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Abstract: In this paper, we present an automatic procedure that enhances the solution accuracy of
edge-based smoothed 2D solid finite elements (three-node triangular and four-node quadrilateral
elements). To obtain an enhanced solution, an adaptive enrichment scheme that uses enriched 2D
solid finite elements and can effectively improve solution accuracy by applying cover functions
adaptively without mesh-refinement is adopted in this procedure. First, the error of the edge-based
finite element solution is estimated using a devised error estimation method, and appropriate cover
functions are assigned for each node. While the edge-based smoothed finite elements provide
piecewise constant strain fields, the proposed enrichment scheme uses the enriched finite elements to
obtain a higher order strain field within the finite elements. Through various numerical examples,
we demonstrate the accuracy improvement and efficiency achieved.

Keywords: enriched finite elements; edge-based smoothed finite elements; solution accuracy; adap-
tive enrichment

1. Introduction

The finite element method (FEM) is one of the most successful numerical methods
and has been widely used to solve mechanics problems in various engineering fields [1–5].
Despite its great success, the standard finite element method has some limitations: the anal-
ysis accuracy depends on the mesh used and the stress prediction accuracy is considerably
poor when 3-node triangular (2D) and 4-node tetrahedral (3D) elements are used [5–7].
Many studies have been conducted to overcome these limitations of the standard FEM
(ST-FEM), and several numerical methods, such as extended FEM (EX-FEM), enriched FEM
(EN-FEM), and smoothed FEM (S-FEM), have been developed [7–11].

The S-FEM is a relatively recently proposed method among the several techniques
mentioned above and has been successfully applied to various engineering problem [12–24].
In S-FEM, the strain smoothing technique originally developed for the Galerkin mesh-free
method is applied to the FEM, and constant strain fields are constructed in newly defined
smoothing domains [12,13]. Depending on how the smoothing domain is defined, node-
based, cell-based, edge-based, and face-based smoothed FEM have been proposed. Each
S-FEM has different characteristics and performance depending on the smoothing domain,
and it is generally known that edge-based S-FEM (ES-FEM) is the most effective [19–22].
The solution accuracy of the ES-FEM is more accurate compared to the ST-FEM, especially
when the same lower order element mesh is used, and unlike other methods such as
EX-FEM and EN-FEM, no additional degrees of freedoms (DOFs) are required [6,8,11,25].
However, when high gradient occurs in the smoothing domain, the predictive ability of the
ES-FEM with a lower order element mesh is not good enough to be used in engineering
practice [25,26].
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The enrichment scheme was developed as another method of improving finite ele-
ment solution accuracy [5,9,11]. With the enrichment scheme, the solution space of the
standard finite element can be expanded by introducing cover functions corresponding to
enriched DOFs. The main advantage of the enriched FEM (EN-FEM) is that the solution
improvement in the sense of the p-version of the ST-FEM is available without introducing
additional nodes. In addition, adaptively applying the cover function to a local area where
solution accuracy needs to be improved can enhance solution accuracy efficiently [5,11].
However, depending on the mesh used when applying the polynomial cover function, a lin-
ear dependence (LD) problem that leads to ill-conditioned global matrices can occur [27,28].
Many methods have been suggested to suppress the LD problem of enriched finite ele-
ments [3,29–31]. Among the suggested methods, the LD problem was resolved in a simple
and effective way by adopting piecewise linear shape functions and suppressing enriched
DOFs [32,33]. In addition, a procedure for automatically improving the analysis accuracy
of the standard finite elements using enriched finite elements has been proposed [34,35].
In this procedure, the use of cover functions is determined automatically based on the
analysis results of the standard finite elements. The mesh-refinement is not required, but
the number of DOFs used increases.

In this paper, we propose an automatic procedure to effectively improve the solution
accuracy of edge-based 2D solid finite elements (4-node quadrilateral and 3-node triangular)
without mesh-refinement or introducing additional nodes. An error indicator that estimates
the error of the finite element solution and cover function selection scheme based on the
error indicator are adopted, and the enriched finite elements are employed to incorporate
cover functions in the analysis results. The adaptive enrichment scheme can enhance the
solution of edge-based finite elements and capture high gradients efficiently.

