabNet [13–20]. We apply our
proposed model to over four benchmark real-world credit scoring datasets. The model
performance on the test set is evaluated against three theoretical measures, an area under
the curve (AUC), f-score, g-mean, and accuracy [21]. Our proposed model significantly
outperformed machine learning models in terms of predictive performance. In order to
evaluate the interpretation of PIA-Soft model, we compare our result to logistic regression
because this model is the most popular white-boxing approach that is commonly used on
credit scoring application. Here are some properties of logistic regression that make it a
major benchmark—good predictive accuracy, high-level interpretability, and the modeling
process is faster and easier [22]. Therefore, we can utilize it to verify the trustworthiness of
our proposed model by comparing its unbiased estimated coefficients for input variables.
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In the end, the main contributions of this paper are included as follows:

• To achieve high predictive accuracy, usually, model complexity is increased. Therefore,
machine learning models often make a deal with the predictive performance and
interpretable predictions. We propose a model with both high predictive ability and
partially explainable.

• In order to handle class imbalance problem without sampling techniques, our pro-
posed model is designed.

• We extensively evaluate PIA-Soft model on four benchmark credit scoring datasets.
The experimental results show that PIA-Soft achieves state-of-the-art performance in
increasing the predictive accuracy, against machine learning baselines.

• It has proven that our proposed model could explore the partial relationship between
input and target variables according to experiments on real-world datasets.

This work is organized as follows: Section 2 presents previous research on the topics
related to machine learning models for credit scoring. We introduce the concept of the
methods explored in this paper and critically evaluate tools and methodologies available
to the date. Section 3 describes our proposed model in more detail. Section 4 indicates
the benchmark datasets and comparison of experimental results. This section presents
the predictive performance and comparison of PIA-Soft with logistic regression for model
interpretability. Finally, Section 5 concludes and discusses the general findings from
this work.

2. Related Work

During the past decades, machine learning models have been widely used in many
real-life applications such as speech recognition, object detection, healthcare, genomics,
and many other domains [23]. In credit scoring application, the researchers have been
applied many types of machine learning algorithms such as discriminant analysis, logistic
regression, linear and quadratic programming, decision trees, and neural networks [1–10].
We review such machine learning classification algorithms that are proposed for credit
scoring. We also summarize the strengths and weaknesses of current credit scoring models,
which used machine learning models, and drew some practical issues that serve as a
foundation in this work.

Louzada, Ara and Fernandes [24] studied a systemic literature review relating theory
and application of binary classification techniques for credit scoring. They reviewed
187 papers in this field and defined the percent of main classification algorithms such
as logistic regression (10.9%), neural network (17.6%), hybrid models (16.8%), ensemble
models (16.0%), support vector machine (14.3%), decision trees (6.7%), and others (24.4%).

2.1. Benchmark Classification Algorithms

Advanced machine learning techniques, however, are quickly gaining applications
throughout the financial services industry, transforming the treatment of large and complex
datasets. Still there is a massive gap between their ability to build robust predictive models
and their ability to understand and manage those models [25–30]. Logistic regression is a
powerful technique that commonly used in practice because it satisfies the huge gap as a
mentioned above. The only major disadvantage of logistic regression is that its predictive
ability seems to be weaker than other state-of-the-art machine learning models.

Another benchmark machine learning model in this field is neural networks. Firstly,
West [31] applied five different neural network architectures for the credit scoring prob-
lem. They showed the mixture-of-experts and radial basis function-based neural network
models must consider for credit scoring models. Since then, many neural network models
have been suggested to tackle the credit scoring problem such as the probabilistic neural
network [32], partial logistic neural network model [33], artificial metaplasticity neural
network [34], and hybrid neural networks [28]. The neural network models achieved
the highest average correct classification rate compared to other traditional techniques,
such as discriminant analysis and logistic regression [35]. Although the neural network
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models achieve a higher predictive accuracy of the borrowers’ creditworthiness, their
decision-making process is rarely understood because of the models’ black-box nature.

Recently, many ensemble and hybrid techniques with high predictive performance
have been proposed for credit scoring application [36–40]. The ensemble procedure applies
to methods of combining classifiers, whereby multiple techniques are employed to solve
the same problem in order to boost credit scoring performance. An earlier work is that
Maher and Abbod [36], who introduced a new classifier combination technique based on
the consensus approach of different machine learning algorithms during the ensemble
modeling phase. Their proposed technique significantly improved prediction performance
against baseline classifiers. Another work proposed an ensemble classification approach
based on a supervised clustering algorithm [37]. They applied supervised clustering to
partition the data samples of each class into several of clusters and construct a specific
base classifier for each subset. After that, the outputs of these base classifiers are combined
by weighted voting. The results showed that compared to other ensemble methods, this
approach is able to generate base classifiers with higher diversity and local accuracy and
improve the accuracy of credit scoring. In addition, using a combination of deep learning
and ensemble techniques improved the predictive performance of credit scoring [38]. Many
researchers have also proposed an effective imbalanced learning approach based on a
multi-stage ensemble framework [39,40]. These frameworks usually aim to balance the
data in the first stage, and the ensemble models learn to obtain a superior predicted result
adapting to different imbalance ratios.

For our proposed model, a neural network produces additional logit for each class to
make them adaptive to deal with an imbalance problem during the training phase.

2.2. Explainable Credit Scoring Model

Another line of research is related to an explainable credit scoring model, which is
to understand how a borrower’s scoring is calculated. More recently, the state-of-the-art
machine learning models have achieved human-level performance in many fields, making
it very popular [3]. Although these models have reached high predictive performance,
the inability to explain them decreases humans’ trust. Therefore, explainable artificial
intelligence (XAI) has become very popular in credit scoring problem. XAI aims to make
the model understandable and trustworthy.

