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Abstract: The present study uses linear quadratic regulator (LQR) theory to control a vibratory
system modeled by a fractional-order differential equation. First, as an example of such a vibra-
tory system, a viscoelastically damped structure is selected. Second, a fractional-order LQR is
designed for a system in which fractional-order differential terms are contained in the equation of
motion. An iteration-based method for solving the algebraic Riccati equation is proposed in order
to obtain the feedback gains for the fractional-order LQR. Third, a fractional-order state observer
is constructed in order to estimate the states originating from the fractional-order derivative term.
Fourth, numerical simulations are presented using a numerical calculation method correspond-
ing to a fractional-order state equation. Finally, the numerical simulation results demonstrate that
the fractional-order LQR control can suppress vibrations occurring in the vibratory system with
viscoelastic damping.

Keywords: vibration; control; fractional calculus; linear quadratic regulator (LQR); algebraic Riccati
equation; iteration; state observer; viscoelasticity

1. Introduction

Fractional calculus is a form of calculus in which the order of differentiation and
integration is expanded or generalized from an integer number to a non-integer number.
However, fractional calculus is not novel or strange and has a long history that traces
back to Leibniz, who was one of the founders of calculus [1]. During these past 30 years,
fractional calculus has been applied in engineering fields, especially in control engineering.
In control engineering, dynamical systems, which cannot be described sufficiently by
conventional integer-order calculus, have been modeled with fractional calculus, and con-
trollers that use fractional calculus have been designed. In other words, a revolution in the
construction methods of control system has occurred.

Fractional calculus has been introduced into proportional-integral-differential (PID)
control systems as a typical classical control method. Several examples can be cited: PIλDµ

control [2], robust fractional-order PI control using the auto-tuning method [3], the applica-
tion of this fractional-order PI control method to a manipulator robot [4], fractional-order
PD control of a smart beam [5,6], a tuning rule for a fractional-order PD controller for
a second-order system [7], fractional-order PID control for a magnetically levitated sys-
tem [8], fractional-order PD control to suppress vibrations that appear in a three-story struc-
ture [9], a graphical design method for tuning a fractional-order PI or PD controller [10],
a fractional-order PID controller to suppress vibration that occurs in a cantilever beam
using electromagnetic actuators [11], the meaning of the parameters used in fractional-
order PID controllers [12], fractional-order PID control for a pumped storage unit [13],
fractional-order PID load-frequency control for a power system [14], tuning rules for
fractional-order PID controllers [15], PIλDµ control for trajectory tracking by a 3-DOF
parallel manipulator [16], fractional-order PID control for an automatic voltage regulating
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system [17], and fractional-order PID control for a hydraulic turbine regulating system [18].
Thus, research examples are too numerous to mention.

Fractional calculus has also been used for linear quadratic regulator (LQR) control as
a typical modern control theory. In the sense that the controller is applicable to controlled
systems with fractional-order dynamics, we use the terminology “fractional-order LQR”
in this paper. Similarly, some examples can be cited: a state-feedback LQR controller for
fractional-order systems [19], an LQR-based PID controller design using a fractional-order
integral performance index [20], a fractional-order LQR [21], a fractional-order LQR control
to suppress vibrations appearing in a three-story building [22], and fractional-order PID
control for time-delay systems [23]. Again, research examples are too numerous to count.
However, it is known that the procedure to derive a fractional-order LQR, as described in a
previous report [21], is too complicated to be practical.

Therefore, in the present paper, a novel iteration-based method is first proposed to
solve the algebraic Riccati equation to derive the fractional-order LQR. Since all states of the
controlled system are fed back in the LQR control scheme, all of the states are assumed to be
detected. However, in reality, it is very difficult to measure the states originating from the
fractional-order derivative terms. A state observer is then established in order to estimate
all of the states, including the fractional-order derivative states. The fractional-order LQR
control system is then constructed using the estimated states. Next, by way of example,
a viscoelastic damper system modeled with a fractional-order differential equation is con-
sidered, and fractional-order LQR control is conducted for the viscoelastic damper system.
The effectiveness of the proposed design method is then confirmed. Finally, the proposed
fractional-order LQR and the fractional-order LQR derived using the method proposed by
Sierociuk and Vinagre [19] are compared with respect to control effects.