In the following sections, we firstly review the edge-based finite elements method
(ES-FEM) and the enriched finite element method (EN-FEM). We then suggest an automatic
procedure that provides solution improvement through adaptive enrichment including the
error indicator and cover function selection scheme. Through several examples, the feasi-
bility of improving the accuracy of edge-based 2D finite element solutions is demonstrated.

2. Enrichment Scheme for the Edge-Based Smoothed 2D Solid Finite Elements

In this section, we briefly review the edge-based smoothed three-node triangular and
four-node quadrilateral elements (ES-QD4, ES-T3) and the enriched three-node triangular
and four-node quadrilateral elements (EN-QD4, EN-T3), and suggest a strategy to obtain
accurate solutions with an enrichment scheme.

It is not necessary to explicitly define the shape function to calculate the stiffness
matrix of edge-based smoothed finite elements [6], but we present the formulation of edge-
based smoothed finite elements (ES-FE) and enriched finite elements (EN-FE) with linear
and piecewise linear shape functions [33]. These shape functions are adequate for ES-FE
and EN-FE and also prevent the LD problem that can occur due to the enrichment scheme.

2.1. Edge-Based Smoothed 2D Finite Elements

The geometry of the ES-FE is given by

x =
n

∑
i=1

hn
i (r, s)xi with xi = [ xi yi]

T , (1)

where xi is the position vector corresponding to node i on the global Cartesian coordinate
system (x, y) shown in Figure 1a, n is the number of nodes of element, and hn

i (r, s) are the
2D linear interpolation functions corresponding to node i defined in the natural coordinate
system (r, s) in Figure 1b. The four-node quadrilateral and three-node triangular elements
have center points (r = s = 0 for the four-node element and r = s = 1/3 for the three-node
element) and are divided into four or three sub-triangles (cells), respectively, using its
nodes and center points.
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For the four-node quadrilateral element (n = 4), the piecewise linear shape functions
defined in each triangular cell shown in Figure 1b are [32]

h4
1 = (1 + 2r + s)/4, h4

2 = (1− 2r + s)/4,h4
3 = (1− s)/4, h4

4 = (1− s)/4 in C1,
h4

1 = (1 + r)/4, h4
2 = (1− r + 2s)/4, h4

3 = (1− r− 2s)/4, h4
4 = (1 + r)/4 in C2,

h4
1 = (1 + s)/4, h4

2 = (1 + s)/4, h4
3 = (1− 2r− s)/4, h4

4 = (1 + 2r− s)/4 in C3,
h4

1 = (1 + r + 2s)/4, h4
2 = (1− r)/4, h4

3 = (1− r)/4, h4
4 = (1 + r− 2s)/4 in C4.

(2)

The linear shape functions for the three-node triangular element (n = 3) are

h3
1(r, s) = 1 + r + s, h3

2(r, s) = r, h3
3(r, s) = s, (3)

where the linear shape functions are the same for all cells shown in Figure 1b.
The displacement of the ES-FE is interpolated by

u =
n

∑
i=1

hn
i (r, s)ui with ui = [ ui vi]

T , (4)

in which ui is the displacement vector of node i in the global Cartesian coordinate system.
Employing the standard isoparametric finite element procedure with Equations (1) to (4),

the strain field within a cell c of an element e is obtained using

ε(e,c) = B(e,c)u(e) with B(e,c) = [ Bc
1 Bc

2 · · · Bc
n] , u(e) = [ u1 u2 · · · un]

T , (5)

where ε(e,c) = [εxx εyy 2εxy]T , B(e,c) is the displacement-strain relation matrix on the
cell c in the element e, u(e) is the nodal displacement vector of the element, and Bc

i is the
strain-displacement relation matrix corresponding to node i in cell c, as seen in Figure 2a.
Since the geometry and displacement interpolations are based on the linear shape functions
in Equations (2) and (3), the strain components in Equation (5) are constants in each cell.