Many researchers have made great efforts to improve the model understandability
and increase humans’ trust. Ribeiro et al. [41] proposed the LIME technique, short for
Local Interpretable Model-agnostic Explanations, in an attempt to explain any decision
process performed by a black-box model. LIME explains any classifier’s predictions in an
interpretable and faithful manner, by learning an interpretable model locally around the
prediction. The disadvantage of LIME, however, is that because LIME is based on surrogate
models, it can critically reduce the quality of explanations provided. Another popular
method for explaining black-box models is SHapley Additive eXplanations (SHAP) [42];
SHAP are Shapley values representing the feature importance measure for a local prediction
and are calculated by combining insights from six local feature attribution methods. The
Shapley value can be misinterpreted because the Shapley value of a variable value is
not the difference of the predicted value after removing the variable from the dataset.
Many researchers have applied these two methods with state-of-the-art machine learning
algorithms for making explainable models in credit scoring application [4,7,43–45].

In addition, Fair Isaac Corporation (FICO) announced the Explainable Machine Learn-
ing Challenge to aim generating new research in the credit scoring domain of model
explainability [46]. The winners proposed Boolean Rules via Column Generation (BRCG),
a new interpretable model for binary classification where Boolean rules in disjunctive
normal form (DNF) or conjunctive normal form (CNF) are learned [47]. Although this
model has achieved both good classification accuracy and explainability, the authors men-
tioned that limitations include performance variability and the affected solution quality for
large datasets.
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However, with regards to credit scoring application, we first need to understand what
kind of model the explainable model is [48]. Although the requirements of explainable
model depends directly on its user, the explainable credit scoring model should answer the
following questions: (1) loan officers often want to understand how the borrower’s indica-
tors, such as age, income, etc., affect borrower’s credit score; (2) rejected loan applicants
want to know why they could not satisfy the lender’s requirements; (3) regulators want
to understand the reasoning behind the general logic used by the model when making
its predictions. In order to answer these two questions, it is important to measure the
impact of each variable on the borrower’s default probability. By determining the impact
of variables on a borrower’s default probability, we can explain the behavior of models by
capturing the relationship between input variables and their direction. To provide these
explanations marginally, we attempt to obtain a partial explanation of the model without
depreciating its predictive performance.

3. Methodology
3.1. Softmax Regression

Softmax regression is a generalization of logistic regression to handle multiple classes [49].
In this work, in order to produce a linear logit for each class, we use softmax regression
for binary classification tasks. We assume that the classes were binary: y(i) ∈ {0, 1}. Our
training set consists of n. labeled observations {(x(1), y(1)), . . . (x(n), y(n))}, where the input
variables are x(1) ∈ Rm. Our hypothesis took the form:

hθ(x) =
[

P(y = 0|x; θ)
P(y = 1|x; θ)

]
=

1

∑1
j=0 exp

(
θ(j)Tx

)
 exp

(
θ(0)Tx

)
exp

(
θ(1)Tx

)  (1)

where θ(1), θ(2) ∈ Rm are the weight parameter of softmax regression. From here, our cost
function will be

L(θ) = −
[

n
∑

i=1

(
1− y(i)

)
log
(

1− hθ

(
x(i)
))

+ y(i) log
(

hθ

(
x(i)
))]

=

−
[

n
∑

i=1

2
∑

j=0
1
{

y(i) = j
}

log P
(

y(i) = j
∣∣∣x(i); θ

)] (2)

In our proposed model, we will make a linear transformation or logit
{

θ(j)Tx
}

as
adaptable using neural networks.

3.2. Neural Networks

We apply a multilayer perceptron (MLP) as an adaptation model to update the logit of
softmax regression. MLP is the most commonly used type of feed-forward artificial neural
network that has been developed similar to human brain function; the basic concept of a
single perceptron was introduced by Rosenblatt [17]. This network consists of three layers
with completely different roles called input, hidden, and output layers. Each layer contains
weight parameters that link a given number of neurons with the activation function and
neurons in neighbor layers. The form of MLP with a single hidden layer can be represented
as follows:

fω,b(x) = G
(

ω(2)
(

H
(

ω(1)x + b(1)
))

+ b(2)
)

(3)

where ω(1), ω(2) are weight parameters, b(1), b(2) are bias parameters and G and H are
activation functions.
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MLP achieves the optimal weight and bias parameters by optimizing objective func-
tion using a backpropagation algorithm to construct a model as

L(ω, b) = −
[

n
∑

i=1

(
1− y(i)

)
log
(

1− fω,b

(
x(i)
))

+ y(i) log
(

fω,b

(
x(i)
))]

=

−
[

n
∑

i=1

2
∑

j=0
1
{

y(i) = j
}

log P
(

y(i) = j
∣∣∣x(i); ω; b

)] (4)

3.3. A Partially Interpretable Adaptive Softmax Regression (PIA-Soft)

The overall architecture of adaptive softmax regression for credit scoring is as shown in
Figure 2. We first compute a linear transformation of input variables and weight parameters
of softmax regression to obtain a logit for each observation. We then perform a neural
network to augment the logit to adapt them for each observation to deal with an imbalance
problem. Finally, summed linear transformation and output of the deep neural network is
then fed into the softmax function to estimate each class’s probability.

