Potato Industry By-Products as a Source of Protein with Beneficial Nutritional, Functional, Health-Promoting and Antimicrobial Properties
Abstract
:1. Structure and Fractions of Potato Proteins (Solanum tuberosum L.)
2. Nutritional Value of Potato Proteins
3. Functional Properties of Potato Proteins
4. Biological and Health-Promoting Properties of Potato Proteins
5. Effect of the Potato Protein Isolation Method on the Properties of the Obtained Preparations
6. Directions of Use of Potato Protein Preparations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bártová, V.; Bárta, J.; Vlačihova, A.; Šedo, O.; Zdráhal, Z.; Konečna, H.; Stupková, A.; Švajner, J. Proteomic characterization and antifungal activity of potato tuber proteins isolated from starch production waste under different temperature regimes. Appl. Microbiol. Biotechnol. 2018, 102, 10551–10560. [Google Scholar] [CrossRef]
- Waglay, A.; Karboune, S. A novel enzymatic approach based on the use of multi-enzymatic systems for the recovery of enriched protein extracts from potato pulp. Food Chem. 2017, 220, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Zwijjnenberg, H.J.; Kemperman, A.J.B.; Boerrigter, M.E.; Lotz, M.; Dijksterhuis, J.F.; Poulsen, P.E.; Koops, G.-H. Native protein recovery from potato fruit juice by ultrafiltration. Desalination 2002, 144, 331–334. [Google Scholar] [CrossRef]
- Løkra, S.; Strætkvern, K.O. Industrial proteins from potato juice. A Review. Food 2009, 3, 88–95. [Google Scholar]
- Pęksa, A.; Rytel, E.; Kita, A.; Lisińska, G.; Tajner-Czopek, A. The properties of potato protein. Food 2009, 3, 79–87. [Google Scholar]
- Moreno, F.J. Gastrointestinal digestion of food allergens: Effect on their allergenicity. Biomed. Pharmacother. 2007, 61, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Starch Europe. Available online: https://starch.eu/blog/2018/10/24/proteins-as-part-of-the-european-starch-industrys-value-chain (accessed on 1 March 2021).
- Tuśnio, A.; Pastuszewska, B.; Święch, E.; Taciak, M. Response of young pigs to feeding potato protein and potato-fibre nutritional, physiological and biochemical parameters. J. Anim. Feed Sci. 2011, 20, 361–378. [Google Scholar] [CrossRef] [Green Version]
- Kärenlampi, S.O.; White, P.J. Potato protein, lipids and minerals. In Advances in Potato Chemistry and Technology, 1st ed.; Singh, J., Kaur, L., Eds.; Academic Press: Burlington, VT, USA, 2009; pp. 99–125. [Google Scholar]
- Knorr, D. Potato protein as partial replacement of wheat flour in bread. J. Food Sci. 1977, 42, 1425–1427. [Google Scholar] [CrossRef]
- Kinsella, J.E. Functional properties of proteins in foods. CRC Crit. Rev. Food Sci. Nutr. 1976, 7, 219–280. [Google Scholar] [CrossRef]
- Holm, F.; Eriksen, S. Emulsifying properties of undenatured potato protein concentrate. J. Food Technol. 1980, 15, 71–83. [Google Scholar] [CrossRef]
- Knorr, D. Functional properties of potato protein concentrate. LWT Lebensm. Wiss. Technol. 1980, 13, 297–301. [Google Scholar]
- Løkra, S.; Schüller, R.B.; Egelandsdal, B.; Engebretsen, B.; Strætkvern, K.O. Comparison of composition, enzyme activity and selected functional properties of potato protein isolated from potato juice with two different bed resins. LWT Food Sci. Technol. 2009, 42, 906–913. [Google Scholar] [CrossRef]
