Strategy to Improve Edge-Based Smoothed Finite Element Solutions Using Enriched 2D Solid Finite Elements
Abstract
:1. Introduction
2. Enrichment Scheme for the Edge-Based Smoothed 2D Solid Finite Elements
2.1. Edge-Based Smoothed 2D Finite Elements
2.2. Enriched 2D Finite Elements
2.3. The Procedure for Improving Edge-Based Finite Element Solutions
3. Numerical Examples
3.1. Cook’s Skew Beam Problem
3.2. Ad-Hoc Problem
3.3. Wheel Problem
3.4. L-Shape Structure Problem
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zienkiewicz, O.C.; Taylor, R.L. The Finite Element Method, 5th ed.; Butterworth-Heinemann: Oxford, UK, 2000. [Google Scholar]
- Bathe, K.J. Finite Element Procedure; Prentice Hall: New York, NY, USA, 1996. [Google Scholar]
- Hughes, T.J.R. The Finite Element Method-Linear Static and Dynamic Finite Element Analysis; Dover Publications: New York, NY, USA, 2000. [Google Scholar]
- Cook, R.D. Concepts and Applications of Finite Element Analysis; John Wiley & Sons: New York, NY, USA, 2007. [Google Scholar]
- Babuska, I.; Melenk, J.M. The Partition of Unity Method. Int. J. Numer. Methods Eng. 1996, 40, 727–758. [Google Scholar] [CrossRef]
- Liu, G.R. The smoothed finite element method (S-FEM): A framework for the design of numerical models for desired solutions. Front. Struct. Civ. Eng. 2019, 13, 456–477. [Google Scholar] [CrossRef]
- Bek, Y.K.; Hamdia, K.M.; Rabczuk, T.; Könke, C. Micromechanical model for polymeric nano-composites material based on SBFEM. Comp. Struct. 2018, 194, 516–526. [Google Scholar]
- Fries, T.P.; Belytschko, T. The extended/generalized finite element method: An overview of the method and its applications. Int. J. Numer. Methods Eng. 2010, 84, 253–304. [Google Scholar] [CrossRef]
- Ham, S.; Bathe, K.J. A finite element method enriched for wave propagation problems. Comput. Struct. 2012, 94, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Hong, W.T.; Lee, P.S. Coupling flat-top partition of unity method and finite element method. Finite Elem. Anal. Des. 2013, 67, 43–55. [Google Scholar] [CrossRef]
- Kim, J.; Bathe, K.J. The finite element method enriched by interpolation covers. Comput. Struct. 2013, 116, 35–49. [Google Scholar] [CrossRef]
- Chen, J.S.; Wu, C.T.; Yoon, S.; You, Y. A stabilized conforming nodal integration for Galerkin mesh-free methods. Int. J. Numer. Methods Eng. 2001, 50, 435–466. [Google Scholar] [CrossRef]
- Liu, G.R.; Dai, K.Y.; Nguyen, T.T. A smoothed finite element method for mechanics problems. Comput. Mech. 2007, 39, 859–877. [Google Scholar] [CrossRef]
- Nguyen-Thoi, T.; Phung-Van, P.; Thai-Hoang, C.; Nguyen-Xuan, H. A cell-based smoothed discrete shear gap method (CS-DSG3) using triangular elements for static and free vibration analyses of shell structures. Int. J. Mech. Sci. 2013, 74, 32–45. [Google Scholar] [CrossRef] [Green Version]
- Hamrani, A.; Habib, S.H.; Belaidi, I. CS-IGA: A new cell-based smoothed isogeometric analysis for 2D computational mechanics problems. Comput. Methods Appl. Mech. Eng. 2017, 315, 671–690. [Google Scholar] [CrossRef]
- Liu, G.R.; Nguyen-Thoi, T.; Nguyen-Xuan, H.B.; Lam, K.Y. A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems. Comput. Struct. 2009, 87, 14–26. [Google Scholar] [CrossRef]
- Nguyen-Thoi, T.; Vu-Do, H.C.; Rabczuk, T.; Nguyen-Xuan, H. A node-based smoothed finite element method (NS-FEM) for upper bound solution to visco-elastoplastic analyses of solids using triangular and tetrahedral meshes. Comput. Methods Appl. Mech. Eng. 2010, 199, 3005–3027. [Google Scholar] [CrossRef]
- Liu, G.R.; Nguyen-Thoi, T.; Lam, K.Y. An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids. J. Sound Vib. 2009, 320, 1100–1130. [Google Scholar] [CrossRef]
- He, Z.C.; Liu, G.R.; Zhong, Z.H.; Wu, S.C.; Zhang, G.Y.; Cheng, A.G. An edge-based smoothed finite element method (ES-FEM) for analyzing three-dimensional acoustic problems. Comput. Methods Appl. Mech. Eng. 2009, 199, 20–33. [Google Scholar] [CrossRef]