For the ES-FEM, the smoothing domain is defined at each edge with its neighboring
cells. Let us consider three-node triangular and four-node quadrilateral elements attached
to the edge, colored in red (see, Figure 2). The edge-based smoothing domain is formed
as the union of cells attached to the edge and belonging to different elements, and the
smoothed strain corresponding to this smoothing domain is given by

ε =
1

A(1,4) + A(2,4)
(A(1,4)ε(1,4) + A(2,3)ε(2,3)), (6)

in which A(1,4) and A(2,3) are the areas of cells attached to the target edge, and ε(1,4) and
ε(2,3) are the strains of the neighboring cells. The strain field of the ES-FE is also constant
in the smoothing domain, like the strain vector in Equation (5).
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The edge-based smoothed strain within cell c of the target element e can be expressed
in matrix and vector form as

ε(e,c) = B(e,c)u(e,c) with B(e,c)
= [ B1 B2 · · · Bns ] , u(e,c) = [ u1 u2 · · · uns ]

T , (7)

where ns is the number of nodes belonging to elements including cells constituting
the smoothing domain (see Figure 2c). The edge-based smoothed elements also have a
constant strain field and pass all basic tests (patch, isotropy, and zero energy mode tests).

2.2. Enriched 2D Finite Elements

Here we review the formulation of the EN-FEM. The enrichment scheme can expand
the solution space of the FEM without mesh refinement or additional nodes, and the
solution accuracy can be improved effectively by considering the adequate cover function
for a particular problem.

The geometry interpolation of the EN-FE is the same as the interpolation of the
standard and smoothed finite elements and is given in Equation (1). The interpolation of
displacement is given by multiplying the shape functions with cover functions defined
over cover area as follows:

ũ(r, s) =
n

∑
i=1

hn
i (r, s)ũi with ũi = [ ũi ṽi ]

T , (8)
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where ũi and ṽi are cover functions for the displacements u and v, respectively. The cover
area consists of elements attached to node i as shown in Figure 3.
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The polynomial cover functions are

ũi = pi(x)u
u
i , ṽi = pi(x)u

v
i in Ci (9)

with

pi(x) =
[

1 ξi ηi ξ2
i · · · ηd

i
]
, ξi =

(x− xi)

χi
, ηi =

(y− yi)

χi
, (10)

uu
i =

[
ui

_
u

ξ

i
_
u

η

i
_
u

ξ2

i · · · _
u

ηd

i

]T
, uv

i =
[

vi
_
v

ξ

i
_
v

η

i
_
v

ξ2

i · · · _
v

ηd

i

]T
, (11)

where pi is the polynomial basis vector for node i, d is the degree of the polynomial bases,
χi is the largest edge length of elements belonging to Ci, and uu

i and uv
i are the degrees

of freedom vectors corresponding to the bases of the polynomial cover functions for the
displacements in the x- and y- directions, respectively.

Substituting cover functions in Equation (9) into Equation (8), the displacement inter-
polation is represented by

ũ = u +
_
u

=
n
∑

i=1
hn

i (r, s)ui +
n
∑

i=1

_
H

n

i (r, s)
_
u i

(12)

with
_
u i =

[
_
u

u
i

_
u

v
i

]
,
_
H

n

i (r, s) =

 _
h

n

i (r, s) 0

0
_
h

n

i (r, s)

, (13)
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where
_
u i and

_
H

n

i are the enriched DOFs vector and the corresponding interpolation matrix,
respectively.