y = so f tmax(hθ(x) + fω,b(x)) (5)

where hθ . define linear transformation (softmax regression) and fω, b defines non-linear
transformation (neural network).
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In addition, we jointly optimize softmax regression and neural networks in the end-
to-end framework. Our loss function for adaptive softmax regression is constructed
as follows:

L(θ, ω, b) = −
[

n
∑

i=1

(
1− y(i)

)
log
(

1−
(

fω,b

(
x(i)
)
+ hθ

(
x(i)
)))

+ y(i) log
(

fω,b

(
x(i)
)
+ hθ

(
x(i)
))]

=

−
[

n
∑

i=1

2
∑

j=0
1
{

y(i) = j
}

log P
(

y(i) = j
∣∣∣x(i); θ; ω; b

)] (6)
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4. Experimental Results
4.1. Dataset

Our adaptive softmax regression models is compared with benchmark machine learn-
ing algorithms in terms of four real-world credit datasets. Three datasets from UCI reposi-
tory [50], namely, Australian and Taiwan, and other one dataset from FICO’s explanation
machine learning challenge [47], namely, FICO. A summary of all the datasets is presented
in Table 1.

Table 1. Summary of datasets.

Dataset Instances Variables Good/Bad

German 1000 24 700/300
Australian 690 14 387/307

Taiwan 6000 23 3000/3000
FICO 9871 24 5136/4735

4.2. Machine Learning Baselines and Hyperparameter Setting

For the PIA-Soft model, we used the same neural network architecture for all datasets.
The neural network contains two hidden layers with 32 neurons. For hyper-parameters:
learning rate, batch size, and epoch number must be pre-defined to train a model. We set
the learning rate to 0.001, epoch number for training to 3000 and use a mini-batch with
32 instances at each iteration. An Early Stopping algorithm is used for finding the optimal
epoch number based on given other hyper-parameters.

For benchmark models, Logistic regression, which have been the most widely used
method for binary classification task [13].

Random Forest classification [14], which is ensemble learning method defined as an
aggregation of a multiple decision tree classifiers.

AdaBoost classification [15], which is boosting algorithm that focuses on classification
problems and aims to combine a set of weak classifiers into a strong one. We use a base
estimator as a Decision tree classification.

XGBoost classification [16], which is a boosting ensemble algorithm, optimizes the
objective of function, size of the tree and the magnitude of the weights are controlled
by standard regularization parameters. This method uses Classification and Regression
Trees (CART).

LightGBM [17] and CatBoost [18] are fast, distributed, high-performance gradient
boosting models based on decision tree algorithm, used for classification and many other
machine learning tasks.

TabNet [19] model is similar to simpler tree-based models while benefiting from high
performance, almost identical to deep neural networks.

We also use exactly identical architecture to the neural network benchmark with adap-
tive softmax regression. The hyper-parameters of these baseline classifiers are optimized
by random search with 10 cross-validation methods over parameter settings, as shown in
Table 2.

In addition, we apply the most widely used re-sampling techniques with machine
learning baselines on the public datasets. The resampling techniques include:

SMOTE: Synthetic Minority Oversampling Technique, which is the most popular
method in this area, generates synthetic samples for the minority class by using k-nearest
neighbor (KNN) algorithm [51].

ADASYN: Adaptive Synthetic Sampling [52] uses a weighted distribution for different
minority class instances according to their level of difficulty in learning, where more
synthetic data is generated for minority class instances that are harder to learn compared
to those minority examples that are easier to learn.
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Table 2. Searching space of hyper-parameters.

Model Parameters Search Space

Random Forest

max_depth (2, 8)
min_samples_split (1, 8)
min_samples_leaf (1, 8]

criterion {‘gini’, ‘entropy’}
bootstrap {True, False}

AdaBoost
learning_rate (0.1, 1)

algorithm {‘SAMME.R’, ‘SAMME’}

XGBoost

min_child_weight (1, 10)
gamma {0, 0.1, 0.5, 0.8, 1}

subsample {0.5, 0.75, 0.9}
colsample_bytree {0.5, 0.6, 0.7, 0.8, 0.9, 1}

max_depth {2, 8}
learning_rate {0.01, 0.1, 0.2, 0.3, 0.5}

LightGBM

min_child_samples (10, 60)
reg_alpha {0, 0.1, 0.5, 0.8, 1}
subsample {0.5, 0.75, 0.9}

colsample_bytree {0.5, 0.6, 0.7, 0.8, 0.9, 1}
max_depth (2, 8)

learning_rate {0.01, 0.1, 0.2, 0.3, 0.5}

CatBoost

min_child_samples (10, 60)
subsample {0.5, 0.75, 0.9}

colsample_bytree {0.5, 0.6, 0.7, 0.8, 0.9, 1}
max_depth (2, 8)

learning_rate {0.01, 0.1, 0.2, 0.3, 0.5}

TabNet
n_d (4, 16)
n_a (4, 16)

mask_type {‘entmax’, ‘sparsemax’}

ROS: Random Over Sampling [53] picks an instance from the minority class instances
by using random sampling with replacement until dataset is balanced.

Comparison of Predictive Performance

This empirical evaluation aims to present that our proposed PIA-Soft model could
lead to better performance than both the industry-benchmark machine learning models in
different evaluation metrics. Table 3 displayed the performance of machine learning models
on German dataset to compare them and make a reliable conclusion. For the German
dataset (see Table 3), our model indicated the best performance in terms of AUC evaluation
metric. Our model achieves 0.798 AUC, 0.781 accuracy, 0.795 f-score, and 0.795 g-mean.
The AUC, F-score, and accuracy indicate classifying ability between borrowers as good
and bad and g-mean is better at dealing with an imbalanced ratio among credit classes.
It is found that with the German dataset, our proposed model shows better predictive
performances for AUC evaluation metric, indicating that our model is a suitable approach
to the small dataset in credit scoring. For other evaluation metrics, neural network model
with ADASYN sampling technique achieved the highest performance.