The remainder of the present paper is organized as follows. Some basic concepts,
such as stability, controllability, and observability for a fractional-order dynamical system,
are explained in Section 2. After a viscoelastic damper system is selected as a controlled
object in Section 3, the proposed design method for fractional-order LQR control is ex-
plained in Section 4. In Section 5, a fractional-order state observer is constructed in order
to estimate the fractional-order derivative states, which is required for the realization of
fractional-order LQR. A numerical calculation method corresponding to a fractional-order
dynamical system is introduced in Section 6. In Section 7, numerical simulation results
reveal that the fractional-order LQR, from which feedback gains are derived with the
proposed design method, can effectively suppress vibrations that occur in the viscoelastic
damper system. Finally, concluding remarks are summarized in Section 8.

2. Background
2.1. Stability of Fractional-Order Dynamical System

Denoting the differential operator as D, a linear fractional-order autonomous system
can be given as follows:

Dαx(t) = Ax(t), x(0) = x0, (1)

where α is the non-integer order of differentiation, x(t) is the state vector and A is the
system matrix.

The dynamical behavior and stability of a fractional-order dynamical system can
be analyzed by investigating the poles of the system on the complex plane (s-plane).
However, in the case of a fractional-order dynamical system, such as Equation (1), the poles
need to be investigated on a new sα-plane. In the present paper, the sα-plane is called the
ω-plane. Here, ω can be defined as follows:

ω = sα, (2)

where s is given as:
s = reiθ . (3)
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Then, the definitions given by Equations (2) and (3) yield the following:

ω = sα =
(

reiθ
)α

= rαeiαθ . (4)

Using Equation (4), lines on the s-plane can be mapped to corresponding lines on the
ω-plane. Practically, let us consider the case in which α = 0.5. The imaginary axis on the
s-plane is expressed as θ = ±π/2, and 0 < r < +∞. Then, the imaginary axis on the
ω-plane can be expressed as follows:

ω = r
1
2 e±i π

4 . (5)

Furthermore, the negative part of the real axis on the s-plane is expressed as θ = ±π, and
0 < r < +∞. Then, the negative part of the real axis on the ω-plane can be expressed as
follows:

ω = r
1
2 e±i π

2 . (6)

Thus, the imaginary axis and the negative part of the real axis can be mapped on the
ω-plane as illustrated in Figure 1.
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2 ).

Classification of the dynamical behavior and stability in each region in Figure 1 is
as follows [24]: unstable in region 1©, damped oscillation in region 2©, and overdamping
in region 3©. Therefore, the necessary and sufficient condition for the linear autonomous
system given in Equation (1) to be asymptotically stable for an arbitrary initial value x0
is that the arguments of the eigenvalues λi of the system matrix A satisfy the following
inequality [25,26]:

|arg(λi)| >
απ

2
, (i = 1, 2, · · · n), (7)

where n is the order of the system.

2.2. Controllability of Fractional-Order Dynamical System

Next, a linear fractional-order non-autonomous system can be given as follows:{
Dαx(t) = Ax(t) + Bu(t), x(0) = x0

y(t) = Cx(t)
, (8)

where α designates the non-integer order of differentiation, x(t) is the state vector, u(t) is
the input, y(t) is the output, A is the system matrix, B is the input matrix, and C is the
output matrix.

For an arbitrary initial state x(0) = x0, a time t f > 0, and a desired value x f , if an input
u(t) that enables a solution to satisfy x(t f ) = x f exists, then the system described by Equation
(8) is controllable. In addition, the propositions shown below are equivalent [25,26].
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1. A pair of matrices (A, B) is controllable.
2. The rank of the following controllability matrix Nc is n:

Nc =
[
B AB · · · An−1B

]
. (9)

2.3. Observability of Fractional-Order Dynamical System

If the initial state x(0) = x0 can be determined based on the time responses of the
input u(t) and the output y(t) at an arbitrary time t1 > 0, then the system defined by
Equation (8) is observable. In addition, the propositions given below are equivalent [25,26].

1. A pair of matrices (C, A) is observable.
2. The rank of the following observability matrix No is n:

No =

[
CT (CA)T · · ·

(
CAn−1

)T
]T

. (10)

3. Fractional-Order Vibratory System with Viscoelasticity

First, a viscoelastically damped structure is considered as an example of a fractional-
order vibratory system in order to explain LQR control. The equation of motion for forced
vibration of a one degree-of-freedom viscoelastically damped system with a fractional
derivative is: [

mD2 + cDq + kD0
]

x(t) = f (t), (11)

where x(t) is the displacement, m is the mass, c is the viscoelastic damping coefficient,
k is the spring constant, t is time, and f (t) is the external force. Dividing both sides of
Equation (11) by m leads to the following normal form:[

D2 + 2ζωn
2−qDq + ωn

2D0
]

x(t) = u(t), (12)

where ωn
2 = k

m , ζ = c
2mω

2−q
n

and u(t) = 1
m f (t).