For the linear cover function used (d = 1), the following components of the interpola-
tion matrix and the enriched DOFs vector are employed

_
h

n

i (r, s) = hn
i (r, s)[ ξi ηi] ,

_
u

u
i =

[
_
u

ξ

i
_
u

η

i

]T
,
_
u

v
i =

[
_
v

ξ

i
_
v

η

i

]T
. (14)

When the quadratic cover function is used (d = 2), the components of the interpolation
matrix and the enriched DOFs vector are

_
h

n

i (r, s) = hn
i (r, s)

[
ξi ηi ξ2

i ξiηi η2
i
]
,

_
u

u
i =

[
_
u

ξ

i
_
u

η

i
_
u

ξ2

i
_
u

ξη

i
_
u

η2

i

]T
,
_
u

v
i =

[
_
v

ξ

i
_
v

η

i
_
v

ξ2

i
_
v

ξη

i
_
v

η2

i

]T
.

(15)

For the cubic cover function used (d = 3), the components of the interpolation matrix
and the enriched DOFs vector become

_
h

n

i (r, s) = hn
i (r, s)

[
ξi ηi ξ2

i · · · η3
i
]
,

_
u

u
i =

[
_
u

ξ

i
_
u

η

i
_
u

ξ2

i · · · _
u

η3

i

]T
,
_
u

v
i =

[
_
v

ξ

i
_
v

η

i
_
v

ξ2

i · · · _
v

η3

i

]T
.

(16)

Using the displacement–strain relation, the strain vector within cell c of the target
element e is given by

ε̂(e,c) = B̂(e,c)û(e)

= B(e,c)u(e) +
_
B
(e,c)_

u
(e)

= ε(e,c) +
_
ε
(e,c)

(17)

with
_
B
(e,c)

= [
_
B

c

1
_
B

c

2 · · ·
_
B

c

n] ,
_
u
(e)

= [
_
u1

_
u2 · · · _

un]
T

, (18)

in which
_
u
(e)

is the enriched DOFs vector of the element e, and
_
B

c

i is the strain–displacement
relation matrix corresponding to the enriched DOFs at node i in cell c of the target element e.

Note that the displacement of the ES-FE in Equation (12) is divided into two parts:
Linear displacement u and higheorder displacement

_
u . u is the standard finite element

interpolation and
_
u is the additional enriched higher order displacement interpolation.

This polynomial enrichment scheme improves the solution accuracy in the sense of the
p-version of the ST-FEM without adding extra nodes, and the cover functions with different
degrees of polynomial can be used for each node. Thus, by applying cover functions to
a local area where solutions need to be improved can increase the finite element solution
accuracy effectively without mesh refinement [32,33].

2.3. The Procedure for Improving Edge-Based Finite Element Solutions

There have been studies to improve the accuracy of the standard finite element
solutions using the enrichment scheme. Kim and Lee presented an error indicator for
each node to estimate the standard finite element solution error and proposed a scheme
to apply polynomial cover functions to the appropriate node using the calculated error
indicator [34]. This procedure can automatically improve the stress and displacement
predictions and is effective in terms of computational cost since no mesh-refinement or
extra nodes are required.

Here, we present an automatic procedure that effectively improves the solution ac-
curacy of edge-based smoothed 2D solid finite elements (ES-FE) with enriched 2D solid
finite elements (EN-FE). Similar to the previous proposed procedures, the improvement
of the solution accuracy is composed of two steps. First, the ES-FE solution is calculated,
and then the error for each node is estimated through the error indicator. Based on this
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error indicator, appropriate cover functions are selected for each node, and re-analysis is
performed to obtain an improved analysis result.

The error indicator that estimates errors at each node is defined by

Mi =
1
2

{
Ji

J
+

(
J
τ

)
τi
τ

}(
χi
Lc

)
(19)

with

J =
1
N

N

∑
i=1

Ji, τ =
1
N

N

∑
i=1

τi, Ji = max(τi)−min(τi), (20)

where τi is the stress at node i, Ji is the largest stress jump at node i, N is the number
of nodes, and χi is the largest edge length of elements attached to node i [35]. The error
indicator in Equation (19) does not include any artificial constants and any stress quantity
of interest can be used for this error indicator. In this paper, the von Mises stress quantity
is applied to all examples.

