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Abstract: This paper presents a deep learning-based automated background removal technique
for structural exterior image stitching. In order to establish an exterior damage map of a structure
using an unmanned aerial vehicle (UAV), a close-up vision scanning is typically required. However,
unwanted background objects are often captured within the scanned digital images. Since the
unnecessary background objects often cause serious distortion on the image stitching process, they
should be removed. In this paper, the automated background removal technique using deep learning-
based depth estimation is proposed. Based on the fact that the region of interest has closer working
distance than the background ones from the camera, the background region within the digital images
can be automatically removed using a deep learning-based depth estimation network. In addition,
an optimal digital image selection based on feature matching-based overlap ratio is proposed. The
proposed technique is experimentally validated using UAV-scanned digital images acquired from an
in-situ high-rise building structure. The validation test results show that the optimal digital images
obtained from the proposed technique produce the precise structural exterior map with computational
cost reduction of 85.7%, while raw scanned digital images fail to construct the structural exterior map
and cause serious stitching distortion.

Keywords: digital image stitching; automated background removal; region of interest extraction;
deep learning-based depth estimation; structure exterior map

1. Introduction

Monitoring the integrity of aging structures has become increasingly important in
terms of extending structures’ service life and saving maintenance costs. For effective mon-
itoring of large-scale structures, unmanned aerial vehicles (UAVs) have recently played
a key role, in that faster and safer inspection is possible than expert-dependent visual
inspection, even for inaccessible areas by human beings [1–3]. One of the most popular
UAV-based inspection strategies is that structural exterior damage can be effectively as-
sessed by using UAV-captured digital images. However, damage assessment and making
decisions from a number of digital images often be labor-intensive and unreliable, espe-
cially as the target structure gets larger. In particular, damage quantification as well as
localization are challenging works without structural exterior map establishment. To tackle
the technical issues, digital image stitching techniques have been widely accepted for
entire structural exterior mapping [4–7]. As for precise structural damage quantification
and localization including micro-scale damage, the close-up and high-resolution spatial
scanning of a digital camera-mounted UAV along the entire structural region of interest
(ROI) is often required [8–11]. To construct structural exterior maps using the digital
images scanned along a large-scale structure, optimal digital images should be selected by
considering the overlap ratio between adjacent digital images to be stitched. The use of
all raw digital images for structural exterior map establishment is not effective in terms
of high computational cost as well as image stitching accuracy. To address the optimal
digital image selection issue, several techniques have been investigated. Yang et al. [12]
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used a constant time interval technique, which extracts video frames every two seconds.
This technique can reduce the spatial redundancy of the acquired video frames, but it
cannot meet the constant overlap ratio between the selected digital images. Then, to ensure
the constant overlap ratio, Bang et al. [13] proposed a key frame selection technique with
the known operational condition of UAV. Similarly, Bu et al. [14] employed monocular
simultaneous localization and mapping (SLAM) to stitch UAV-scanned images in real-time.
They calculated the relative distance among adjacent images through the weighted combi-
nation of translation and rotation in large-scale direct SLAM, and the key frames were then
selected by using a certain threshold.

However, in the UAV’s close-up vision scanning, digital images often include the
target ROI and unnecessary background together especially in the edge of a target structure.
The background objects such as sky, mountain, river, tree, etc. disturb stitching as well as
selecting optimal digital images, because the background objects have extremely different
feature variations from the target structural ROI ones on the sequentially scanned images.
In addition, there are more distinguishable image features in the background objects
than the repetitive and local target ROI ones, which pose serious distortion and ghosting
effects on the image stitching process. To solve this problem, a number of trials have been
conducted. For example, Xin et al. [15] proposed a self-adaptive optical flow technique
to detect target object regions on the sequential image data. They tried to enhance the
object outlines from a rough optical flow field using local mean algorithm, and the target
object regions were then extracted. In addition, Supreeth and Patil [16] studied a multiple
moving object tracking technique, enabling them to achieve robustness against objects’
occlusion, shadows and camera jitter by combining background subtraction and k-means
clustering. More recently, Fang et al. [17] proposed a deep learning network, called Tiramisu
trained with common objects in context (COCO) dataset, which segments target objects for
background removal. Although the aforementioned background removal techniques can
be effective tools when it comes to digital images obtained under constant camera pose,
in scanning speed and path conditions, the UAV’s close-up scanning condition especially
for outdoor buildings can be sensitively altered by surrounding environmental conditions
as well as operator’s skill. Moreover, the conventional background removal techniques
highly depend on the image blurs and noises, but the image blur and noise phenomena
on the sequential images captured under continuous spatial scanning unfortunately are
inevitable in reality.