It is known that q has a value of approximately 0.5 for most viscoelastic materials [27],
and is therefore fixed at 0.5 in this paper. Consequently, the viscoelastic damping model can
be expressed using a one degree-of-freedom equation of motion known as the generalized
Voigt model [28]: [

D2 + 2ζωn
3
2 D

1
2 + ωn

2D0
]

x(t) = u(t), (13)

where u(t) is the control input.
Next, based on the above equation, a fractional-order state equation is derived. Using a

sequence of fractional differentiations with a difference in order of 1/2, the state vector x(t)
can be defined as follows:

x(t) =
[

x(t) D
1
2 x(t) D

2
2 x(t) D

3
2 x(t)

]T
=
[

x1(t) x2(t) x3(t) x4(t)
]T .

(14)
Consequently, Equations (13) and (14) lead to the following fractional-order state equation:

D
1
2 x(t) = Ax(t) + Bu(t), (15)

where

A =


0 1 0 0
0 0 1 0
0 0 0 1

−ω2
n −2ζω

3
2
n 0 0

, B =


0
0
0
1

. (16)
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4. Fractional-Order LQR Method for State Feedback Control
4.1. Design Method for Fractional-Order LQR

In this section, a fractional-order LQR is designed for the fractional-order vibratory
system described in the previous section. The control input is assumed to be given as follows:

u(t) = −Fx(t), (17)

where F designates the feedback-gain matrix.
First, the fractional-order state equation is forced to transform into an integer-order

state equation. Setting the closed-loop system matrix as Acl = A− BF, Equation (17) is
substituted into Equation (15), and the following relation is obtained:

D
1
2 x(t) = Aclx(t). (18)

The operator D
1
2 is applied to both sides of Equation (18) once, and then the following

equation is obtained [29]:
Dx(t) = A2

clx(t). (19)

Second, a quadratic cost function J is considered for the controlled object modeled by
Equation (15):

J =
∫ ∞

0

[
x(t)TQx(t) + u(t)TRu(t)

]
dt, (20)

where the weighting matrices Q ∈ Rn×n and R ∈ Rr×r are positive semi-definite and positive
definite, respectively, and the pair of matrices (Q

1
2 , A) is observable. Moreover, Equation (17)

is substituted into Equation (20) in order to obtain the following:

J =
∫ ∞

0
x(t)T

[
Q + FTRF

]
x(t)dt. (21)

Modifying Equation (21) using both Equation (19) and the Lyapunov equation yields the
following equations:

J = x(0)TPx(0), (22)

PA2
cl +

(
A2

cl

)T
P = −Q− FTRF, (23)

where P is a positive-definite symmetric solution that satisfies the algebraic Riccati equa-
tion. Here, using Lagrange’s method for undetermined multipliers, matrices P and F,
which minimize Equation (22), can be obtained under the constraint condition of Equation (23).
If Equation (23) is assumed to be expressed as G(n× n) =

{
gij
}
= 0, then the number of

undetermined multipliers is required to be n2. Therefore, the undetermined multipliers
are arranged in the form of K(n× n) =

{
kij
}

. As a result, the Lagrangian function can be
expressed as follows [29]:

L = J +
n

∑
i=1

n

∑
j=1

kijgij = J + tr
[
KTG

]
= x(0)TPx(0) + tr

[
KT
{

PA2
cl +

(
A2

cl

)T
P + Q + FTRF

}]
, (24)

where tr designates the trace of the matrix.
Third, the Lagrangian function L is differentiated with respect to the matrices F, P,

and K, respectively, in order to obtain each extreme value. Finally, the equations to obtain
the matrices F, P, and K are derived.