- Chen, L.; Rabczuk, T.; Bordas, S.P.A.; Liu, G.R.; Zeng, K.Y.; Kerfriden, P. Extended finite element method with edge-based strain smoothing (ESm-XFEM) for linear elastic crack growth. Comput. Methods Appl. Mech. Eng. 2012, 209, 250–265. [Google Scholar] [CrossRef]
- Lee, C.; Kim, H.; Im, S. Polyhedral elements by means of node/edge-based smoothed finite element method. Int. J. Numer. Methods Eng. 2017, 110, 1069–1100. [Google Scholar] [CrossRef]
- Lee, C.; Kim, H.; Kim, J.; Im, S. Polyhedral elements using an edge-based smoothed finite element method for nonlinear elastic deformations of compressible and nearly incompressible materials. Comput. Mech. 2017, 60, 659–682. [Google Scholar] [CrossRef]
- Nguyen-Thoi, T.; Liu, G.R.; Lam, K.Y.; Zhang, G.Y. A face-based smoothed finite element method (FS-FEM) for 3D linear and geometrically non-linear solid mechanics problems using 4-node tetrahedral elements. Int. J. Numer. Methods Eng. 2009, 78, 324–353. [Google Scholar] [CrossRef]
- Nguyen-Thoi, T.; Liu, G.R.; Vu-Do, H.C.; Nguyen-Xuan, H. A face-based smoothed finite element method (FS-FEM) for visco-elastoplastic analyses of 3D solids using tetrahedral mesh. Comput. Methods Appl. Mech. Eng. 2009, 198, 3479–3498. [Google Scholar] [CrossRef]
- Lee, C.; Lee, P.S. A new strain smoothing method for triangular and tetrahedral finite elements. Comput. Methods Appl. Mech. Eng. 2018, 341, 939–955. [Google Scholar] [CrossRef]
- Lee, C.; Lee, P.S. The strain-smoothed MITC3+ shell finite element. Comput. Struct. 2019, 223, 106096. [Google Scholar] [CrossRef]
- An, X.M.; Li, L.X.; Ma, G.W.; Zhang, H.H. Prediction of rank deficiency in partition of unity-based methods with plane triangular or quadrilateral meshes. Comput. Methods Appl. Mech. Eng. 2011, 200, 665–674. [Google Scholar] [CrossRef]
- An, X.M.; Zhao, Z.Y.; Zhang, H.H.; Li, L.X. Investigation of linear dependence problem of three-dimensional partition of unity-based finite element methods. Comput. Methods Appl. Mech. Eng. 2012, 233, 137–151. [Google Scholar] [CrossRef]
- Oden, J.T.; Duarte, C.A.M.; Zienkiewicz, O.C. A new cloud-based hp finite element method. Comput. Methods Appl. Mech. Eng. 1998, 153, 117–126. [Google Scholar] [CrossRef] [Green Version]
- Strouboulis, T.; Babuška, I.; Copps, K. The design and analysis of the generalized finite element method. Comput. Methods Appl. Mech. Eng. 2020, 181, 43–69. [Google Scholar] [CrossRef]
- Tian, R.; Yagawa, G.; Terasaka, H. Linear dependence problems of partition of unity-based generalized FEMs. Comput. Methods Appl. Mech. Eng. 2006, 195, 4768–4782. [Google Scholar] [CrossRef]
- Kim, S.; Lee, P.S. A new enriched 4-node 2D solid finite element free from the linear dependence problem. Comput. Struct. 2018, 202, 25–43. [Google Scholar] [CrossRef]
- Kim, S.; Lee, P.S. New enriched 3D solid finite elements: 8-node hexahedral, 6-node prismatic, and 5-node pyramidal elements. Comput. Struct. 2019, 216, 40–63. [Google Scholar] [CrossRef]
- Kim, J.; Bathe, K.J. Towards a procedure to automatically improve finite element solutions by interpolation covers. Comput. Struct. 2014, 131, 81–97. [Google Scholar] [CrossRef]
- Lee, C.; Kim, S. Towards improving finite element solutions automatically with enriched 2D solid elements. Struct. Eng. Mech. 2020, 76, 379–393. [Google Scholar]
- Jeon, H.M.; Lee, P.S.; Bathe, K.J. The MITC3 shell finite element enriched by interpolation covers. Comput. Struct. 2014, 134, 128–142. [Google Scholar] [CrossRef]
- Chau-Dinh, T.; Nguyen-Duy, Q.; Nguyen-Xuan, H. Improvement on MITC3 plate finite element using edge-based strain smoothing enhancement for plate analysis. Acta Mech. 2017, 228, 2141–2163. [Google Scholar] [CrossRef]