Based on the error indicator in Equation (19), the cover selection scheme determines
the nodes to which the cover function is applied and the degree of the cover function. This
scheme should include minimum parameters and present the optimal nodes and degrees
of the cover function to improve the solution accuracy.

In the cover selection scheme, index (Ii), which presents the arrangement of the
nodal error indicator (Mi with i = 1, 2, · · · , N ) in ascending order, is defined. Then, the
ascending index (Ii) and normalized index ( Îi) are given as follows:

Ii, Ij ∈ {1, 2, · · · , N}, MIi < MIj when Ii < Ij (21)

and
Îi = Ii/N. (22)

By using the normalized index, a weighted average of the error indicator is given by

Mw =

(
N

∑
i=1

Mi · Îi

)
/N. (23)

With the weighted average of the error indicator in Equation (23) and artificial param-
eters (αi), the cover selection is given as follows:
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(24)

For nodes with larger errors, a higher degree of cover function is applied, and artificial
parameters (αi) are the only values that should be determined. Kim and Lee suggested
using (α1, α2, α3) = (21, 14, 7) as default values and demonstrated several examples that
showed very effective improvement of the solution accuracy. These values for parameters
(αi) are adopted for all examples in the following section.

With the cover function selection scheme in Equation (24), the finite element model
is updated to obtain a better solution and capture high gradients. The stiffness matrix of
the updated FE model with smoothing and enrichment schemes can be calculated. As
shown in Figure 4, smoothing and enrichment schemes are applied separately, so that they
effectively provide low and high gradient solutions, respectively.
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Figure 4. Adaptive use of cover function for the edge-based smoothed finite element: (a) Finite
element mesh with cover functions, (b) application of the edge-based smoothing scheme to elements
without cover functions.

The presented procedure improves the solution accuracy of edge-based smoothed
finite elements, which are known to have better performance than standard finite elements,
while the automatic procedure proposed by Lee and Kim [35] improves the solution for
standard finite elements. Iterative analysis is also possible by adopting a higher degree
cover function or by applying a cover function to a node to which the cover function is
not applied. Repeating this re-analysis requires parameter adjustment in Equation (24)
at each iteration. The most accurate solution can be obtained when applying the highest
order cover function to all nodes in a given finite element mesh. In this paper, we present
a procedure that can effectively obtain an accurate solution through single re-analysis
automatically without parameter adjustment.

We performed three basic tests (the isotropy, patch, and zero energy mode tests) with
arbitrary cover function application to each case, as shown in Figure 4, and all cases passed
these basic tests. With this cover selection scheme, the solution accuracy of the ES-FE can
be improved effectively without mesh-refinement or introducing additional nodes and its
performance is demonstrated through examples in the next section.

3. Numerical Examples

In this section, we demonstrate the feasibility of improving 2D ES-FE solutions with
an adaptive enrichment scheme presented in the previous section. This procedure yields
solutions with desired accuracy by applying appropriate cover functions for each node, and
the higher-order displacement field can be obtained effectively. The Cook beam problem,
Ad-hoc problem, Wheel problem, and L-shape structure problems are considered, and
the finite element models are constructed using meshes of linear elements (four-node
quadrilateral and three-node triangular elements) and quadratic elements (nine-node
quadrilateral and six-node triangular elements).

Displacement, strain, von Mises stress, and energy norms were evaluated, and the
relative errors of displacement (v) in the y-direction and von Mises stress (τ) are given by

ev =

∣∣∣vh − vre f

∣∣∣
vre f

, (25)

eτ =

∣∣∣τh − τre f

∣∣∣
τre f

, (26)

where the subscripts ‘h’ and ‘ref ’ represent the finite element and the reference solutions,
respectively. The energy norm E and its relative error are denoted by

eE =

∣∣∣Eh − Ere f

∣∣∣
Ere f

with E =
∫

Ω
εTσdV. (27)
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The reference solutions are obtained using fine meshes of quadratic elements.