However, it has been clarified that the feedback-gain matrix F cannot be obtained
based on the above-mentioned method reported in a previous study [29]. This is because the
equation resulting from differentiation directly with respect to F becomes too complicated
to be appropriate for obtaining the optimal feedback-gain matrix Fopt.
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4.2. Iteration-Based Method for Obtaining Optimal Feedback Gains

Therefore, in order to overcome this difficulty, the approach must be altered to an
iteration-based method in order to obtain the optimal feedback-gain matrix Fopt. To do so,
A2

cl in Equation (24) is expressed as follows:

A2
cl = (A− BF)2 = (A− BFa)(A− BFb). (25)

Here, Fa is properly determined so that all the real parts of the eigenvalues of A2
cl are

negative, and Fb is treated as a variable. By setting Acl_a = A− BFa, Equation (24) can be
rewritten using Equation (25) as follows:

L = x(0)TPx(0) + tr
[
KT
{

PAcl_a(A− BFb) + [Acl_a(A− BFb)]
TP + Q + FT

b RFb

}]
. (26)

As a result, differentiating the above equation with respect to Fb, P, and K, respectively,
produces the following relationships [30]:

∂L
∂P

= K(A− BFb)
TAT

cl_a + Acl_a(A− BFb)K + x(0)x(0)T = 0, (27)

∂L
∂Fb

= −(PAcl_aB)TK− (Acl_aB)TPKT + RTFbK + RFbKT = 0, (28)

∂L
∂K

= PAcl_a(A− BFb) + (A− BFb)
TAT

cl_aP + Q + FT
b RFb = 0. (29)

From Equations (27) and (28), the following equation is obtained because the matrices R, P,
and K are symmetric:

Fb = R−1BTAT
cl_aP. (30)

Next, Equations (29) and (30) generate the following algebraic Riccati equation:

PAcl_aA + (Acl_aA)TP− PAcl_aBR−1BTAT
cl_aP + Q = 0. (31)

In the end, an iterative method to obtain the optimal feedback-gain matrix Fopt can be
explained as follows. Here, P can be obtained from Equation (31), and Fb can be determined
by substituting the obtained P into Equation (30). Next, the determined Fb is treated as a
new Fa, and Equations (25)–(31) are repeatedly calculated until the feedback-gain matrix
converges to Fb = Fa. Eventually, the converged feedback-gain matrix can be considered to
be the optimal feedback-gain matrix Fopt to minimize the quadratic cost function J.

5. Fractional-Order LQR Method for Output Feedback Control
5.1. Necessity of Fractional-Order State Observer

The fractional-order LQR control is a kind of state feedback control. Therefore, estimation of
the states is an important factor in state feedback control. Numerical simulation of the
control may be conducted under the condition that all of the states of the system are
assumed to be detected. However, such a condition is not effective in many real cases.
Even though sensors are present in the controlled system, obtaining all of the states of
the system in most cases is difficult. Furthermore, the viscoelastic damper system, as the
controlled object in the present study, contains a fractional-order derivative term that
cannot be detected with ordinary sensors in general. Therefore, in order to carry out
fractional-order LQR control in practice, it is necessary to estimate the fractional-order
derivative states based on information about the observable states.

Accordingly, a scheme that enables estimation of the remaining states based on the
input signals and the output signals measured by the sensors is called a state observer.
The state observer can be designed as long as the system is observable. If all of the states
of the controlled system are estimated using the state observer, then the state feedback
control can be conducted using the estimated states. Differences between the estimated
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states and the actual states are called estimation errors. When the estimation errors become
zero, the estimated states match the actual states. Therefore, the state observer must be
constructed so that the estimation errors converge to zero.

The estimation errors for the fractional-order system asymptotically go to zero by
means of the following design of the state observer:

Dαx̂(t) = Ax̂(t) + Bu(t) + H(y(t)− Cx̂(t)), (32)

where x̂(t), H, and C are the estimated state vector, the state observer gain, and the output
matrix for the controlled system, respectively. The state observer gain H is selected in order
to satisfy the following inequality [31]:

|arg(λso_i)| >
απ

2
, (i = 1, 2, · · · n), (33)

where λso_i designates an eigenvalue of the matrix Aso = A−HC.

5.2. Configuration of Fractional-Order State Observer

Next, using Equation (32), a state observer is configured for the viscoelastic damper
system. First, the viscoelastic damper, as the controlled object, is assumed to be given by
the state equation of Equations (15) and (16). In addition, setting y(t) as the observable,
the output equation for the viscoelastic damper system is assumed to be expressed as
follows:

y(t) = Cx(t), (34)

where
C =

[
c1 c2 c3 c4

]
(35)

in which the values of c1, c2, c3, and c4 are determined by what is observable. Here, if the
pair of matrices (C, A) is observable, then a fractional-order state observer takes the
following form:

D0.5x̂(t) = Ax̂(t) + Bu(t) + H(y(t)− Cx̂(t)), (36)

u(t) = −Fx̂(t). (37)

The subtraction of Equation (15) from Equation (36) yields the fractional-order differential
equation for the estimation error e(t):

D0.5e(t) = (A−HC)e(t), (38)

where
e(t) = x̂(t)− x(t). (39)

From Equation (38), the poles of the matrix (A−HC) can be moved freely by the state
observer gain H, and the convergence characteristics of the estimation error e(t) can be
determined freely using the pole assignment method.