In this paper, a deep learning-based automated background removal technique, which
is suitable for the UAV’s close-up scanning condition, is newly proposed. The proposed
technique has the following superior characteristics over the existing techniques: (1) the
digital image acquisition conditions are not strictly restricted; (2) it is robust against the
image blur and noise phenomena; (3) the computational cost can be minimized through
optimal image selection using image feature matching-based overlap ratio calculation.
The proposed technique is experimentally validated using UAV-scanned digital images
acquired from an in-situ high-rise building structure.

This paper is organized as follows. First, the deep learning-based automated back-
ground removal technique including an optimal digital image selection algorithm is devel-
oped in Section 2. Then, the experimental validation results are shown in Section 3. Finally,
this paper is concluded with a brief discussion.

2. Structural Exterior Image Stitching through Automated Background Removal

Figure 1 shows the overview of the structural exterior map establishment through
deep learning-based automated background removal and optimal image selection. Once
the vision camera mounted-UAV scans the target structure with a short working distance
along a predefined scanning path, the spatially continuous digital images can be acquired
for high-resolution structural exterior map establishment. To properly stitch the scanned
digital images, the ROI images including only a target structure need to be extracted from
the field of view (FOV) images. Since the FOV images, which are especially obtained from
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the edge of the target structure as shown in Figure 1, inevitably contain the background
objects as well as ROI, the background regions are removed using a deep learning-based
depth estimation network. Subsequently, the optimal images for minimizing stitching
errors as well as computational costs are selected from the entire video frames based
on overlap ratio calculation. Finally, the structural exterior map is constructed using a
mesh-based image stitching method as shown in Figure 1. The details of each procedure
are as follows.
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Figure 1. Overview of structural exterior map establishment through deep learning-based automated
background removal and optimal image selection: FOV and ROI denote the field of view and region
of interest, respectively.

2.1. Automated Background Removal Using Deep Learning-Based Depth Estimation

Figure 2 shows the deep learning-based automated background removal process.
The key idea of this step is under assumption that structural ROI, which is obtained
through the UAV’s close-up scanning, is much closer than the background objects from the
UAV-embedded digital camera within FOV. Thus, a deep learning-based depth estimation
network, called Monodepth2, which is based on a U-net architecture, is employed in
this study [18]. Monodepth2 is trained in a self-supervised manner by exploiting spatial
geometry constraints. Monodepth2 utilizes a full-resolution multi-scale sampling method
for reducing visual artifacts and an auto masking loss to ignore training pixels that violate
camera motion assumption. This network can rapidly estimate depth value using only
monocular RGB images, thus it is suitable for high-resolution image processing. The
effectiveness of Monodepth2 was validated by comparing with 28 other depth estimation
models using measurement metrics [18]. The employed model was implemented in
PyTorch and trained for 20 epochs using an Adam optimizer with a batch size of 12. The
learning rate of 10−4 is used for the first 15 epochs which is then dropped to 10−5 for the
remainder. The smoothness term is set to 0.001. The KITTI dataset is used for pre-training,
and 10% of the dataset is used as a validation set.

Once the depth values were estimated with respect to each pixel on the background,
including FOV images acquired from the edge of the target structure, the depth image
was obtained as shown in Figure 2. Subsequently, the ROI boundary was extracted by
using depth difference. However, precise ROI boundary extraction is often difficult due
to undesired noise components on the depth images. Thus, post image processing was
necessary. On the depth images in Figure 2, brighter pixels indicate the closer working
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distance from the digital camera. The ROI boundaries within the depth image can be
extracted by using the magnitude of depth gradients (G), which is given by:

G =

√(
∂I′

∂x

)2
+

(
∂I′

∂y

)2
(1)

where I′ is the depth image corresponding to the FOV image, and ∂I′
∂x and ∂I′

∂y are the depth
gradients of I′ along the x and y directions, respectively. To precisely extract the ROI
boundaries, the G image was binarized by an Otsu’s method, so that each pixel had a value
1 or 0 [19]. Here, dotted pepper noises were removed on the boundary image, resulting in
clear a ROI boundary consisting of consecutive pixel sets as depicted in Figure 2. Then,
ROI was extracted by retaining the region, which has smaller mean depth values on the
depth image across the ROI boundary. Finally, the background region was automatically
removed by overlapping the extracted ROI region on the FOV image.
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2.2. Optimal Image Selection for Cost-Effective Digital Image Stitching

To construct the structural exterior map, a number of spatially continuous digital
images, which is often expressed by video frames, should be acquired, because FOV is often
much smaller than the entire ROI of a large-scale structure. Moreover, image resolution
should be large enough to inspect micro-scale damage on the target structure. For these
reasons, structural exterior map construction using entire scanned digital images typically
require tremendous computational costs. Furthermore, image stitching errors are often
inversely increased when the entire scanned digital images are excessively used. In order
to address these technical issues, optimal image or frame selection is necessary. In this step,
the optimal image selection algorithm using image feature matching-based overlap ratio
calculation was proposed.

Figure 3 describes the flow chart of the overlap ratio-based optimal image selection
algorithm. First, image features such as point, corner or edges were extracted from every
ROI image (I1, I2, I3 . . . In) using a scale-invariant feature transform (SIFT) [20]. Since SIFT
is invariant to image translation, scaling, rotation and partially invariant to illumination
changes, it is advantageous for UAV’s close-up scanning data processing. Next, the
image features were initially matched between the adjacent images, which are defined
as the matching vectors. Then, the false matching vectors were removed by using a
random sample consensus (RANSAC) because similar image features on the repeated
target structure’s texture are often mismatched. After RANSAC, the correct matching
vectors, called the inlier vectors, were obtained which physically imply how much Iq was
translated from Ip along the x and y directions. Based on the assumption that there is no
working distance change between the target structure and the digital camera mounted
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on UAV, the overlap ratio R between Ip and Iq was calculated using the inlier vectors’
averaged magnitude along the x and y directions, which is given by:

R =
100 ∗ (Height− µ) ∗ (Width− ν)

Height ∗Width
(2)

where Height and Width are the height and width of Ip. µ and ν are the inlier vectors’
averaged magnitude along the x and y directions as shown in Figure 3. Once R was calcu-
lated, the optimal image that satisfies the predefined threshold of R (Rth) was determined.
The above procedure was repeated by the iteration as shown in Figure 3, until the entire
optimal images were obtained.
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2.3. Mesh-Based Digital Image Stitching for Structural Exterior Map Establishment

In order to establish the precise structural exterior map, the local warp with a grid
mesh is often used. In this study, a mesh-based digital image stitching method, called
natural image stitching with the global similarity prior (NISwGSP), was employed [21].
Once the optimal images (Ij and Ij+1) were selected in Step 2, the homography matrix H
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(H∈ R3×3), which is reshaped from ĥ, was estimated between each optimal image using
the following equation:

ĥ = argmin
h

N

∑
i = 1
||aih||2, (3)

h = [h1 h2 h3]
T, ai =

[
−xi −yi −1

0 0 0
0 0 0
−xi −yi −1

xix′i x′iyi x′i
xiy′i yiy′i y′i

]
where [xi yi] and [x′i y′i] are the matched feature points of Ij and Ij+1, respectively. N is
the number of the matched feature points, and hm is the mth row components of H. The
elements of H was be obtained using direct linear transformation (DLT), and the solution
became the least significant right singular vector of {ai}N

i = 1. Given H, an arbitrary pixel
position X∗ on Ij was warped to the pixel position X′∗ on Ij+1, using location dependent
homography matrix H∗ [22].

X̃
′
∗ = H∗X̃∗, H∗ = argmin

h

N

∑
i = 1
||ωi
∗aih||2, (4)

ωi
∗ = exp

(
−||X∗ − Xi||2

ρ2

)

where X̃∗ and X̃
′
∗ are the homogeneous coordinates of X∗ and X′∗, and ωi

∗ is the scalar
weight. ρ is the scale parameter, and Xi is the position of extracted feature point in Ij.
Similarly, Equation (4) was solved by using DLT. However, solving Equation (4) with
respect to all pixel position X∗ on Ij, is not effective in terms of computational cost, because
neighboring pixel positions often produce the same H∗. Thus, Ij and Ij+1 were divided
into the mesh composed of Cx × Cy cells [23]. For each cell, the center point was chosen
as X∗, and all pixels within the cell were warped by the same H∗ as shown in Figure 4.
Finally, the structural exterior map was constructed through mesh optimization and image
mapping [21].
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3. Experimental Validation