3.1. Cook’s Skew Beam Problem

The first numerical example is the Cook beam problem shown in Figure 5 [4]. A
distributed force is applied on the right edge, and the left edge is clamped. The plane stress
condition is employed with Young’s modulus Y = 3× 107 N/m2, Poisson’s ratio p = 0.3,
and density ρ = 1 kg/m3. The two quadrilateral meshes are shown in Figure 5, where
edge-based smoothed four-node quadrilateral element (ES-Q4) are used, and the proposed
scheme is applied for each mesh to obtain solutions with improved accuracy.
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The relative errors of the vertical displacement in Equation (25) and the energy norm
in Equation (27) are given in Table 1. Figure 6 provides the distributions of the strain
component εxy when the edge-based four-node quadrilateral elements (ES-Q4) and the
proposed scheme are applied to the meshes shown in Figure 6. The distributions of the
von Mises stress along line BC is given in Figure 7. The reference solution is calculated
with a fine mesh of nine-node quadrilateral elements. The actual computational time for
constructing the stiffness matrix and solving the linear system of equations are summarized
in Table 2.

Table 1. Relative errors (%) in the energy norm (E) and the vertical displacement (v) at the point A in the Cook’s skew
beam problem.

Mesh
eE [%] ev [%] DOFs

Linear
Elements

Adaptive
Covers

Linear
Elements

Adaptive
Covers

Linear
Elements

Adaptive
Covers

ES-Q4
I 12.277 0.244 13.348 0.889 40 360
II 0.183 0.112 0.653 0.116 2112 3986

Reference solutions: Ere f = 3.997× 10−7 N ·m, vre f = 8.367× 10−7 m (DOFs = 18,624)

Table 2. Solution times (in seconds) for constructing the stiffness matrix and solving linear equations for the Cook’s skew
beam problem.

Mesh DOFs
Solution Times [s]

Stiffness Construction Equation Solver Total

ES-Q4
I

Linear elements 40 0.006 0.000 0.006
Adaptive covers 360 0.372 0.001 0.373

II
Linear elements 2112 1.102 0.001 1.103
Adaptive covers 3986 10.202 0.004 10.206
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It is shown that the calculated results of the strain energy norm, displacement, strain,
and von Mises stress with the adaptive enrichment scheme are more accurate than those
without cover functions. Furthermore, both the case of the adaptive cover in Mesh 1 and
the case of using the linear element in Mesh 2 show sufficiently accurate results; however,
the adaptive method consumes approximately three times less computational time.

Transient response at point A is also calculated, and Newmark time integration
method with ∆t = 0.001 s is used. The initial condition and harmonic excitation at the right
edge are given by

0U =0 .
U =0 ..

U = 0, (28)

F(t) = sin(4πt)N. (29)

ES-Q4 and the adaptive enrichment scheme with Mesh 1 are used for dynamic analysis.
The adaptive use of cover functions is the same with static analysis shown in Figure 6, and
Figure 8 shows the transient response at Point A. The solution of the proposed scheme
almost converges to the reference solution, and it is confirmed that the suggested scheme
can improve not only the static but also dynamic solution accuracy effectively.
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3.2. Ad-Hoc Problem

Here, the ad-hoc problem shown in Figure 9 is considered. For the given in-plane
displacements

u = (1− x2)
2
(1− y2)

2
emy cos mx, (30)

v = (1− x2)
2
(1− y2)

2
emy sin mx with m = 5, (31)

we can obtain the body forces satisfying the equilibrium equations

f B
x = −

(
∂τxx

∂x
+

∂τxy

∂y

)
, f B

y = −
(

∂τyy

∂y
+

∂τxy

∂x

)
. (32)
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The body forces are applied to the whole problem domain, and the fixed boundary
condition is imposed on the bottom line (y = −1).

The plane stress condition is employed with Y = 2× 105 N/m2 and p = 0.3, and
the solution is obtained using the three triangular meshes shown in Figure 9 with the
edge-based three-node triangular elements (ES-T3) and the suggested adaptive enrichment
scheme. The reference solutions are obtained using a fine mesh of the standard nine-node
quadrilateral elements.