Moreover, Equations (15), (34), (36), (37), and (39) produce the following relationships:

D
1
2 x(t) = Ax(t) + Bu(t) = Ax(t) + B(−Fx̂) = Ax(t)− BF(e(t) + x(t))

= (A− BF)x(t)− BFe(t),
(40)

D
1
2 e(t) = D

1
2 x̂(t)− D

1
2 x(t) = Ax̂(t) + Bu(t) + H(y(t)− Cx̂)−Ax(t)− Bu(t)

= A(x̂(t)− x(t))−H(Cx̂(t)− Cx(t)) = (A−HC)(x̂(t)− x(t))
= (A−HC)e(t).

(41)
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Equations (40) and (41) generate the state equation for the augmented system that includes
the state observer as follows [32]:[

D
1
2 x(t)

D
1
2 e(t)

]
=

[
A− BF −BF

0 A−HC

][
x(t)
e(t)

]
. (42)

Figure 2 is a block diagram of the augmented system, in which the state observer is
incorporated with the feedback control system.
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6. Numerical Calculation Method for Fractional-Order Dynamical System
6.1. Numerical Solution of Fractional-Order State Equation

Since a fractional-order state equation contains fractional-order derivative terms,
normal numerical calculation methods, such as the Euler method, cannot be used to
simulate this equation. Therefore, several numerical calculation approaches corresponding
to a differential equation and a state equation that include fractional-order derivative
terms have already been proposed [33–36]. One of the numerical calculation methods
corresponding to a fractional-order state equation is introduced in this section [35,36].

First, the Grünwald–Letnikov definition, which is a fractional-order differentiation,
is as follows:

aDq
t f (t) = lim

∆t→0
(∆t)−q

[ t−a
∆t ]

∑
j=0

(−1)j
(

q
j

)
f (t− j∆t), (43)

where ∆t is the pitch width, q is the fractional-order of differentiation, [ ] is the integer part

of the argument, and
(

q
j

)
indicates the generalized binomial coefficient. The revised

version of the above definition for the numerical calculation is as follows:

aDq
t f (t) = lim

∆t→0

1
(∆t)q

[ t−a
∆t ]

∑
j=0

w(q)
j f (t− j∆t), (44)

where

w(q)
0 = 1, w(q)

j =

(
1− q + 1

j

)
w(q)

j−1, j = 1, 2, · · · . (45)

Next, a simple scalar differential equation is considered as follows:

Dqz(tk) = f (tk, z(tk)), (46)
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where the number of calculations is k, and the time is set to tk = k∆t. Applying Equation (44)
to the left-hand side of the above equation yields [36]:

1
(∆t)q

m

∑
j=0

w(q)
j z
(

tk−j

)
=

1
(∆t)q

[
z(tk) +

m

∑
j=1

w(q)
j z
(

tk−j

)]
= f (tk, z(tk)), (47)

where m =
[

tk
∆t

]
= k.

Furthermore, Equation (47) is transformed so that this equation can be solved in terms
of z, and then the following relation is obtained:

z(tk) = (∆t)q f (tk, z(tk))−
m

∑
j=1

w(q)
j z
(

tk−j

)
. (48)

If the pitch width ∆t is sufficiently small, then the first term on the right-hand side of
Equation (48) can be approximated as follows [36]:

(∆t)q f (tk, z(tk)) ≈ (∆t)q f (tk, z(tk−1)). (49)

By this approximation, the numerical calculation becomes possible.
Moreover, if each row of the system matrix A of Equation (8) is dealt with as a function

f (t) in Equation (46), then the above-mentioned numerical calculation method can be used
to solve the fractional-order state equation as follows [36]:

z1(tk) = (∆t)q f1(tk, z1(tk−1), z2(tk−1), · · · , zn(tk−1))−
m
∑

j=1
w(q)

j z1

(
tk−j

)
z2(tk) = (∆t)q f2(tk, z1(tk), z2(tk−1), · · · , zn(tk−1))−

m
∑

j=1
w(q)

j z2

(
tk−j

)
...

zn(tk) = (∆t)q fn(tk, z1(tk), z2(tk), · · · , zn(tk−1))−
m
∑

j=1
w(q)

j zn

(
tk−j

)
. (50)