In addition, our model achieved the similar performance compared to the state-of-the-
art machine learning benchmarks on the Australian dataset, as shown in Table 4. CabBoost
model with no sampling technique showed the best performance for AUC metric as well
as this model achieved the highest performance with SMOTE sampling method for other
evaluation metrics. Our model provides an improvement over the Logistic regression,
Random forest, AdaBoost, Neural Network, and TabNet models by around 0.07 AUC, 0.002
accuracy, and 0.004 g-mean.
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Table 3. The prediction performance for German dataset over different evaluation metrics.

Sampling Method Model AUC Accuracy F-Sscore G-Mean

No sampling

Logistic 0.788 +/− 0.072 0.762 +/− 0.062 0.774 +/− 0.056 0.777 +/− 0.053
Random forest 0.788 +/− 0.071 0.771 +/− 0.070 0.783 +/− 0.065 0.778 +/− 0.067

AdaBoost 0.762 +/− 0.038 0.721 +/− 0.040 0.736 +/− 0.041 0.737 +/− 0.039
XGBoost 0.778 +/− 0.059 0.762 +/− 0.059 0.775 +/− 0.051 0.774 +/− 0.053

Neural Network 0.791 +/− 0.069 0.759 +/− 0.061 0.771 +/− 0.054 0.775 +/− 0.053
LightGBM 0.766 +/− 0.022 0.764 +/− 0.019 0.777 +/− 0.018 0.773 +/− 0.023
CatBoost 0.783 +/− 0.018 0.771 +/− 0.028 0.783 +/− 0.023 0.775 +/− 0.023
TabNet 0.653 +/− 0.022 0.678 +/− 0.018 0.695 +/− 0.020 0.685 +/− 0.016

SMOTE

Logistic 0.798 +/− 0.015 0.767 +/− 0.012 0.767 +/− 0.012 0.767 +/− 0.012
Random forest 0.776 +/− 0.025 0.752 +/− 0.023 0.754 +/− 0.018 0.753 +/− 0.020

AdaBoost 0.725 +/− 0.019 0.715 +/− 0.021 0.715 +/− 0.021 0.715 +/− 0.020
XGBoost 0.782 +/− 0.029 0.750 +/− 0.044 0.752 +/− 0.036 0.751 +/− 0.042

Neural Network 0.795 +/− 0.020 0.764 +/− 0.019 0.765 +/− 0.014 0.765 +/− 0.015
LightGBM 0.763 +/− 0.041 0.758 +/− 0.043 0.771 +/− 0.041 0.764 +/− 0.042
CatBoost 0.775 +/− 0.039 0.759 +/− 0.058 0.772 +/− 0.054 0.770 +/− 0.053
TabNet 0.717 +/− 0.039 0.720 +/− 0.043 0.735 +/− 0.037 0.727 +/− 0.038

ADASYN

Logistic 0.794 +/− 0.067 0.788 +/− 0.055 0.799 +/− 0.051 0.797 +/− 0.054
Random forest 0.793 +/− 0.070 0.773 +/− 0.058 0.785 +/− 0.050 0.783 +/− 0.055

AdaBoost 0.715 +/− 0.042 0.703 +/− 0.048 0.719 +/− 0.045 0.716 +/− 0.043
XGBoost 0.765 +/− 0.075 0.764 +/− 0.058 0.776 +/− 0.052 0.772 +/− 0.054

Neural Network 0.796 +/− 0.064 0.792 +/− 0.059 0.802 +/− 0.056 0.800 +/− 0.056
LightGBM 0.758 +/− 0.024 0.742 +/− 0.038 0.756 +/− 0.036 0.749 +/− 0.037
CatBoost 0.780 +/− 0.038 0.774 +/− 0.038 0.786 +/− 0.036 0.778 +/− 0.037
TabNet 0.709 +/− 0.075 0.711 +/− 0.077 0.726 +/− 0.072 0.720 +/− 0.073

ROS

Logistic 0.786 +/− 0.071 0.766 +/− 0.071 0.778 +/− 0.067 0.780 +/− 0.065
Random forest 0.797 +/− 0.068 0.764 +/− 0.084 0.777 +/− 0.077 0.779 +/− 0.077

AdaBoost 0.710 +/− 0.050 0.688 +/− 0.052 0.704 +/− 0.052 0.710 +/− 0.045
XGBoost 0.769 +/− 0.068 0.748 +/− 0.078 0.761 +/− 0.070 0.764 +/− 0.065

Neural Network 0.788 +/− 0.067 0.749 +/− 0.047 0.761 +/− 0.043 0.761 +/− 0.043
LightGBM 0.793 +/− 0.014 0.767 +/− 0.013 0.767 +/− 0.013 0.767 +/− 0.013
CatBoost 0.794 +/− 0.013 0.767 +/− 0.010 0.767 +/− 0.010 0.766 +/− 0.010
TabNet 0.780 +/− 0.014 0.760 +/− 0.014 0.760 +/− 0.015 0.759 +/− 0.014

PIA-Soft (Ours) 0.798 +/− 0.045 0.781 +/− 0.051 0.795 +/− 0.047 0.795 +/− 0.049

For the Taiwan dataset (see Table 5), CatBoost model achieved the highest perfor-
mances, which are 0.753 AUC, 0.734 accuracy, 0.734 F-score, and 0.734 g-mean. Our
proposed model showed the third best performance by achieving 0.744 AUC, 0.725 ac-
curacy, 0.726 F-score, 0.726 g-mean. Since this dataset is balanced, we do not use the
sampling techniques.