- Strætkvern, K.O.; Løkra, S.; Oleander, M.A.; Lihme, A. Food-grade protein from industrial potato starch effluent recovered by an expanded bed adsorption process. J. Biotechnol. 2005, 118, S33. [Google Scholar]
- Ralla, K.; Sohling, U.; Suck, K.; Kasper, C.; Ruf, T. Separation of patatins and protease inhibitors from potato fruit juice with clay minerals as cation exchangers. J. Sep. Sci. 2012, 35, 1596–1602. [Google Scholar] [CrossRef]
- Liu, Y.-W.; Han, C.-H.; Lee, M.-H. Patatin, the tuber storage protein of potato (Solanum tuberosum L.), exhibits antioxidant activity in vitro. J. Agric. Food Chem. 2003, 51, 4389–4393. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, L.; Jiang, L.-Z.; Zhang, G.-F.; Li, G.-M.; Wu, N. Preparation, identification, structure, and in vitro anti-obesity effects of protease inhibitors isolated from potato fruit juice. Eur. Food Res. Technol. 2013, 237, 149–157. [Google Scholar] [CrossRef]
- Ralet, M.C.; Guéguen, J. Fractionation of potato proteins: Solubility, thermal coagulation and emulsifying properties. LWT Food Sci. Technol. 2000, 33, 380–387. [Google Scholar] [CrossRef]
- Van Koningsveld, G.A.; Gruppen, H.; de Jongh, H.H.J.; Wijngaards, G.; van Boekel, M.A.J.S.; Walstra, P.; Voragen, A.G.J. Effects of pH and heat treatments on the structure and solubility of potato proteins in different preparations. J. Agric. Food Chem. 2001, 49, 4889–4897. [Google Scholar] [CrossRef]
- Waglay, A.; Karboune, S. Predictive consumer acceptance models and quality attributes for cookies enriched with potato protein isolate and concentrate. Food Bioprocess Technol. 2020, 13, 1645–1660. [Google Scholar] [CrossRef]
- Racusen, D.; Foote, M. A major soluble glycoprotein of potato tubers. J. Food Biochem. 1980, 4, 43–52. [Google Scholar] [CrossRef]
- Park, W.D. Tuber proteins of potato—A new and surprising molecular system. Plant Boil. Mol. Rep. 1983, 1, 61–66. [Google Scholar] [CrossRef]
- Seibles, T.S. Studies on potato proteins. Am. Potato J. 1979, 56, 415–425. [Google Scholar] [CrossRef]
- Lindner, P.; Kaplan, B.; Weiler, E.; Ben-Gera, I. Fractionation of Potato Juice Proteins into Acid—Soluble and Acid—Coagulable Fractions. Food Chem. 1981, 6, 323–335. [Google Scholar] [CrossRef]
- Pots, M. Physico-Chemical Properties and Thermal Aggregation of Patatin, the Major Potato Tuber Protein. Ph.D. Thesis, Wageningen Agricultural University, Wageningen, The Netherlands, 1999. [Google Scholar]
- Van Koningsveld, G.A.; Walstra, P.; Voragen, A.G.J.; Kuijpers, I.J.; van Boekel, M.A.J.S.; Gruppen, H. Effects of protein composition and enzymatic activity on formation and properties of potato protein stabilized emulsions. J. Agric. Food Chem. 2006, 54, 6419–6427. [Google Scholar] [CrossRef]
- Chrzanowska, J.; Leszczyński, W. Inhibitory enzymów proteolitycznych zawarte w bulwach ziemniaka w świetle literatury. Postępy Nauk Rol. 1977, 5, 39–44. (In Polish) [Google Scholar]
- Leszczyński, W. Ziemniak jako produkt spożywczy. Postępy Nauk Rol. 1994, 1, 15–29. (In Polish) [Google Scholar]
- Leszczyński, W. Jakość ziemniaka konsumpcyjnego. Żywność Nauka Technol. Jakość 2000, 4, 5–26. (In Polish) [Google Scholar]
- Pouvreau, L.; Gruppen, H.; Piersma, S.R.; van den Broek, L.A.M.; van Koningsveld, G.A.; Voragen, A.G.J. Relative abundance and inhibitory distribution of protease inhibitors in potato juice from cv. Elkana. J. Agric. Food Chem. 2001, 49, 2864–2874. [Google Scholar] [CrossRef]