In the present paper, each state xi(tk) is applied to each zi(tk). In the case that the Caputo
definition is used, because of the relationship between the Caputo definition and the
Grünwald–Letnikov definition, the initial value for each state must be dealt with as follows:

zi(tk) = xi(tk)− xi(0). (51)

Equation (51) is substituted into Equation (50), and then Equation (50) can be rewritten as
follows:

x1(tk) = (∆t)q f1(tk, x1(tk−1), x2(tk−1), · · · , xn(tk−1))−
m
∑

j=1
w(q)

j

{
x1

(
tk−j

)
− x1(0)

}
+ x1(0)

x2(tk) = (∆t)q f2(tk, x1(tk), x2(tk−1), · · · , xn(tk−1))−
m
∑

j=1
w(q)

j

{
x2

(
tk−j

)
− x2(0)

}
+ x2(0)

...

xn(tk) = (∆t)q fn(tk, x1(tk), x2(tk), · · · , xn(tk−1))−
m
∑

j=1
w(q)

j

{
xn

(
tk−j

)
− xn(0)

}
+ xn(0)

. (52)

Moreover, when the amount of past calculation data is large, the calculation of the second
term on the right-hand side of each row in Equation (52) becomes large. Therefore, the pa-
rameter L0, which determines the truncated term in the past calculation data, is introduced
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so that the second term on the right-hand side of each row in Equation (52) is made to be
approximated as follows [36]:

m

∑
j=1

w(q)
j

{
xi

(
tk−j

)
− xi(0)

}
≈

min(L0, k)

∑
j=1

w(q)
j

{
xi

(
tk−j

)
− xi(0)

}
. (53)

Using the numerical calculation method described above, the fractional-order state equation
and the fractional-order state observer can be simulated numerically.

6.2. Comparison between Numerical and Exact Solutions

Next, the solution obtained by the above-mentioned numerical calculation method
is compared with the exact solution. The exact solution of Equation (15) can be given as
follows using the Mittag–Leffler function Ea1, a2 [29,37]:

x(t) = E 1
2 , 1

(
At

1
2

)
x(0) +

∫ t

0
(t− τ)

1
2−1E 1

2 , 1
2

(
A(t− τ)

1
2
)

Bu(τ)dτ, (54)

Ea1, a2(z) =
∞

∑
k=0

zk

Γ(a1k + a2)
, (a1 > 0, a2 > 0). (55)

In addition, the parameters for the viscoelastic damper are set to ζ = 0.1 and ωn = 3.0 rad/s.
The initial conditions for the states are set to x(0) =

[
0 0 1 0

]T . For each state,
the numerical calculation results and the exact solutions obtained under the free vibration
condition are compared in the following figures.

First, Figure 3 shows calculation results for simulation conditions with a larger ∆t than
those in Figure 4. The numerical calculations in Figure 4 are more accurate than those in
Figure 3, because the gap between the numerical calculation results and the exact solution in
Figure 4 is smaller than that in Figure 3. Based on this result, it is understood that a smaller
∆t improves the accuracy of numerical calculations. A numerical calculation method that
enables a highly accurate simulation of a state equation that includes fractional-order
derivative terms has thus been clarified.
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7. Illustrative Examples
7.1. Fractional-Order LQR Control for Viscoelastic Damper System

In this section, the viscoelastic damper described in Section 3 is set to be the controlled
object. Moreover, the feedback gains of the fractional-order LQR are obtained using the
method explained in Section 4, and the states are estimated with the fractional-order state
observer described in Section 5. In addition, each state is simulated using the numerical
calculation method introduced in Section 6. Another derivation method for the feedback
gains of the fractional-order LQR, which is different from the method proposed herein,
was proposed by Sierociuk and Vinagre [19]. Accordingly, vibration waveforms for the
states controlled by the LQR using the feedback gains obtained with the proposed method
are compared with those obtained using the Sierociuk and Vinagre method.

