Can Body Fat Percentage, Body Mass Index, and Specific Field Tests Explain Throwing Ball Velocity in Team Handball Players?
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Experimental Design
2.3. Testing Schedule
2.3.1. Day 1
Anthropometry
2.3.2. Day 2
Sprint Tests
2.3.3. Day 3
Squat and Counter Movement Jump Tests
The Yo-Yo Intermittent Recovery Test Level 1
Medicine Ball Overhead Throw
2.3.4. Day 3
T-Half Test for Change-of-Direction Ability
Throwing Ball Velocity
2.4. Statistical Analyses
3. Results
3.1. Intrarater Reliability
3.2. BMI Based Comparisons
3.3. Relationships between Anthropometric and Physical Performance Parameters
- Body weight/body height: r = 0.320;
- Body weight/body fat: r = 0.343;
- Body height/body fat: r = −0.317.
3.4. Relationships between the Anthropometric and Throwing Ball Velocity Parameters
4. Discussion
4.1. Anthropometrics and Aerobic Capacity
4.2. Anthropometrics and Anaerobic Capacity
4.3. Practical Applications and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hermassi, S.; Laudner, K.; Schwesig, R. Playing level and position differences in body characteristics and physical fitness performance among male team handball players. Front. Bioeng. Biotechnol. 2019, 7, 149. [Google Scholar] [CrossRef] [PubMed]
- Fieseler, G.; Hermassi, S.; Hoffmeyer, B.; Schulze, S.; Irlenbusch, L.; Bartels, T.; Delank, K.S.; Laudner, K.G.; Schwesig, R. Differences in anthropometric characteristics in relation to throwing velocity and competitive level in professional male team handball: A tool for talent profiling. J. Sports Med. Phys. Fit. 2017, 57, 985–992. [Google Scholar] [CrossRef]
- Hermassi, S.; Laudner, K.G.; Schwesig, R. The effects of circuit strength training on the development of physical fitness and performance-related variables in handball players. J. Hum. Kinet. 2020, 71, 191–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aloui, G.; Hermassi, S.; Hammami, M.; Cherni, Y.; Gaamouri, N.; Shephard, R.J.; van den Tillaar, R.; Chelly, M.S. Effects of elastic band based plyometric exercise on explosive muscular performance and change of direction abilities of male team handball players. Front. Physiol. 2020, 11, 604983. [Google Scholar] [CrossRef]
- Michalsik, L.B.; Madsen, K.; Aagaard, P. Physiological capacity and physical testing in male elite team handball. J. Sports Med. Phys. Fit. 2015, 55, 415–429. [Google Scholar]
- Karcher, C.; Buchheit, M. On-court demands of elite handball, with special reference to playing positions. Sports Med. 2014, 44, 797–814. [Google Scholar] [CrossRef]
- van den Tillaar, R. Effect of different training programs on the velocity of overarm throwing: A brief review. J. Strength Cond. Res. 2004, 18, 388–396. [Google Scholar] [CrossRef]
- Hermassi, S.; Chelly, M.S.; Bragazzi, N.L.; Shephard, R.J.; Schwesig, R. In-season weightlifting training exercise in healthy male handball players: Effects on body composition, muscle volume, maximal strength, and ball-throwing velocity. Int. J. Environ. Res. Public Health 2019, 16, 4520. [Google Scholar] [CrossRef] [Green Version]
- Hermassi, S.; Bragazzi, N.L.; Majed, L. Body fat is a predictor of physical fitness in obese adolescent handball athletes. Int. J. Environ. Res. Public Health 2020, 17, 8428. [Google Scholar] [CrossRef]