- Bártova, V.; Bárta, J. Chemical composition and nutritional value of protein concentrates isolated from potato (Solanum tuberosum L.) fruit juice by precipitation with ethanol or ferric chloride. J. Agric. Food Chem. 2009, 57, 9028–9034. [Google Scholar] [CrossRef]
- Waglay, A.; Karboune, S.; Alli, I. Potato protein isolates: Recovery and characterization of their properties. Food Chem. 2014, 142, 373–382. [Google Scholar] [CrossRef]
- Ralet, M.-C.; Guéguen, J. Foaming properties of potato raw proteins and isolated fractions. LWT Food Sci. Technol. 2001, 34, 266–269. [Google Scholar] [CrossRef]
- Liedl, B.E.; Kosier, T.; Desborough, S.L. HPLC isolation and nutritional value of a major tuber protein. Am. Potato J. 1987, 64, 545–557. [Google Scholar] [CrossRef]
- Kudo, K.; Onodera, S.; Takeda, Y.; Benkeblia, N.; Shiomi, N. Antioxidative activities of some peptides isolated from hydrolyzed potato extract. J. Funct. Foods 2009, 1, 170–176. [Google Scholar] [CrossRef]
- Løkra, S.; Helland, M.H.; Claussen, I.C.; Strætkvern, K.O.; Egelandsdal, B. Chemical characterization and functional properties of a potato protein concentrate prepared by large—Scale expanded bed adsorption chromatography. Food Sci. Technol. 2008, 41, 1089–1099. [Google Scholar] [CrossRef]
- Creusot, N.; Wierenga, P.A.; Laus, M.C.; Giuseppin, M.L.F.; Gruppen, H. Rheological properties of patatin gels compared with β-lactoglobulin, ovalbumin, and glycinin. J. Sci. Food Agric. 2011, 91, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Pęksa, A.; Miedzianka, J.; Nemś, A. Amino acid composition of flesh-coloured potatoes as affected by storage conditions. Food Chem. 2018, 266, 335–342. [Google Scholar] [CrossRef]
- Pęksa, A.; Miedzianka, J.; Nemś, A.; Rytel, E. The free-amino-acid content in six potatoes cultivars through storage. Molecules 2021, 26, 1322. [Google Scholar] [CrossRef]
- Desborough, S.L. Potato proteins. In Potato Physiology, 1st ed.; Li, P.H., Ed.; Academic Press: Cambridge, MA, USA, 1985; pp. 330–351. [Google Scholar]
- Kapoor, A.C.; Desborough, S.L.; Li, P.H. Potato tuber proteins and their nutritional quality. Potato Res. 1975, 18, 469–478. [Google Scholar] [CrossRef]
- Friedman, M. Nutritional value of proteins from different food sources. A review. J. Agric. Food Chem. 1996, 44, 6–29. [Google Scholar] [CrossRef]
- Knorr, D. Effect of recovery methods on yield, quality and functional properties of potato protein concentrates. J. Food Sci. 1980, 45, 1183–1186. [Google Scholar] [CrossRef]
- Pęksa, A.; Kita, A.; Kułakowska, K.; Aniołowska, M.; Hamouz, K.; Nemś, A. The quality of protein of coloured fleshed potatoes. Food Chem. 2013, 141, 2960–2966. [Google Scholar] [CrossRef] [PubMed]
- Pots, A.M.; de Jongh, H.H.J.; Gruppen, H.; Hamer, R.J.; Voragen, A.G.J. Heat-induced conformational changes of patatin, the major potato tuber protein. Eur. J. Biochem. 1998, 252, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Desborough, S.L.; Liener, I.E.; Lulai, E.C. The nutritional quality of potato protein from intraspecific hybrids. Plant Food Hum. Nutr. 1981, 31, 11–20. [Google Scholar] [CrossRef]
- Knorr, D. Protein quality of the potato and potato protein concentrates. LWT Food Sci. Technol. 1978, 11, 109–115. [Google Scholar]
- Van den Broek, L.A.M.; Pouvreau, L.; Lommerse, G.; Shipper, B.; van Koningsveld, G.A.; Gruppen, H. Structural characterization of potato protease inhibitor I (cv. Bintje) after expression in Pichia pastoris. J. Agric. Food Chem. 2004, 52, 4928–4934. [Google Scholar] [CrossRef]