The parameters for the viscoelastic damper system are set as ζ = 0.1 and ωn = 3.0 rad/s.
The observable is chosen to be the displacement. Therefore, the output matrix C in Equation (35)
is as follows:

C =
[

1 0 0 0
]
. (56)

First, the stability of the viscoelastic damper system expressed by Equation (15) is
investigated. The eigenvalues of the system matrix A are given as:

λ = 1.2263± 1.3098i, −1.2263± 1.1366i. (57)

Here, the stability of the system is determined using Equation (7):

2
π
|arg(λi)| = 0.5210, 0.5210, 1.5241, 1.5241 > 0.5. (58)

As a result of this inequality, this system can be said to be asymptotically stable.
Next, the controllability and the observability of the viscoelastic damper system are

examined. The ranks of the matrices Nc and No in Equations (9) and (10) can be calculated
as follows:

rank(Nc) = 4, rank(No) = 4. (59)

The pair of matrices (A, B) for the viscoelastic damper system is controllable, and the
pair of matrices (C, A) for the viscoelastic damper system is observable. Based on these
results, the system can be said to be controllable and observable. Therefore, a state feedback
controller and a state observer can be designed for this system.

If the weighting matrices Q and R in the quadratic cost function J are designed
as follows:

Q =


10 0 0 0
0 0 0 0
0 0 10 0
0 0 0 0

, R = 1, (60)

then the optimal feedback-gain matrix Fopt is obtained as follows:

Fopt =
[

0.5394 −0.5520 3.3285 −0.0098
]
. (61)

In this case, the weights in Q are placed only on the integer-order derivative states.
With these feedback gains, the eigenvalues for the closed-loop system-matrix Acl = A−BF
are shown below:

λcl = 0.8475± 1.5897i, −0.8426± 1.4931i. (62)

From Equation (62), since the poles of the closed-loop system are located in region 2© in
Figure 1, the system is asymptotically stable.

Next, a fractional-order state observer is designed using Equation (36) by the pole-
assignment method. Furthermore, generally, when a state observer and a regulator are used
simultaneously, the state observer must be designed to be able to estimate the states of the



Appl. Sci. 2021, 11, 3252 13 of 20

system faster than the regulator makes the states converge to zeros. Here, the eigenvalues
of the matrix Aso = A−HC are designed as follows:

λso = −10.0, −9.0, −8.0, −7.0. (63)

The stability of these eigenvalues can be determined using Equation (7) as:

2
π
|arg(λcl_i)| = 0.6882, 0.6882, 1.3271, 1.3271 > 0.5, (64)

2
π
|arg(λso_i)| = 2, 2, 2, 2 > 0.5. (65)

The closed-loop system Acl and the state observer Aso are asymptotically stable. Judg-
ing from Equations (62) and (63), the eigenvalues of the matrix Aso are more stable than
those of the matrix Acl . This proves that state estimation by the state observer can be
designed to be faster than state convergence by the regulator. Consequently, the state
observer gain matrix H is obtained as follows:

H = 103 ×
[

0.0340 0.4310 2.4130 4.9957
]
. (66)

In practice, in the simulation, the initial conditions for the states and those for the
estimated values are assumed to be as follows:

x(0) =
[

0 0 1 0
]T , (67)

x̂(0) =
[

0 0 1.2 0
]T . (68)

In addition, the parameter in the numerical calculation method is set as ∆t = 0.0005.
Using the above-mentioned values, whether the fractional-order state observer can

estimate all of the states is first investigated under the free vibration condition. Figure 5
shows each estimation error, and Figure 6 compares each actual state and each estimated
state. As shown in Figure 5, each estimation error converges to zero, although the estimation
error about x4 converges more slowly than other errors. Figure 6 demonstrates that each
state can be estimated successfully by the fractional-order state observer.
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Next, fractional-order LQR control is conducted. In comparing the states with control
and those without control, the gaps between the actual states and the estimated values
are shown in Figure 7, and the state evolution is illustrated in Figure 8. The results with
control are obtained with output feedback control using a fractional-order LQR.

Figure 7 confirms that the estimation of the states by the fractional-order state observer
is performed successively. Judging from the results in Figure 8, compared with the no-
control case, good damping effects are confirmed in the case that fractional-order LQR
control is applied.

Consequently, using the feedback gains obtained with the iteration-based method
and the fractional-order state observer, it is proven that fractional-order LQR control can
be carried out for a controlled object that includes fractional-order derivative states in its
state equation.
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7.2. Comparison between Proposed Method and Sierociuk and Vinagre Method

Moreover, the control results for the fractional-order LQR using the feedback gains
obtained using the proposed method and the fractional-order LQR using the feedback
gains obtained with the Sierociuk and Vinagre method [19] are compared. Using the same
weighting matrices, Q and R in Equation (60), the feedback gains are calculated with the
Sierociuk and Vinagre method as follows:

FSV =
[

0.5394 14.7824 13.0640 5.1116
]
. (69)

The poles of the closed-loop system-matrix A− BFSV are as follows:

Poles =
{
−1.5649± 1.5733i
−0.9908± 0.9774i

. (70)

These poles are located in region 3© in Figure 1. As a result, the controlled states with
the feedback gains in Equation (61) and the controlled states with the feedback gains in
Equation (69) can be compared, as shown in Figure 9. The results with control are obtained
with output feedback control using a fractional-order LQR.