The proposed technique was experimentally validated using a vision camera mounted-
UAV at an in-situ 18 story building. The overall test procedures were as follows. First, the
vision camera mounted-UAV scanned the target structure along a predefined scanning
path to acquire the spatially continuous FOV images. Then, the automated background
removal and the optimal image selection procedures were sequentially conducted. Finally,
the structural exterior map was constructed using the mesh-based image stitching method.
To show the superiority of the proposed technique, the test results were compared with the
raw digital image ones.

Figure 5a,b show the target building and digital camera (L1D-20c of Hasselblad)
mounted-UAV, Mavic 2 of DJI, used in this study. To evaluate the feasibility of the proposed
technique, the UAV scanned along right-hand-side edge of the target structure, while the
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working distance of 4 m between the target ROI and UAV was kept. The digital images
were obtained with the resolution of 3840 × 2160 pixels and 30 frames per second in
video format.
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hough the depth image contained the undesired noise components caused by scenery 
complexity such as window, target structure’s texture and background objects, the ROI 
boundary between the target structure and the background objects was successfully ex-
tracted using Equation (1), as shown in Figure 6c. Then, the background region displayed 
in the right-side across the edge boundary on Figure 6c was removed, and the only ROI 
successfully remained as shown in Figure 6d. In order to quantitatively evaluate the ac-
curacy of the depth image-based background removal results, a pixel-level error ratio be-
tween the resultant ROI image and its ground truth shown in Figure 6e was calculated. 
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Figure 6. Automated background removal results: (a) FOV image, (b) depth image, (c) ROI deter-
mination by boundary extraction, (d) resultant ROI image and (e) ground truth image of ROI. 

Figure 7 shows the error ratio results obtained from all the background removed-ROI 
images. The averaged error ratio along the entire ROI images turns out around 0.75%, 
which reveals that the proposed algorithm had over 99% accuracy for background re-
moval and is acceptable for the subsequent structural exterior map construction. 

Figure 5. Experimental setup: (a) Front view of target structure with region of interest and (b) digital
camera mounted-UAV.

Figure 6 shows the representative background removal results. The depth image
of Figure 6b was obtained by using Monodepth2 from the raw FOV image of Figure 6a.
Although the depth image contained the undesired noise components caused by scenery
complexity such as window, target structure’s texture and background objects, the ROI
boundary between the target structure and the background objects was successfully ex-
tracted using Equation (1), as shown in Figure 6c. Then, the background region displayed
in the right-side across the edge boundary on Figure 6c was removed, and the only ROI
successfully remained as shown in Figure 6d. In order to quantitatively evaluate the
accuracy of the depth image-based background removal results, a pixel-level error ratio
between the resultant ROI image and its ground truth shown in Figure 6e was calculated.
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Figure 6. Automated background removal results: (a) FOV image, (b) depth image, (c) ROI determi-
nation by boundary extraction, (d) resultant ROI image and (e) ground truth image of ROI.

Figure 7 shows the error ratio results obtained from all the background removed-ROI
images. The averaged error ratio along the entire ROI images turns out around 0.75%,
which reveals that the proposed algorithm had over 99% accuracy for background removal
and is acceptable for the subsequent structural exterior map construction.

Next, the representative overlap ratio calculation results are shown in Figure 8. In
Figure 8a, 14,421 and 13,850 numbers of image features were extracted from I1 and I7,
respectively. The extracted features were initially matched as displayed in Figure 8a, and
only inlier vectors were then remained as shown in Figure 8b. Subsequently, 66.49% of R
was calculated using Equation (2) as shown in Figure 8b.
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Figure 8. The representative overlap ratio calculation results when p = 1 and q = 7: (a) Feature extraction and initial feature
matching and (b) inlier vectors filtered by using random sample consensus (RANSAC) and calculation of R.