- Pouvreau, L.; Gruppen, H.; van Koningsveld, G.A.; van den Broek, L.A.M.; Voragen, A.G.J. The most abundant protease inhibitors in potato tubers (cv. Elkana) is a serine protease inhibitor from the Kunitz family. J. Agric. Food Chem. 2003, 51, 5001–5005. [Google Scholar] [CrossRef]
- Singh, J.; Kaur, L. Advances in Potato Chemistry and Technology, 2nd ed.; Academic Press: Amsterdam, The Netherlands, 2016; p. 705. [Google Scholar]
- Cheng, Y.; Xiong, Y.L.; Chen, J. Antioxidant and emulsifying properties of potato protein hydrolysate in soybean oil-in-water emulsions. Food Chem. 2010, 120, 101–108. [Google Scholar] [CrossRef]
- Seo, S.; Karboune, S.; Archelas, A. Production and characterisation of potato patatin–galactose, galactooligosaccharides, and galactan conjugates of great potential as functional ingredients. Food Chem. 2014, 158, 480–489. [Google Scholar] [CrossRef]
- Gaillard, T. The enzymatic deacylation of phospholipids and galactolipids in plants. Biochem. J. 1971, 121, 379–390. [Google Scholar]
- Racusen, D.; Weller, D.L. Molecular weight of patatin a major potato tuber protein. J. Food Biochem. 1984, 8, 103–107. [Google Scholar] [CrossRef]
- Andrews, D.L.; Beames, B.; Summers, M.D.; Park, W.D. Characterization of the lipid acyl hydrolase activity of the major potato (Solanum tuberosum) tuber protein, patatin, by cloning and abundant expression in a baculovirus vector. Biochem. J. 1988, 252, 199–206. [Google Scholar] [CrossRef] [Green Version]
- Philanto, A.; Akkanen, S.; Korhonen, H.J. ACE-inhibitory and antioxidant properties of potato (Solanum tuberosum L.). Food Chem. 2008, 109, 104–112. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Park, S.-C.; Kim, M.-H.; Lim, H.-T.; Park, Y.; Hahm, K.-S. Antimicrobial activity studies on a trypsin-chymotrypsin protease inhibitor obtained from potato. Biochem. Biophys. Res. Commun. 2005, 330, 921–927. [Google Scholar] [CrossRef]
- Kim, J.I.; Baek, D.; Park, H.C.; Chun, H.J.; Oh, D.-H.; Lee, M.K.; Cha, J.-Y.; Kim, W.-Y.; Kim, M.C.; Chung, W.S.; et al. Overexpression of Arabidopsis YUCCA6 in potato results in high-auxin developmental phenotypes and enhanced resistance to water deficitet. Mol. Plant 2013, 6, 337–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanco-Aparicio, C.; Molina, M.A.; Fernández-Salas, E.; Frazier, M.L.; Mas, J.M.; Querol, E.; Avilés, F.X.; de Llorens, R. Potato Carboxypeptidase Inhibitor, a T-knot Protein, Is an Epidermal Growth Factor Antagonist That Inhibits Tumor Cell Growthet. J. Biol. Chem. 1998, 273, 12370–12377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knorr, D. Effects of recovery methods on the functionality of protein concentrates from food processing wastes. J. Food Process Eng. 1982, 5, 215–230. [Google Scholar] [CrossRef]
- Strolle, E.O. Recovering potato proteins coagulated by steam injection heating. J. Agric. Food Chem. 1973, 21, 974–977. [Google Scholar] [CrossRef]
- Bártova, V.; Bárta, J. Effect of heat treatment on re-solubility of potato proteins isolated from industrial potato fruit juice. Res. Agric. Eng. 2008, 54, 170–175. [Google Scholar] [CrossRef] [Green Version]
- Wojnowska, I.; Poznański, S.; Bednarski, W. Processing of potato protein concentrates and their properties. J. Food Sci. 1981, 47, 167–172. [Google Scholar] [CrossRef]