From Figure 9, it is clear that both feedback gains exhibit good control effects. In par-
ticular, in the vibration waveforms controlled using the feedback gains obtained with
the Sierociuk and Vinagre method, all of the states are confirmed to be overdamped.
However, it is obvious that the convergence of x1 (displacement) to the target value is
considerably slow.

Next, the design of the weighting matrices Q and R in the quadratic cost function J is
modified as follows:

Q =


10 0 0 0
0 10 0 0
0 0 10 0
0 0 0 10

, R = 1. (71)

In this case, the weights in Q are placed on not only the integer-order derivative states,
but also the fractional-order derivative states. Using weighting matrices Q and R, the feed-
back gain matrix derived using the proposed method is as follows:

F =
[

0.5394 −2.3077 3.7258 −0.9831
]
. (72)



Appl. Sci. 2021, 11, 3252 17 of 20

The poles of the closed-loop system matrix A− BF are as follows:

Poles =
{
−1.0806± 1.5848i
−0.5891± 1.4985i

. (73)

These poles are located in region 2© in Figure 1. On the other hand, the feedback gain
matrix obtained by the Sierociuk and Vinagre method is as follows:

FSV =
[

0.5394 16.2648 15.1137 6.3425
]
. (74)

The poles of the closed-loop system matrix A− BFSV are as follows:

Poles =
{
−2.3380± 0.3989i
−0.8332± 1.0007i

. (75)

These poles are located in region 3© in Figure 1. The states controlled with the above-
mentioned feedback-gain matrices are compared in Figure 10. The results with control are
obtained with output feedback control using a fractional-order LQR.
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Figure 10 demonstrates that the results of the states are oscillations damped by the
feedback-gain matrix F and are overdamped by the feedback-gain matrix FSV .
Furthermore, the convergence property of x1 in Figure 10 is similar to that in Figure 9.
However, in the proposed method, the vibration suppression effect becomes worse when
the weights in Q are placed on the fractional-order derivative states. On the other hand,
in the Sierociuk and Vinagre method, the weights on the fractional-order derivative states
in Q can play an important role for better vibration control effects.

8. Conclusions

The present study investigated whether the LQR control method could be applied to
a state equation with fractional-order derivative states. A design method for a fractional-
order LQR control system was proposed in order to deal with a controlled object that
included fractional-order derivative terms in the equation of motion.

First, in order to explain the design method, a viscoelastic damper was modeled by
an equation of motion including a fractional-derivative term. The equation of motion was
able to be transformed into a fractional-order state equation.

Second, a fractional-order LQR was applied to control the dynamics of the viscoelasti-
cally damped structure. A design method for fractional-order LQR control was proposed
using the Lyapunov equation and Lagrange’s method for undetermined multipliers. A new
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iteration-based approach to solve the algebraic Riccati equation was established in order to
obtain the feedback gains for the fractional-order LQR.

Third, a fractional-order state observer was constructed in order to estimate the
fractional-order derivative states. All states for the viscoelastic damper system were
successfully estimated using the fractional-order state observer.

Fourth, a numerical calculation algorithm corresponding to a differential equation
containing fractional derivative terms was introduced. The numerical calculation algorithm
was based on the Grünwald–Letnikov definition of fractional differentiation. Numerical cal-
culation results using the introduced method and the exact solution of the viscoelastic
damper model were compared in order to investigate its calculation accuracy.

Finally, using the introduced numerical simulation method, LQR control effect sim-
ulations were carried out. The numerical simulations revealed that the iterative method
was valid for obtaining the feedback gains for the fractional-order LQR. The fractional-
order LQR controller was confirmed to be capable of successfully suppressing vibrations
appearing in a vibratory system with viscoelasticity. Moreover, the fractional-order LQR
obtained by the Sierociuk and Vinagre method and that derived by the proposed method
were compared with respect to their control effects.

However, the fractional-order state observer in the present paper is not optimal,
and therefore needs to be improved. In addition, control effects by a fractional-order
LQR to suppress vibrations appearing in a vibratory system with viscoelasticity must be
compared with control effects by an integer-order LQR.
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