In order to properly stitch the digital images, it was generally recommended that R
has greater than 50% [24]. In this study, Rth of 80% was used due to local image features
such as window and target structure’s texture, which were extremely repeated in the
sequential image data and may increase the false feature matching. As shown in Figure 9,
R straightforwardly decreased as q increased when p = 1, R becomes 82.9% and 77.2%
corresponding to q = 4 and q = 5, respectively, as shown in Figure 9. Therefore, I4 was
selected as the optimal image with respect to p = 1. Once I4 was selected, the next optimal
image can be similarly selected from I4. This procedure was repeated until the entire
optimal images were determined for structural exterior map establishment.
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Figure 9. Optimal image selection results when p = 1.

Figure 10 shows the raw and selected optimal images. In total, 118 raw FOV images,
which were acquired from UAV’s close-up scanning, contained various background objects
as shown in Figure 10a. On the other hand, only 35 background removed-ROI images were
extracted through automated background removal and optimal image selection algorithms
as shown in Figure 10b. To validate the compatibility of these two images’ data, the
structural exterior maps were constructed and compared.
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Figure 10. The representative raw and optimal images: (a) 118 raw images and (b) the corresponding
35 optimal images.

Figure 11 compares structural exterior map establishment results between using
the raw and optimal images. When the raw images were used, it failed to construct
the structural exterior map due to serious distortion and ghosting effects, as shown in
Figure 11a. It turned out that the images were stitched according to the background features,
because the background objects had more distinguishable image features than the ROI ones.
On the other hand, the structural exterior map using the optimal images was properly
constructed without distortion and ghosting effects on the ROI, as shown in Figure 11b.
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4. Discussion

Since this work was not to newly train a deep learning network, but to employ a
suitable pre-trained and pre-validated deep learning model for cost-effective and auto-
mated background removal, the suitability of the employed Monodepth2 was additionally
tested. To show the effectiveness of depth estimation results, the relative mean depth
values between the ROI and background regions within FOV images were calculated as
shown in Figure 12. The higher depth values mean the closer region from the digital camera
mounted on the UAV. It can be easily observed that the ROIs’ relative mean depth values
were consistently higher than the background ones without any overlap between them.
This means that the relative depth values were successfully estimated using Monodepth2,
and the corresponding ROIs were properly extracted. Here, Monodepth2 works well
because this work is under assumption that the structural ROI is much closer than the
background objects from the UAV. However, the depth estimation errors may increase
when the working distance between the ROI and background objects is similar.

In addition, since one of the critical obstacles to construct the large-scale structural
exterior map is the computational cost, the computational time was compared between the
raw image and optimal image cases in Table 1. The structural exterior map establishment
took 9 h 13 min 47 s using 118 raw images, while it just conducted within 1 h 18 min 57 s
using 35 optimal images. Note that the computational times were estimated when it comes
to CPU of Intel® Xeon E5-2630 v4 with 64 gigabytes of memory. The optimal image case
includes the optimal image selection time of 40 min 49 s, which is about 51.69% out of total
1 h 18 min 57 s. These results indicate that the proposed technique is critical for structural
exterior map construction performance, and also can extremely reduce the computational
cost of almost 85.7%.
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Table 1. Comparison of the computational costs for structural exterior map establishment.

Raw Images Optimal Images

Number of images 118 35
Computational time 9 h 13 min 47 s 1 h 18 min 57 s

5. Conclusions

This paper proposed a deep learning-based automated background removal technique
for structural exterior image stitching. The effectiveness of the proposed technique was
experimentally demonstrated through in-situ high-rise building structure tests with a vision
camera mounted-unmanned aerial vehicle (UAV). Then, the test results were compared
with the structural exterior map constructed using non-treated raw images. The validation
test results obtained using the proposed technique revealed that the structural exterior map
was properly constructed without distortion and ghosting effects. On the other hand, the
structural exterior map using raw images without any image processing showed serious
distortion and ghosting effects on region of interest. Furthermore, the proposed technique
constructed the precise structural exterior map with a computational cost reduction of
85.7% versus the raw image case. Although the proposed technique can highly depend
on the accuracy of depth estimation, it can be one of the promising tools for automatically
establishing structural exterior maps using UAV’s close-up scanned images with low
computational cost. As a follow-up study, an advanced image stitching algorithm that
is robust against test environmental variation is now being developed. Furthermore, a
deep learning-based automated structural damage detection algorithm incorporated with
the precise structural exterior map will be developed to extend the applicability of the
proposed technique.
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