- Van Koningsveld, G.; Walstra, P.; Gruppen, H.; Wijngaards, G.; van Boekel, M.A.J.S.; Voragen, A.G.J. Formation and stability of foam made with various potato protein preparations. J. Agric. Food Chem. 2002, 50, 7651–7659. [Google Scholar] [CrossRef]
- Van Koningsveld, G.; Gruppen, H.; de Jongh, H.H.J.; Wijngaards, G.; van Boekel, M.A.J.S.; Walstra, P.; Voragen, A.G.J. Effects of ethanol on structure and solubility of potato proteins and the effects of its presence during the preparation of a protein isolate. J. Agric. Food Chem. 2002, 50, 2947–2956. [Google Scholar] [CrossRef]
- Zhang, D.; Mu, T.; Sun, H.; Chen, J.; Zhang, M. Comparative study of potato protein concentrates extracted using ammonium sulfate and isoelectric precipitatin. Int. J. Food Prop. 2017, 20, 2113–2127. [Google Scholar] [CrossRef] [Green Version]
- Vikelouda, M.; Kiosseoglou, V. The use of carboxymethylcellulose to recover potato proteins and control their functional properties. Food Hydrocoll. 2004, 18, 21–27. [Google Scholar] [CrossRef]
- Lindner, P.; Keren, R.; Ben-Gera, I. Precipitation of proteins from potato juice with bentonite. J. Sci. Food Agric. 1981, 32, 1177–1182. [Google Scholar] [CrossRef]
- Eriksson, G.; Sivik, B. Ultrafiltration of potato process water—Influence of processing variables. Potato Res. 1976, 19, 279–287. [Google Scholar] [CrossRef]
- Rüffer, H.; Kremser, U.; Seekamp, M. Experiences with a reverse osmosis pilot plant for the concentration of potato fruit water in the potato starch industry. Starch 1997, 49, 354–359. [Google Scholar] [CrossRef]
- Strætkvern, K.O.; Schwarz, J.G. Recovery of Native Potato Protein Comparing Expanded Bed Adsorption and Ultrafiltration. Food Bioprocess Technol. 2011, 5, 1939–1949. [Google Scholar] [CrossRef] [Green Version]
- Giuseppin, M.L.F.; Laus, M.C. Glycoalkaloid Removal. WO 2008/056977, 15 May 2008. [Google Scholar]
- Schoenbeck, I.; Grafb, A.M.; Leutholdc, M.; Pastorc, A.; Beutel, S.; Scheper, T. Purification of high value proteins from particle containing potato fruit juice via direct capture membrane adsorption chromatography. J. Biotechnol. 2013, 168, 693–700. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Kang, T.S.; Kim, C.-K.; Han, J.-S.; Kim, S.; Smith, R.H.; Pike, L.M.; Hirschi, K.D. Genetic manipulation for enhancing calcium content in potato tuber. J. Agric. Food Chem. 2005, 13, 5598–5603. [Google Scholar] [CrossRef]
- Kim, M.-H.; Park, S.-C.; Kim, J.-Y.; Lee, S.Y.; Lim, H.-T.; Cheong, H.; Hahm, K.-S.; Park, Y. Purification and characterization of a heat-stable serine protease inhibitor from the tubers of new potato variety ‘Golden Valley’. Biochem. Phys. Res. 2006, 346, 681–686. [Google Scholar] [CrossRef] [PubMed]
- Waglay, A.; Karboune, S.; Khodadadi, M. Investigation and optimization of a novel enzymatic approach for the isolation of proteins from potato pulp. LWT Food Sci. Technol. 2016, 65, 197–205. [Google Scholar] [CrossRef]
- Friedman, M. Chemistry, biochemistry, and dietary role of potato polyphenols. J. Agric. Food Chem. 1997, 45, 1523–1540. [Google Scholar] [CrossRef]
- Pęksa, A.; Miedzianka, J.; Szumny, A.; Łyczko, J.; Nemś, A.; Kita, A. Colour and flavour of potato protein preparations, depending on the antioxidants and coagulants used. Int. J. Food Sci. Technol. 2020, 55, 2323–2334. [Google Scholar] [CrossRef]