- Nikolaidis, P.T. Physical fitness is inversely related with body mass index and body fat percentage in soccer players aged 16–18 years. Med. Pregl. 2012, 65, 470–475. [Google Scholar] [CrossRef] [Green Version]
- Nikolaidis, P.T.; Asadi, A.; Santos, E.J.; Calleja-Gonzalez, J.; Padulo, J.; Chtourou, H.; Zemkova, E. Relationship of body mass status with running and jumping performances in young basketball players. Muscles Ligaments Tendons J. 2015, 5, 187–194. [Google Scholar] [CrossRef]
- Nikolaidis, P.T.; Ingebrigtsen, J. The relationship between body mass index and physical fitness in adolescent and adult male team handball players. Indian J. Physiol Pharm. 2013, 57, 361–371. [Google Scholar]
- Hermassi, S.; van den Tillaar, R.; Bragazzi, N.L.; Schwesig, R. The associations between physical performance and anthropometric characteristics in obese and non-obese schoolchild handball players. Front. Physiol. 2021, 11, 580991. [Google Scholar] [CrossRef] [PubMed]
- Michalsik, L.B.; Aagaard, P.; Madsen, K. Locomotion characteristics and match-induced impairments in physical performance in male elite team handball players. Int. J. Sports Med. 2013, 34, 590–599. [Google Scholar] [CrossRef]
- Zapartidis, I.; Koroasos, P.; Christodoulidis, T.; Skoufas, D.; Bayios, I. Profile of young handball players by playing position and determinants of ball throwing velocity. J. Hum. Kinet. 2011, 27, 17–30. [Google Scholar] [CrossRef]
- Hammami, M.; Hermassi, S.; Gaamouri, N.; Aloui, G.; Comfort, P.; Shephard, R.J.; Chelly, M.S. Field tests of performance and their relationship to age and anthropometric parameters in adolescent handball players. Front. Physiol. 2019, 10, 1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hermassi, S.; Sellami, M.; Fieseler, G.; Bouhafs, E.G.; Hayes, L.D.; Schwesig, R. Differences in body fat, body mass index, and physical performance of specific field tests in 10-to-12-year-old school-aged team handball players. Appl. Sci. 2020, 10, 9022. [Google Scholar] [CrossRef]
- Fortina, M.; Maniscalco, P.; Carulli, C.; Meccariello, L.; Colasanti, G.B.; Carta, S. Jockey injuries during the Siena "Palio". A 72-year analysis of the oldest horse race in Italy. Injury 2019, 50 (Suppl. 4), S56–S59. [Google Scholar] [CrossRef]
- Rinonapoli, G.; Graziani, M.; Ceccarini, P.; Razzano, C.; Manfreda, F.; Caraffa, A. Epidemiology of injuries connected with dance: A critical review on epidemiology. Med. Glas 2020, 17, 256–264. [Google Scholar] [CrossRef]
- Szmodis, M.; Szmodis, I.; Farkas, A.; Mészáros, Z.; Mészáros, J.; Kemper, H.C. The relationship between body fat percentage and some anthropometric and physical fitness characteristics in pre- and peripubertal boys. Int. J. Environ. Res. Public Health 2019, 1, 1170. [Google Scholar] [CrossRef] [Green Version]
- Wagner, H.; Fuchs, P.X.; Von Duvillard, S.P. Specific physiological and biomechanical performance in elite, sub-elite and in non-elite male team handball players. J. Sports Med. Phys. Fit. 2018, 58, 73–81. [Google Scholar] [CrossRef]
- Womersley, J.; Durnin, J.V. An experimental study on variability of measurements of skinfold thickness on young adults. Hum. Biol 1973, 45, 281–292. [Google Scholar]