Regarding the FICO dataset (see Table 6), our model achieved the best predictive per-
formance for all evaluation metrics. Neural Network model with ROS sampling technique
achieved the second best predictive performance on AUC metric. The logistic regression
model with ROS sampling technique achieved the second best performance for other eval-
uation metrics. Our model improved the second best performance by around 0.008 AUC,
0.021 accuracy, 0.021 F-score, and 0.021 g-mean.

In the end, our model succeeds the best predictive performance over most of the
datasets. Therefore, this experiments provides evidence that our proposed PIA-Soft model
equipped with a neural network works better than benchmark machine learning mod-
els on public credit scoring datasets. The next part of the experiments will show the
interpretability of PIA-Soft model.
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Table 4. The prediction performance for Australia dataset over different evaluation metrics.

Sampling Method Model AUC Accuracy F-Score G-Mean

No sampling

Logistic 0.911 +/− 0.053 0.869 +/− 0.047 0.868 +/− 0.047 0.862 +/− 0.046
Random forest 0.916 +/− 0.064 0.883 +/− 0.053 0.883 +/− 0.052 0.876 +/− 0.052

AdaBoost 0.928 +/− 0.035 0.894 +/− 0.024 0.894 +/− 0.023 0.891 +/− 0.024
XGBoost 0.915 +/− 0.059 0.870 +/− 0.067 0.870 +/− 0.068 0.868 +/− 0.065

Neural Network 0.904 +/− 0.052 0.867 +/− 0.051 0.866 +/− 0.051 0.860 +/− 0.049
LightGBM 0.937 +/− 0.022 0.904 +/− 0.021 0.904 +/− 0.021 0.902 +/− 0.022
CatBoost 0.938 +/− 0.015 0.910 +/− 0.018 0.910 +/− 0.018 0.907 +/− 0.017
TabNet 0.852 +/− 0.047 0.823 +/− 0.034 0.822 +/− 0.034 0.816 +/− 0.038

SMOTE

Logistic 0.910 +/− 0.054 0.873 +/− 0.056 0.873 +/− 0.056 0.867 +/− 0.056
Random forest 0.916 +/− 0.065 0.884 +/− 0.056 0.884 +/− 0.056 0.882 +/− 0.055

AdaBoost 0.923 +/− 0.039 0.879 +/− 0.045 0.879 +/− 0.045 0.876 +/− 0.044
XGBoost 0.903 +/− 0.058 0.855 +/− 0.060 0.854 +/− 0.061 0.848 +/− 0.060

Neural Network 0.906 +/− 0.054 0.842 +/− 0.109 0.826 +/− 0.155 0.834 +/− 0.117
LightGBM 0.936 +/− 0.025 0.898 +/− 0.023 0.898 +/− 0.023 0.897 +/− 0.023
CatBoost 0.931 +/− 0.019 0.914 +/− 0.019 0.914 +/− 0.019 0.912 +/− 0.018
TabNet 0.836 +/− 0.023 0.821 +/− 0.030 0.822 +/− 0.031 0.820 +/− 0.031

ADASYN

Logistic 0.911 +/− 0.053 0.876 +/− 0.051 0.876 +/− 0.051 0.870 +/− 0.050
Random forest 0.917 +/− 0.065 0.880 +/− 0.055 0.880 +/− 0.054 0.875 +/− 0.054

AdaBoost 0.916 +/− 0.039 0.873 +/− 0.039 0.873 +/− 0.039 0.871 +/− 0.038
XGBoost 0.917 +/− 0.060 0.851 +/− 0.103 0.835 +/− 0.147 0.841 +/− 0.122

Neural Network 0.904 +/− 0.054 0.863 +/− 0.046 0.863 +/− 0.046 0.859 +/− 0.045
LightGBM 0.934 +/− 0.023 0.898 +/− 0.015 0.898 +/− 0.015 0.896 +/− 0.016
CatBoost 0.934 +/− 0.018 0.904 +/− 0.016 0.904 +/− 0.016 0.901 +/− 0.015
TabNet 0.800 +/− 0.063 0.804 +/− 0.058 0.804 +/− 0.058 0.801 +/− 0.057

ROS

Logistic 0.911 +/− 0.053 0.879 +/− 0.052 0.878 +/− 0.052 0.872 +/− 0.052
Random forest 0.917 +/− 0.065 0.883 +/− 0.055 0.883 +/− 0.055 0.878 +/− 0.055

AdaBoost 0.912 +/− 0.045 0.862 +/− 0.062 0.861 +/− 0.063 0.859 +/− 0.061
XGBoost 0.909 +/− 0.067 0.857 +/− 0.052 0.855 +/− 0.052 0.849 +/− 0.052

Neural Network 0.903 +/− 0.055 0.846 +/− 0.096 0.833 +/− 0.132 0.835 +/− 0.117
LightGBM 0.926 +/− 0.026 0.892 +/− 0.024 0.892 +/− 0.024 0.891 +/− 0.024
CatBoost 0.924 +/− 0.012 0.902 +/− 0.018 0.902 +/− 0.019 0.900 +/− 0.018
TabNet 0.842 +/− 0.048 0.802 +/− 0.059 0.803 +/− 0.058 0.802 +/− 0.059

PIA-Soft (Ours) 0.934 +/− 0.041 0.896 +/− 0.079 0.894 +/− 0.086 0.895 +/− 0.075

Table 5. The prediction performance for Taiwan dataset over different evaluation metrics.