- Wang, L.L.; Xiong, Y.L. Inhibition of lipid oxidation in cooked beef patties by hydrolyzed potato protein is related to its reducing and radical scavenging ability. J. Agric. Food Chem. 2005, 53, 9186–9192. [Google Scholar] [CrossRef] [PubMed]
- Nieto, G.; Castillo, M.; Xiong, Y.L.; Álvarez, D.; Payne, F.A.; Garrido, M.D. Antioxidant and emulsifying properties of alcalase-hydrolyzed potato proteins in meat emulsions with different fat concentrations. Meat Sci. 2009, 83, 24–30. [Google Scholar] [CrossRef]
- Gambuti, A.; Rinaldi, A.; Moio, L. Use of patatin, a protein extracted from potato, as alternative to animal proteins in fining of red wine. Eur. Food Res. Technol. 2012, 235, 753–765. [Google Scholar] [CrossRef]
- Gambuti, A.; Rinaldi, A.; Romano, R.; Manzo, N.; Moio, L. Performance of a protein extracted from potatoes for fining of white musts. Food Chem. 2016, 190, 237–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pęksa, A.; Apeland, J.; Grønnerød, S.; Magnus, E.-M. Comparison of the consistencies of cooked mashed potato prepared from seven varieties of potatoes. Food Chem. 2002, 76, 311–317. [Google Scholar] [CrossRef]
- Pęksa, A.; Rytel, E.; Kawa-Rygielska, J.; Gryszkin, A.; Zięba, T. Effect of protein preparations addition on properties of potato snacks obtained from extruded semi-products. Pol. J. Food Nutr. Sci. 2007, 57, 429–435. [Google Scholar]
- Pęksa, A.; Miedzianka, J.; Kita, A.; Tajner-Czopek, A.; Rytel, E. The quality of fried snacks fortified with fiber and protein supplements. Potravinárstvo 2010, 4, 59–64. [Google Scholar] [CrossRef]
- Rytel, E.; Pęksa, A.; Tajner-Czopek, A.; Kita, A.; Zięba, T.; Gryszkin, A. Effect of addition of protein preparations on the quality of extruded maize extrudates. J. Microbiol. Biotechnol. Food Sci. 2013, 2, 1776–1790. [Google Scholar]
- Wang, C.; Chang, T.; Zhang, D.; Ma, C.; Chen, S.; Li, H. Preparation and characterization of potato protein-based microcapsules with an emphasis on the mechanism of interaction among the main components. J. Sci. Food Agric. 2020, 100, 2866–2872. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Shinde, P.L.; Yang, Y.X.; Choi, J.Y.; Yoon, S.Y.; Hahn, T.-W.; Lim, H.T.; Park, Y.K.; Hahme, K.S.; Joo, J.W.; et al. Use of refined potato (Solanum tuberosum L. cv. Gogu valley) protein as an alternative to antibiotics in weanling pigs. Livest. Sci. 2009, 124, 26–32. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pęksa, A.; Miedzianka, J. Potato Industry By-Products as a Source of Protein with Beneficial Nutritional, Functional, Health-Promoting and Antimicrobial Properties. Appl. Sci. 2021, 11, 3497. https://doi.org/10.3390/app11083497
Pęksa A, Miedzianka J. Potato Industry By-Products as a Source of Protein with Beneficial Nutritional, Functional, Health-Promoting and Antimicrobial Properties. Applied Sciences. 2021; 11(8):3497. https://doi.org/10.3390/app11083497
Chicago/Turabian StylePęksa, Anna, and Joanna Miedzianka. 2021. "Potato Industry By-Products as a Source of Protein with Beneficial Nutritional, Functional, Health-Promoting and Antimicrobial Properties" Applied Sciences 11, no. 8: 3497. https://doi.org/10.3390/app11083497
APA StylePęksa, A., & Miedzianka, J. (2021). Potato Industry By-Products as a Source of Protein with Beneficial Nutritional, Functional, Health-Promoting and Antimicrobial Properties. Applied Sciences, 11(8), 3497. https://doi.org/10.3390/app11083497