- Glatthorn, J.F.; Gouge, S.; Nussbaumer, S.; Stauffacher, S.; Impellizzeri, F.M.; Maffiuletti, N.A. Validity and reliability of Optojump photoelectric cells for estimating vertical jump height. J. Strength Cond. Res. 2011, 25, 556–560. [Google Scholar] [CrossRef]
- Krustrup, P.; Mohr, M.; Amstrup, T.; Rysgaard, T.; Johansen, J.; Steensberg, A.; Pedersen, P.K.; Bangsbo, J. The yo-yo intermittent recovery test: Physiological response, reliability, and validity. Med. Sci. Sports Exerc. 2003, 35, 697–705. [Google Scholar] [CrossRef] [PubMed]
- Chelly, M.S.; Fathloun, M.; Cherif, N.; Ben Amar, M.; Tabka, Z.; Van Praagh, E. Effects of a back squat training program on leg power, jump, and sprInt. performances in junior soccer players. J. Strength Cond. Res. 2009, 23, 2241–2249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sassi, R.H.; Dardouri, W.; Yahmed, M.H.; Gmada, N.; Mahfoudhi, M.E.; Gharbi, Z. Relative and absolute reliability of a modified agility t-test and its relationship with vertical jump and straight sprint. J. Strength Cond. Res. 2009, 23, 1644–1651. [Google Scholar] [CrossRef]
- Negrete, R.J.; Hanney, W.J.; Kolber, M.J.; Davies, G.J.; Ansley, M.K.; McBride, A.B.; Overstreet, A.L. Reliability, minimal detectable change, and normative values for tests of upper extremity function and power. J. Strength Cond. Res. 2010, 24, 3318–3325. [Google Scholar] [CrossRef] [PubMed]
- Bortz, J. Basic Principle of One-Factorial Analysis of Variance. In Statistics for Social Scientists; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1999; pp. 237–249. [Google Scholar]
- Richardson, J.T.E. Eta squared and partial eta squared as measures of effect size in educational research. Educ. Res. Rev. 2011, 6, 135–147. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioural Sciences; Lawrence Earlbaum Associates: Hillside, NJ, USA, 1988; pp. 278–280. [Google Scholar] [CrossRef]
- Willimczik, K. Statistik im Sport: Grundlagen, Verfahren, Anwendungen, 3rd ed.; Czwalina: Hamburg, Germany, 1997; p. 259. [Google Scholar]
- Schrama, P.P.; Stenneberg, M.S.; Lucas, C.; van Trijffel, E. Intraexaminer reliability of hand-held dynamometry in the upper extremity: A systematic review. Arch. Phys. Med. Rehabil. 2014, 95, 2444–2469. [Google Scholar] [CrossRef]
- Shrout, P.E.; Fleiss, J.L. Intraclass correlations: Uses in assessing rater reliability. Psychol Bull. 1979, 86, 420–428. [Google Scholar] [CrossRef]
- Hopkins, W. Measures of reliability in sports medicine and science. Sports Med. 2000, 30, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Portney, L.G.; Watkins, M.P. Foundations of Clinical Research: Applications to Practice, 3rd ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2009. [Google Scholar]
- Hopker, J.; Myers, S.; Jobson, S.A.; Bruce, W.; Passfield, L. Validity and reliability of the Wattbike cycle ergometer. Int. J. Sports Med. 2010, 31, 731–736. [Google Scholar] [CrossRef] [Green Version]
- Cormack, S.J.; Newton, R.U.; McGuigan, M.R.; Doyle, T.L. Reliability of measures obtained during single and repeated countermovement jumps. Int. J. Sports Physiol Perform. 2008, 3, 131–144. [Google Scholar] [CrossRef] [Green Version]