Sampling Method Model AUC Accuracy F-Score G-Mean

No sampling

Logistic 0.637 +/− 0.028 0.644 +/− 0.025 0.644 +/− 0.025 0.643 +/− 0.024
Random forest 0.750 +/− 0.016 0.732 +/− 0.012 0.732 +/− 0.012 0.732 +/− 0.012

AdaBoost 0.721 +/− 0.010 0.708 +/− 0.015 0.708 +/− 0.015 0.708 +/− 0.015
XGBoost 0.744 +/− 0.019 0.724 +/− 0.016 0.724 +/− 0.016 0.725 +/− 0.016

Neural Network 0.736 +/− 0.018 0.715 +/− 0.018 0.715 +/− 0.018 0.715 +/− 0.018
LightGBM 0.751 +/− 0.011 0.732 +/− 0.012 0.731 +/− 0.012 0.731 +/− 0.012
CatBoost 0.753 +/− 0.011 0.734 +/− 0.012 0.734 +/− 0.012 0.734 +/− 0.012
TabNet 0.739 +/− 0.012 0.723 +/− 0.019 0.723 +/− 0.018 0.723 +/− 0.018

PIA-Soft (Ours) 0.744 +/− 0.015 0.725 +/− 0.015 0.726 +/− 0.015 0.726 +/− 0.015



Appl. Sci. 2021, 11, 3227 11 of 20

Table 6. The prediction performance for FICO dataset over different evaluation metrics.

Sampling Method Model AUC Accuracy F-Score G-Mean

No sampling

Logistic 0.798 +/− 0.015 0.767 +/− 0.012 0.767 +/− 0.012 0.767 +/− 0.012
Random forest 0.774 +/− 0.030 0.755 +/− 0.016 0.757 +/− 0.014 0.755 +/− 0.016

AdaBoost 0.773 +/− 0.016 0.755 +/− 0.014 0.755 +/− 0.014 0.755 +/− 0.014
XGBoost 0.787 +/− 0.018 0.754 +/− 0.035 0.756 +/− 0.029 0.757 +/− 0.025

Neural Network 0.798 +/− 0.014 0.756 +/− 0.035 0.758 +/− 0.028 0.760 +/− 0.025
LightGBM 0.792 +/− 0.015 0.766 +/− 0.014 0.766 +/− 0.014 0.766 +/− 0.014
CatBoost 0.795 +/− 0.014 0.768 +/− 0.010 0.768 +/− 0.010 0.768 +/− 0.010
TabNet 0.782 +/− 0.013 0.760 +/− 0.010 0.760 +/− 0.010 0.760 +/− 0.010

SMOTE

Logistic 0.798 +/− 0.015 0.767 +/− 0.012 0.767 +/− 0.012 0.767 +/− 0.012
Random forest 0.776 +/− 0.025 0.752 +/− 0.023 0.754 +/− 0.018 0.753 +/− 0.020

AdaBoost 0.725 +/− 0.019 0.715 +/− 0.021 0.715 +/− 0.021 0.715 +/− 0.020
XGBoost 0.782 +/− 0.029 0.750 +/− 0.044 0.752 +/− 0.036 0.751 +/− 0.042

Neural Network 0.795 +/− 0.020 0.764 +/− 0.019 0.765 +/− 0.014 0.765 +/− 0.015
LightGBM 0.792 +/− 0.014 0.766 +/− 0.014 0.766 +/− 0.014 0.766 +/− 0.014
CatBoost 0.794 +/− 0.014 0.767 +/− 0.012 0.767 +/− 0.012 0.767 +/− 0.011
TabNet 0.786 +/− 0.016 0.763 +/− 0.013 0.763 +/− 0.013 0.763 +/− 0.013

ADASYN

Logistic 0.798 +/− 0.015 0.767 +/− 0.012 0.767 +/− 0.012 0.767 +/− 0.012
Random forest 0.773 +/− 0.033 0.751 +/− 0.025 0.753 +/− 0.020 0.751 +/− 0.025

AdaBoost 0.727 +/− 0.028 0.718 +/− 0.018 0.718 +/− 0.018 0.718 +/− 0.018
XGBoost 0.781 +/− 0.032 0.754 +/− 0.035 0.756 +/− 0.029 0.755 +/− 0.032

Neural Network 0.795 +/− 0.021 0.764 +/− 0.018 0.766 +/− 0.013 0.766 +/− 0.014
LightGBM 0.792 +/− 0.015 0.766 +/− 0.014 0.766 +/− 0.014 0.766 +/− 0.014
CatBoost 0.795 +/− 0.014 0.768 +/− 0.010 0.768 +/− 0.010 0.768 +/− 0.010
TabNet 0.783 +/− 0.016 0.759 +/− 0.014 0.759 +/− 0.014 0.759 +/− 0.014

ROS

Logistic 0.798 +/− 0.015 0.767 +/− 0.012 0.767 +/− 0.012 0.767 +/− 0.012
Random forest 0.781 +/− 0.018 0.755 +/− 0.022 0.757 +/− 0.018 0.755 +/− 0.023

AdaBoost 0.725 +/− 0.016 0.714 +/− 0.014 0.714 +/− 0.014 0.714 +/− 0.014
XGBoost 0.786 +/− 0.019 0.750 +/− 0.047 0.752 +/− 0.040 0.755 +/− 0.029