- Jun, H.; Yoon, K.; Lee, P.S.; Bathe, K.J. The MITC3+ shell element enriched in membrane displacements by interpolation covers. Comput. Methods Appl. Mech. Eng. 2018, 337, 458–480. [Google Scholar] [CrossRef]
- Yoon, K.; Lee, Y.; Lee, P.S. A continuum mechanics based 3-D beam finite element with warping displacements and its modeling capabilities. Struct. Eng. Mech. 2012, 43, 411–437. [Google Scholar] [CrossRef]
- Kim, H.J.; Yoon, K.; Lee, P.S. Continuum mechanics based beam elements for linear and nonlinear analyses of multi-layered composite beams with interlayer slips. Compo. Struct. 2020, 235, 111740. [Google Scholar] [CrossRef]
Mesh | DOFs | ||||||
---|---|---|---|---|---|---|---|
Linear Elements | Adaptive Covers | Linear Elements | Adaptive Covers | Linear Elements | Adaptive Covers | ||
ES-Q4 | I | 12.277 | 0.244 | 13.348 | 0.889 | 40 | 360 |
II | 0.183 | 0.112 | 0.653 | 0.116 | 2112 | 3986 | |
Reference solutions: , (DOFs = 18,624) |
Mesh | DOFs | Solution Times [s] | ||||
---|---|---|---|---|---|---|
Stiffness Construction | Equation Solver | Total | ||||
ES-Q4 | I | Linear elements | 40 | 0.006 | 0.000 | 0.006 |
Adaptive covers | 360 | 0.372 | 0.001 | 0.373 | ||
II | Linear elements | 2112 | 1.102 | 0.001 | 1.103 | |
Adaptive covers | 3986 | 10.202 | 0.004 | 10.206 |
Mesh | DOFs | ||||||
---|---|---|---|---|---|---|---|
Linear Elements | Adaptive Covers | Linear Elements | Adaptive Covers | Linear Elements | Adaptive Covers | ||
ES-T3 | I | 2.851 | 0.036 | 23.549 | 8.169 | 144 | 1224 |
II | 7.145 | 0.002 | 10.275 | 0.081 | 544 | 2996 | |
III | 2.174 | 0.045 | 4.524 | 0.157 | 2178 | 6140 | |
Reference solutions: , (DOFs = 74,112) |
Mesh | DOFs | ||||||
---|---|---|---|---|---|---|---|
Linear Elements | Adaptive Covers | Linear Elements | Adaptive Covers | Linear Elements | Adaptive Covers | ||
ES-Q4&T3 | I | 6.522 | 2.066 | 36.424 | 1.5739 | 1532 | 4144 |
II | 1.690 | 1.289 | 13.230 | 0.429 | 5268 | 8614 | |
Reference solutions: , (DOFs = 74,414) |
Mesh | DOFs | ||||||
---|---|---|---|---|---|---|---|
Linear Elements | Adaptive Covers | Linear Elements | Adaptive Covers | Linear Elements | Adaptive Covers | ||
ST-Q4 | I | 6.285 | 4.954 | 34.647 | 5.711 | 120 | 704 |
II | 1.800 | 1.131 | 21.463 | 1.397 | 432 | 1442 | |
II | 0.486 | 0.245 | 13.449 | 1.256 | 1632 | 3410 | |
EN-Q4 | I | 0.787 | 1.403 | 39.683 | 4.337 | 120 | 660 |
II | 0.507 | 0.810 | 27.257 | 1.595 | 432 | 1324 | |
III | 0.235 | 0.196 | 16.740 | 0.912 | 1632 | 3164 | |
Reference solutions: , (DOFs = 6336) |
Mesh | DOFs | ||||||
---|---|---|---|---|---|---|---|
Linear Elements | Adaptive Covers | Linear Elements | Adaptive Covers | Linear Elements | Adaptive Covers | ||
ST-T3 | I | 21.206 | 0.120 | 49.037 | 4.598 | 120 | 890 |
II | 6.980 | 1.483 | 33.617 | 1.075 | 432 | 1946 | |
II | 1.977 | 0.884 | 18.077 | 0.174 | 1632 | 4050 | |
EN-T3 | I | 3.846 | 0.123 | 38.008 | 4.541 | 120 | 836 |
II | 0.733 | 0.976 | 27.116 | 1.660 | 432 | 1716 | |
III | 0.139 | 0.208 | 17.314 | 0.185 | 1632 | 3826 | |
Reference solutions: , (DOFs = 6336) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, M.-H.; Kim, S. Strategy to Improve Edge-Based Smoothed Finite Element Solutions Using Enriched 2D Solid Finite Elements. Appl. Sci. 2021, 11, 3476. https://doi.org/10.3390/app11083476
Oh M-H, Kim S. Strategy to Improve Edge-Based Smoothed Finite Element Solutions Using Enriched 2D Solid Finite Elements. Applied Sciences. 2021; 11(8):3476. https://doi.org/10.3390/app11083476
Chicago/Turabian StyleOh, Min-Han, and San Kim. 2021. "Strategy to Improve Edge-Based Smoothed Finite Element Solutions Using Enriched 2D Solid Finite Elements" Applied Sciences 11, no. 8: 3476. https://doi.org/10.3390/app11083476
APA StyleOh, M. -H., & Kim, S. (2021). Strategy to Improve Edge-Based Smoothed Finite Element Solutions Using Enriched 2D Solid Finite Elements. Applied Sciences, 11(8), 3476. https://doi.org/10.3390/app11083476