- Brughelli, M.; Van Leemputte, M. Reliability of power output during eccentric sprInt. cycling. J. Strength Cond. Res. 2013, 27, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Georgeson, A.; Lebenthal, M.; Catania, R.; Georgeson, S. Obesity and elevated blood pressure in suburban student athletes. BMJ Open Sport Exerc. Med. 2017, 3, e000276. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Chang, S.H.; Miyashita, M.; Stensel, D.; Chen, J.F.; Wen, L.T.; Nakamura, Y. Associations between health-related physical fitness and obesity in Taiwanese youth. J. Sports Sci. 2013, 31, 1797–1804. [Google Scholar] [CrossRef] [PubMed]
- Burns, R.; Hannon, J.C.; Brusseau, T.A.; Shultz, B.; Eisenman, P. Indices of abdominal adiposity and cardiorespiratory fitness test performance in middle-school students. J. Obes. 2013, 2013, 912460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shete, A.N.; Bute, S.S.; Deshmukh, P.R. A study of VO2max and body fat percentage in female athletes. J. Clin. Diagn Res. 2014, 8, BC01–BC03. [Google Scholar] [CrossRef] [PubMed]
- Mak, K.K.; Ho, S.Y.; Lo, W.S.; Thomas, G.N.; McManus, A.M.; Day, J.R.; Lam, T.H. Health-related physical fitness and weight status in Hong Kong adolescents. BMC Public Health 2010, 10, 88. [Google Scholar] [CrossRef] [Green Version]
- Artero, E.G.; Espana-Romero, V.; Ortega, F.B.; Jimenez-Pavon, D.; Ruiz, J.R.; Vicente-Rodriguez, G.; Bueno, M.; Marcos, A.; Gomez-Martinez, S.; Urzanqui, A.; et al. Health-related fitness in adolescents: Underweight, and not only overweight, as an influencing factor. the AVENA study. Scand. J. Med. Sci Sports 2010, 20, 418–427. [Google Scholar] [CrossRef]
- Duvigneaud, N.; Matton, L.; Wijndaele, K.; Deriemaeker, P.; Lefevre, J.; Philippaerts, R.; Thomis, M.; Deleclus, C.; Duquet, W. Relationship of obesity with physical activity, aerobic fitness and muscle strength in Flemish adults. J. Sports Med. Phys. Fit. 2008, 48, 201–210. [Google Scholar]
- Bovet, P.; Auguste, R.; Burdette, H. Strong inverse association between physical fitness and overweight in adolescents: A large school-based survey. Int. J. Behav. Nutr. Phys. Act. 2007, 4, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Test | Session One Mean ± SD | Session Two Mean ± SD | ICC (95% CI) | CV (%) (95% CI) |
---|---|---|---|---|
15 m sprint (s) | 2.49 ± 0.44 | 2.55 ± 0.45 | 0.99 (0.89–1.00) | 1.5 (1.1–2.3) |
30 m sprint (s) | 4.44 ± 0.40 | 4.49 ± 0.41 | 0.99 (0.91–1.00) | 0.6 (0.4–0.9) |
Agility T-half (s) | 6.25 ± 0.46 | 6.33 ± 0.44 | 0.98 (0.89–0.99) | 1.3 (1.0–2.1) |
SJ (cm) | 39.3 ± 6.71 | 38.5 ± 6.57 | 0.99 (0.84–1.00) | 1.1 (0.8–1.8) |
CMJ (cm) | 45.7 ± 5.86 | 44.8 ± 5.48 | 0.99 (0.87–1.00) | 1.3 (1.0–2.2) |
Medicine ball overhead throw (m) | 9.71 ± 1.64 | 9.32 ± 1.49 | 0.97 (0.79–1.00) | 3.6 (2.7–5.6) |
Jump shot (m/s) | 27.9 ± 4.82 | 27.2 ± 4.71 | 0.99 (0.78–1.00) | 1.4 (1.0–2.1) |
Running shot (m/s) | 31.4 ± 4.41 | 30.9 ± 4.32 | 0.99 (0.88–1.00) | 1.1 (0.8–1.7) |
Parameters | Normal Weight (n = 11) | Overweight (n = 14) | Total (n = 25) | ANOVA | |
---|---|---|---|---|---|
p | ηp2 | ||||
Age (years) | 25.6 ± 5.8 | 25.3 ± 6.4 | 25.5 ± 6.0 | 0.918 | 0.000 |
Anthropometric parameters | |||||
Body height (m) | 1.91 ± 0.06 | 1.84 ± 0.13 | 1.87 ± 0.11 | 0.098 | 0.114 |
Body mass (kg) | 88.4 ± 6.2 | 97.8 ± 14.4 | 93.6 ± 12.3 | 0.056 | 0.150 |