Neural Network 0.799 +/− 0.015 0.761 +/− 0.022 0.763 +/− 0.017 0.763 +/− 0.017
LightGBM 0.793 +/− 0.014 0.767 +/− 0.013 0.767 +/− 0.013 0.767 +/− 0.013
CatBoost 0.794 +/− 0.013 0.767 +/− 0.010 0.767 +/− 0.010 0.766 +/− 0.010
TabNet 0.780 +/− 0.014 0.760 +/− 0.014 0.760 +/− 0.015 0.759 +/− 0.014

PIA-Soft (Ours) 0.807 +/− 0.016 0.788 +/− 0.013 0.788 +/− 0.013 0.788 +/− 0.013

4.3. Model Interpretability

In this section, we show how to interpret the PIA-Soft model. As we explained, our
model produces linear and non-linear logits for each borrower. Figure 3 shows the predicted
linear and non-linear logits for A and B borrowers from German dataset. For A borrower,
since the logit for class-1 is higher than class-0, we can predict that this borrower belongs
to class-1. According to the proportion of class-1’s logit, the linear logit is larger than the
non-linear logit, and we can only explain how the linear logit depends on the explanatory
variables. In other words, we can explain and understand most of the borrower’s score
for borrower A. On the contrary, for borrower B, the linear logit is a very small percentage
of the total logit; therefore, we cannot explain the most of the borrower’s score. For this
reason, our proposed PIA-Soft model can be partially interpretable. In terms of all datasets,
the linear and non-linear logits for each borrower are show in Figures A1–A4.

In addition, our model can compute the impact on model output for each variable.
Figure 3 shows the impact of variables for each class on German dataset. We can observe
that if the amount of the most valuable available asset increases, the logit for class-0 (good
borrower) increases more than the logit for class-1 (bad borrower). In other words, we can
say that if the borrower has a large amount of valuable available assets, the borrower’s
credit risk is decreased.
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We also display how other variables affect credit score for all datasets in Figure 4 for
German dataset. These estimated coefficients from the results of the PIA-Soft model are
logically consistent with the real-life and logistic regression (see Figure 5). The logistic
regression estimates coefficients for only class-1. Therefore, we compare weight param-
eters of the PIA-Soft model for class-1 to the logistic regression’s coefficients. We also
displayed the impact of variables for each class and the comparison of PIA-Soft model
and Logistic regression on other datasets in Figures A5–A10. In the end, our experimental
results show that PIA-Soft model suggests a promising direction for partially interpretable
machine learning model that can combine the softmax regression and neural network by
end-to-end training.
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Figure 4. Comparison of PIA-Soft model and Logistic regression on German dataset.
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Figure 5. The impact of variables for each class on German dataset.

5. Discussion

For credit scoring application, the model interpretability is one of the most critical
features, and financial institutions want to understand how the borrower’s credit risk
depends on the borrower’s characteristics. Recently, machine learning models have been
successfully used to establish credit scoring models with high predictive performance.
However, the machine learning model’s ambiguous decision-making process indicates the
need to develop an explainable model with a high-predictive performance.

In this work, we aimed to propose an interpretable credit scoring model that can
achieve state-of-the-art predictive performance using softmax regression and neural net-
work models. Our proposed model consists of two main components: linear (softmax
regression) and non-linear (neural network). The linear part explains the fundamental
relationship between input and output variables. The non-linear part serves to improve
the prediction performance by identifying the non-linear relationship between features for
each borrower. In order to show the superiority of our proposed model, we compared our
model to high-performance machine learning benchmarks on four public credit scoring
datasets. In addition, in order to show our model can handle class imbalance problem
without sampling techniques, we compare machine learning baselines with over sampling
techniques. As bad borrowers occur infrequently, standard deep learning architectures
tend to misclassify the minority (bad borrowers) classes compared to the majority (good
borrowers) classes [11]. Therefore, we used the softmax function as an output of our model.
Since the softmax computes the probability distributions of a list of potential outcomes and
we update the logit (input of softmax function) for each class using neural network and
linear models, our PIA-Soft model could handle the class imbalance problem.

Experimental results showed that our proposed model significantly outperformed
machine learning models in terms of predictive performance. We also compare our pro-
posed model to logistic regression to evaluate the model interpretation. From the result, the
estimated coefficients of the PIA-Soft model are logically consistent with the real-life and
logistic regression. Unlike logistic regression, our proposed model measures the impact of
variables for each class, so we can estimate which class the borrower can move to faster
based on each variable’s change. For example, the “the duration of credit” variable has an
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insignificant effect on class 1 (bad borrower) and a substantial impact on class 0 (good) for
German dataset.

Finally, our proposed model suggests a promising direction for a partially interpretable
machine learning model that can combine the softmax regression and neural network by
end-to-end training.

However, since we use bank clients’ data to construct a credit scoring model, this
sample data may differ from the overall population distribution. Therefore, there is a
limitation that the trained machine learning models cannot be robust on overall population
distribution. To solve this problem, we anticipate potential future work in this area that
includes developing adaptive machine-learning algorithms for unseen data based on
generative models such as variational auto-encoder, generative adversarial networks, etc.

6. Conclusions

In this work, we proposed a novel partially interpretable adaptive softmax regression
model for class imbalance issue in the application of credit scoring. We compared our
proposed model to benchmark machine learning models on four benchmark imbalanced
credit scoring datasets. The results showed that our proposed PIA-Soft model significantly
improved the baselines. We also observed that our model works better on both small and
large datasets. In addition, we demonstrated that how our model partially interpret output.
Depending on the characteristic of borrowers, our model logically explains the relationship
between input and output. This marginal explanation between input and output can be
used by financial institutions in their decision-making.
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Figure A1. The predicted linear and nonlinear logits for each class on German dataset.
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Figure A2. The predicted linear and nonlinear logits for each class on Australian dataset.
Appl. Sci. 2021, 11, x FOR PEER REVIEW 16 of 20 
 

 
Figure A3. The predicted linear and nonlinear logits for each class on Taiwan dataset. 