Figure 10 provides the von Mises stress distributions for the three triangular meshes
shown in Figure 9 and the degrees of cover functions applied based on the adaptive enrich-
ment scheme. The relative errors in the energy norm in Equation (27) and maximum von
Mises stress that are averaged stress values at each node in Equation (26) are summarized in
Table 3. The von Mises stress fields obtained by applying the adaptive enrichment scheme
almost converge to the reference solution for all the meshes (Mesh I, II, and III) considered.

Table 3. Relative errors (%) in the energy norm (E) and the maximum von Mises stress (τ) in the ad hoc problem.

Mesh

eE [%] eτ [%] DOFs

Linear
Elements

Adaptive
Covers

Linear
Elements

Adaptive
Covers

Linear
Elements

Adaptive
Covers

ES-T3
I 2.851 0.036 23.549 8.169 144 1224
II 7.145 0.002 10.275 0.081 544 2996
III 2.174 0.045 4.524 0.157 2178 6140

Reference solutions: Ere f = 7.513× 107 N ·m, τre f = 8.362× 106 N/m2 (DOFs = 74,112)

3.3. Wheel Problem

We here consider the problem of an automotive wheel with a radius of 0.2 (see
Figure 11). The lower part of the wheel is subjected to a constant pressure load and the
fixed boundary condition is imposed on the inner circle. The plane stress condition with
Y = 2× 105 N/mm2 and p = 0.3, and two different meshes (Mesh I and II) shown in
Figure 11 are used.
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Numerical results obtained employing the edge-based smoothed finite elements (ES-
FE) are compared with the results of the adaptive enrichment scheme. Table 4 gives the
relative errors in the energy norm in Equation (27) and maximum von Mises stress that are
averaged stress values at each node in Equation (26). The von Mises stress distributions
are given in Figure 12 and the reference solutions are obtained employing a mesh of
9058 nine-node quadrilateral elements.

Table 4. Relative errors (%) in the energy norm (E) and the maximum von Mises stress (τ) at point A in the wheel problem.

Mesh

eE [%] eτ [%] DOFs

Linear
Elements

Adaptive
Covers

Linear
Elements

Adaptive
Covers

Linear
Elements

Adaptive
Covers

ES-Q4&T3
I 6.522 2.066 36.424 1.5739 1532 4144
II 1.690 1.289 13.230 0.429 5268 8614

Reference solutions: Ere f = 3.997× 10−7 N ·mm, τre f = 8.367× 10−7 N/mm2 (DOFs = 74,414)
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The proposed scheme applies the cover functions to the area where the solution
accuracy needs to be improved and there is high stress gradient. Thus, the increase of
the number of DOFs could be minimized, and the accuracy of the strain energy and the
maximum von Mises stress prediction is improved.

3.4. L-Shape Structure Problem

The L-shape structure is subjected to pressure load varying along the edges, as shown
in Figure 13 and the boundary conditions are imposed as: u = 0 along AD and v = 0 along
CD. The plane stress condition is used with material properties Y = 200× 109 N/m2 and
p = 0.3.
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The finite element models are constructed using the standard four-node and three-
node elements (ST-Q4, ST-T3) and the edge-based smoothed four-node and four-node
elements (ES-Q4, ES-T3) for three different meshes (Mesh I, II, III), as shown in Figure 13.
Triangular element meshes are generated from the quadrilateral mesh by dividing each
quadrilateral element into two triangular elements. To obtain an improved solution, the
enrichment schemes for the ST-FE and ES-FE are employed, and accuracy improvement
and computational efficiency in terms of the number of DOFs used are compared. The
reference solutions are calculated using a mesh of 3072 nine-node quadrilateral elements.

The von Mises stress fields and the strain component εxx obtained from the linear
elements and adaptive enrichment scheme are presented in Figures 14–16, and the relative
errors of strain energy and maximum von Mises stress are summarized in Tables 5 and 6.