BMI (kg/m2) | 24.1 ± 0.8 | 29.0 ± 4.6 | 26.8 ± 4.2 | 0.002 | 0.339 |
Body fat (%) | 18.0 ± 3.4 | 20.6 ± 5.4 | 19.5 ± 4.7 | 0.180 | 0.077 |
Bicipital skinfold (mm) | 5.00 ± 1.90 | 9.25 ± 5.68 | 7.38 ± 4.86 | 0.027 | 0.196 |
Tricipital skinfold (mm) | 11.4 ± 3.6 | 13.4 ± 6.8 | 12.5 ± 5.6 | 0.380 | 0.034 |
Subscapular (mm) | 15.5 ± 6.6 | 18.4 ± 10.0 | 17.1 ± 8.7 | 0.410 | 0.030 |
Suprailiac (mm) | 13.0 ± 6.3 | 18.2 ± 8.1 | 15.9 ± 7.7 | 0.096 | 0.116 |
Performance parameters | |||||
15 m sprint (s) | 2.51 ± 0.44 | 2.48 ± 0.46 | 2.49 ± 0.44 | 0.874 | 0.001 |
30 m sprint (s) | 4.38 ± 0.38 | 4.49 ± 0.43 | 4.44 ± 0.40 | 0.489 | 0.021 |
Agility T-half (s) | 6.28 ± 0.47 | 6.22 ± 0.47 | 6.25 ± 0.46 | 0.772 | 0.004 |
CMJ (cm) | 48.8 ± 4.7 | 43.3 ± 5.6 | 45.7 ± 5.9 | 0.016 | 0.227 |
SJ (cm) | 40.8 ± 6.9 | 38.2 ± 6.6 | 39.3 ± 6.7 | 0.361 | 0.036 |
Yo-Yo IR1 distance (m) | 1284 ± 210 | 1211 ± 400 | 1243 ± 326 | 0.594 | 0.013 |
Medicine ball over-head throw (m) | 9.81 ± 1.20 | 9.63 ± 1.96 | 9.71 ± 1.84 | 0.791 | 0.003 |
Jump shot (m/s) | 29.8 ± 4.3 | 26.4 ± 4.8 | 27.9 ± 4.8 | 0.083 | 0.125 |
Running shot (m/s) | 33.0 ± 2.1 | 30.1 ± 5.3 | 31.4 ± 4.4 | 0.101 | 0.113 |
Parameters | Nonstandardized Regression Coefficient β | |||||
---|---|---|---|---|---|---|
r2 | Change | Body Height (cm) | Body Mass (kg) | Body Fat (%) | ||
CMJ (cm) | Step 1 | 0.18 | 0.22 | −0.15 | ||
Step 2 | 0.22 | 0.04 | 0.16 | −0.10 | −0.28 | |
SJ (cm) | Step 1 | 0.05 | 0.14 | −0.02 | ||
Step 2 | 0.09 | 0.04 | 0.07 | 0.05 | −0.35 | |
Medicine ball overhead throw (m) | Step 1 | 0.29 | 0.07 | 0.02 | ||
Step 2 | 0.57 | 0.28 | 0.02 | 0.07 | −0.23 | |
Yo-Yo IR1 distance (m) | Step 1 | 0.29 | 16.9 | −8.64 | ||
Step 2 | 0.44 | 0.15 | 10.1 | −2.53 | −32.3 | |
15 m sprint (s) | Step 1 | 0.01 | 0.01 | 0.01 | ||
Step 2 | 0.39 | 0.38 | −0.01 | 0.01 | −0.07 | |
30 m sprint (s) | Step 1 | 0.02 | 0.01 | −0.01 | ||
Step 2 | 0.30 | 0.28 | −0.01 | 0.01 | −0.06 | |
Agility T-half (s) | Step 1 | 0.01 | 0 | −0.01 | ||
Step 2 | 0.54 | 0.53 | −0.02 | 0.01 | −0.09 | |
Jump shot (m/s) | Step 1 | 0.30 | 0.18 | −0.21 | ||
Step 2 | 0.61 | 0.31 | 0.03 | −0.08 | −0.69 | |
Running shot (m/s) | Step 1 | 0.52 | 0.03 | −0.17 | ||
Step 2 | 0.65 | 0.13 | 0.02 | −0.09 | −0.41 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hermassi, S.; Hayes, L.D.; Schwesig, R. Can Body Fat Percentage, Body Mass Index, and Specific Field Tests Explain Throwing Ball Velocity in Team Handball Players? Appl. Sci. 2021, 11, 3492. https://doi.org/10.3390/app11083492
Hermassi S, Hayes LD, Schwesig R. Can Body Fat Percentage, Body Mass Index, and Specific Field Tests Explain Throwing Ball Velocity in Team Handball Players? Applied Sciences. 2021; 11(8):3492. https://doi.org/10.3390/app11083492
Chicago/Turabian StyleHermassi, Souhail, Lawrence D. Hayes, and René Schwesig. 2021. "Can Body Fat Percentage, Body Mass Index, and Specific Field Tests Explain Throwing Ball Velocity in Team Handball Players?" Applied Sciences 11, no. 8: 3492. https://doi.org/10.3390/app11083492
APA StyleHermassi, S., Hayes, L. D., & Schwesig, R. (2021). Can Body Fat Percentage, Body Mass Index, and Specific Field Tests Explain Throwing Ball Velocity in Team Handball Players? Applied Sciences, 11(8), 3492. https://doi.org/10.3390/app11083492