 
Figure A4. The predicted linear and non-linear logits for each class on FICO dataset. 

 
Figure A5. The impact of variables for each class on Australian dataset. 

 -
 0.10
 0.20
 0.30
 0.40
 0.50
 0.60
 0.70
 0.80
 0.90
 1.00

-4
-3
-2
-1
0
1
2
3
4
5
6

1
12
9

25
7

38
5

51
3

64
1

76
9

89
7

10
25

11
53

12
81

14
09

15
37

16
65

17
93

19
21

20
49

21
77

23
05

24
33

25
61

26
89

28
17

29
45

30
73

32
01

33
29

34
57

35
85

37
13

38
41

39
69

40
97

42
25

43
53

44
81

46
09

47
37

48
65

49
93

51
21

52
49

53
77

55
05

56
33

57
61

58
89

Pr
ob
ab
ili
ty
 o
f c
la
ss
-1

Lo
gi
ts 
(B
or
rw
er
's 
sc
or
e)

Borrower's ID

Linear logit for class 0 Linear logit for class 1
Non-linear logit for class 0 Non-linear logit for class 1
Probability of class-1

 -
 0.10
 0.20
 0.30
 0.40
 0.50
 0.60
 0.70
 0.80
 0.90
 1.00

-4
-3
-2
-1
0
1
2
3
4
5
6

1
18
6

37
1

55
6

74
1

92
6

11
11

12
96

14
81

16
66

18
51

20
36

22
21

24
06

25
91

27
76

29
61

31
46

33
31

35
16

37
01

38
86

40
71

42
56

44
41

46
26

48
11

49
96

51
81

53
66

55
51

57
36

59
21

61
06

62
91

64
76

66
61

68
46

70
31

72
16

74
01

75
86

77
71

79
56

81
41

83
26

85
11

86
96

88
81

Pr
ob
ab
ili
ty
 o
f c
la
ss
-1

Lo
gi
ts 
(B
or
rw
er
's 
sc
or
e)

Borrower's ID

Linear logit for class 0 Linear logit for class 1
Non-linear logit for class 0 Non-linear logit for class 1
Probability of class-1

(0.09)

0.02 

(0.17)

0.09 

(0.27)

0.18 

(0.27)

(0.31)

(0.24)

0.02 

(0.08)

0.13 

(0.16)

(0.24)

(0.06)
(0.03)

(0.09)
0.09 

(0.01)
0.05 

0.13 
0.08 
0.07 

0.18 
(0.07)

0.03 
(0.09)

0.13 

 (0.40)  (0.30)  (0.20)  (0.10)  -  0.10  0.20  0.30

A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14

Impact on class-1 Impact on class-0

Figure A3. The predicted linear and nonlinear logits for each class on Taiwan dataset.
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Figure A4. The predicted linear and non-linear logits for each class on FICO dataset.
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Figure A5. The impact of variables for each class on Australian dataset.
Appl. Sci. 2021, 11, x FOR PEER REVIEW 17 of 20 
 

 
Figure A6. Comparison of PIA-Soft model and Logistic regression on Australian dataset. 

 
Figure A7. The impact of variables for each class on Taiwan dataset. 

-0.06

-0.03

-0.09

0.09

-0.01

0.05

0.13

0.08

0.07

0.18

-0.07

0.03

-0.09

0.13

-0.02

0.00

-0.03

0.67

0.19

0.05

0.08

2.95

0.33

0.14

-0.23

0.26

0.00

0.00

 (0.50)  -  0.50  1.00  1.50  2.00  2.50  3.00  3.50

A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14

Logistic regression PIA-Soft

0.05 

0.01 

(0.05)

0.13 

(0.18)

(0.07)

(0.24)

(0.26)

(0.23)

(0.03)

(0.08)

0.27 

(0.09)

(0.06)

(0.01)

(0.00)

(0.10)

0.97 

0.65 

0.25 

0.47 

0.28 

0.24 

0.04 

(0.05)

0.01 

(0.07)

0.07 

0.20 

(0.05)

0.14 

0.10 

0.11 

0.04 

(0.01)

(0.06)

(0.12)

(0.06)

(0.09)

(0.02)

(0.44)

(0.41)

(0.10)

(0.06)

(0.13)

(0.09)

 (0.60)  (0.40)  (0.20)  -  0.20  0.40  0.60  0.80  1.00  1.20

LIMIT_BAL
SEX

EDUCATION
MARRIAGE

AGE
PAY_0
PAY_2
PAY_3
PAY_4
PAY_5
PAY_6

BILL_AMT1
BILL_AMT2
BILL_AMT3
BILL_AMT4
BILL_AMT5
BILL_AMT6
PAY_AMT1
PAY_AMT2
PAY_AMT3
PAY_AMT4
PAY_AMT5
PAY_AMT6

Impact on class-1 Impact on class-0

Figure A6. Comparison of PIA-Soft model and Logistic regression on Australian dataset.
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Figure A7. The impact of variables for each class on Taiwan dataset.
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Figure A8. Comparison of PIA-Soft model and Logistic regression on Taiwan dataset.
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Figure A9. The impact of variables for each class on FICO dataset.
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