Table 5. Relative errors (%) in the energy norm (E) and the maximum von Mises stress (τ) in the L-shape structure problem
when the meshes of quadrilateral elements (ST-Q4, ES-Q4) are used.

Mesh

eE [%] eτ [%] DOFs

Linear
Elements

Adaptive
Covers

Linear
Elements

Adaptive
Covers

Linear
Elements

Adaptive
Covers

ST-Q4
I 6.285 4.954 34.647 5.711 120 704
II 1.800 1.131 21.463 1.397 432 1442
II 0.486 0.245 13.449 1.256 1632 3410

EN-Q4
I 0.787 1.403 39.683 4.337 120 660
II 0.507 0.810 27.257 1.595 432 1324
III 0.235 0.196 16.740 0.912 1632 3164

Reference solutions: Ere f = 5.120× 10−9 N ·m, τre f = 1.751× 100 N/m2(DOFs = 6336)
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Figure 15. Strain (εxx) predictions obtained by the standard and edge-based smoothed four-node
triangular finite elements (ST-Q4 and ES-Q4) and the adaptive enrichment scheme for the L-shape
structure problem when the Mesh I is used.
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Table 6. Relative errors (%) in the energy norm (E) and the maximum von Mises stress (τ) in the L-shape structure problem
when the meshes of triangular elements (ST-T3, ES-T3) are used.

Mesh

eE [%] eτ [%] DOFs

Linear
Elements

Adaptive
Covers

Linear
Elements

Adaptive
Covers

Linear
Elements

Adaptive
Covers

ST-T3
I 21.206 0.120 49.037 4.598 120 890
II 6.980 1.483 33.617 1.075 432 1946
II 1.977 0.884 18.077 0.174 1632 4050

EN-T3
I 3.846 0.123 38.008 4.541 120 836
II 0.733 0.976 27.116 1.660 432 1716
III 0.139 0.208 17.314 0.185 1632 3826

Reference solutions: Ere f = 5.120× 10−9 N ·m, τre f = 1.751× 100 N/m2(DOFs = 6336)

As for the quadrilateral mesh, the ES-Q4 provides greatly improved strain energy
prediction compared to the ST-Q4, whereas the ES-Q4 appears to be less accurate in
predicting the maximum von Mises stress. By applying the suggested procedure, the
solution of the ES-Q4 is significantly improved, especially in stress prediction, and the
increase of DOFs used is less than the ST-Q4, as seen in Table 5. For the triangular mesh,
the ES-T3 provides more accurate results than the ST-T3 for the same mesh. Therefore,
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when the same procedure is applied, the smaller number of DOFs is used for the ES-T3,
but sufficiently accurate results are provided (see Table 6).

4. Conclusions

The objective of this paper was to propose an adaptive enrichment scheme for the
edge-based smoothed 2D solid finite elements to effectively obtain a solution with desired
accuracy. When the edge-based smoothed finite elements provide a solution that is not
sufficiently converged, the suggested error indicator estimates the error for each node.
Then, the cover function selection scheme assigns the polynomial cover functions of the
appropriate degrees (up to a cubic degree) for each node. In order to apply the cover
function, enriched finite elements free from the linear dependence problem were adopted,
and the strain smoothing scheme was applied only to the area that is not subject to the
applied cover function. Through this procedure, analysis accuracy can be automatically
improved without mesh-refinement or introducing additional nodes, and a high-gradient
solution can be effectively captured.

The performance of the proposed procedure is demonstrated through several numeri-
cal examples. In each example, the procedure selected the appropriate nodes located in
an area where solution accuracy needs to be ameliorated, and the strain energy, stress,
strain, and displacement predictions were enhanced effectively. In future work, it would
be valuable to extend an adaptive enrichment scheme for nonlinear analysis to enhance
the convergence performance in iterative analysis. In addition, the adaptive enrichment
scheme can be easily applied to the 3D solid, shell, and beam finite elements [33,36–40].
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