Preliminary Failure Frequency Analysis of Receiving Bins in Retention Bunkers Operated in Underground Copper Ore Mines
Abstract
:1. Introduction
Problem Definition
2. Materials and Methods
3. Results and Discussion
3.1. Qualitative Analysis
3.2. Quantitative Analysis
3.2.1. Preliminary Analysis
3.2.2. Detailed Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zintegrowany Raport KGHM Polska Miedź S.A. i Grupy Kapitałowej KGHM Polska Miedź S.A. za 2019 rok. 2020. Available online: file:///C:/Users/MDPI/AppData/Local/Temp/kghm_raport_zintegrowany_2019.pdf (accessed on 17 April 2021).
- Fedorko, G.; Molnar, V.; Marasova, D.; Grincova, A.; Dovica, M.; Zivcak, J.; Toth, T.; Husakova, N. Failure analysis of belt conveyor damage caused by the falling material. Part I: Experimental measurements and regression models. Eng. Fail. Anal. 2014, 36, 30–38. [Google Scholar] [CrossRef]
- Andrejiova, M.; Grincova, A.; Marasova, D. Monitoring dynamic loading of conveyer belts by measuring local peak impact forces. Meas. J. Int. Meas. Confed. 2020, 158, 107690. [Google Scholar] [CrossRef]
- Stacey, T.R.; Swart, A.H. Investigation into Drawpoints, Tips, Orepasses and Chutes; 1997; Available online: https://www.mhsc.org.za/sites/default/files/public/research_documents/OTH%20303%20Report%20Vol%201.pdf (accessed on 17 April 2021).
- Baral, S.C.; Daganzo, C.; Hood, M. Optimum bunker size and location in underground coal mine conveyor systems. Int. J. Min. Geol. Eng. 1987, 5, 391–404. [Google Scholar] [CrossRef]
- Hastie, D. Belt Conveyer Transfers: Quantifying and Modelling Mechanisms of Particle Flow; University of Wollongong: Wollongong, Australia, 2010. [Google Scholar]
- Koivisto, M. Ore Pass Design and Placement; Delft University of Technology: Delft, The Netherlands, 2017. [Google Scholar]
- Esmaieli, K.; Hadjigeorgiou, J. Selecting ore pass-finger raise configurations in underground mines. Rock Mech. Rock Eng. 2011, 44, 291–303. [Google Scholar] [CrossRef]
- Bunker, K.; Campbell, A.; O’Toole, D.; Penney, A. Guidelines for orepass design in a sublevel cave mine. In Proceedings of the International Seminar on Design Methods in Underground Mining; Potvin, Y., Ed.; Australian Centre for Geomechanics: Perth, Australia, 2015. [Google Scholar]
- Wiewiórka, D.; Sepiał, J. Analysis of Storage Bunker Stability in the Region of the Shaft “Chrobry” ZGH Bolesław; Wydawnictwa AGH: Kraków, Poland, 2010. [Google Scholar]
- Bock, S.; Rotkegel, M.; Szymała, J. Underground coal storage bunkers. Typical damages and methods of assessment of technical condition. Przegląd Górniczy 2016, 27, 39–51. [Google Scholar]
- Rojas, E.; Vergara, V.; Soto, R. Case study: Discrete element modeling of wear in mining hoppers. Wear 2019, 430–431, 120–125. [Google Scholar] [CrossRef]
- Forsström, D.; Jonsén, P. Calibration and validation of a large scale abrasive wear model by coupling DEM-FEM: Local failure prediction from abrasive wear of tipper bodies during unloading of granular material. Eng. Fail. Anal. 2016, 66, 274–283. [Google Scholar] [CrossRef]
- Beus, M.J.; Iverson, S.R.; Stewart, B.M. Design Analysis Of Underground Mine Ore Passes: Current Research Approaches. In Proceedings of the The 100th CIM Conference, Montreal, QC, Canada, 3–7 May 1998. [Google Scholar]
- Nazeri, H.; Mustoe, G.G.W.; Rozgonyi, T.G.; Wienecke, T.J. Implementation of a discrete element methodology for the modeling of gravity flow of ore in ore passes. In Proceedings of the North American Rock Mechanics symposium; University of Toronto: Toronto, ON, Canada, 2002. [Google Scholar]
- Bardziński, P.J.; Doroszuk, B.; Kawalec, W.; Król, R. Investigation of Grain Size Distribution of Conveyed Copper Ore for Modelling Ore Flow through a Bunker. In Proceedings of the IOP Conference Series: Earth and Environmental Science; IOP: London, UK, 2020. [Google Scholar]
- Ilic, D.; Roberts, A.; Wheeler, C.; Katterfeld, A. Modelling bulk solid flow interactions in transfer chutes: Shearing flow. Powder Technol. 2019, 354, 30–44. [Google Scholar] [CrossRef]
- Ilic, D.; Roberts, A.; Wheeler, C. Modelling bulk solid interactions in transfer chutes: Accelerated flow. Chem. Eng. Sci. 2019, 209, 115197. [Google Scholar] [CrossRef]
- Walker, P.; Kawalec, W.; Król, R. Application of the discrete element method (DEM) for simulation of the ore flow inside the shaft ore bunker in the underground copper ore mine. In Proceedings of the Advances in Intelligent Systems and Computing; Springer: Berlin/Heidelberg, Germany, 2019; Volume 835, pp. 633–644. [Google Scholar]
- Bardzinski, P.J.; Walker, P.; Krol, R.; Kawalec, W. Simulation of random tagged ore flow through the bunker in a belt conveying system. Int. J. Simul. Model. 2018, 17, 597–608. [Google Scholar] [CrossRef]
- Ilic, D.; Hicks, T.J. TOWARDS THE DEVELOPMENT OF DESIGN CRITERIA FOR REDUCED WEAR IN IRON ORE TRANSFERS. In Proceedings of the ABM Proceedings; Editora Blucher: São Paulo, Spain, 2016. [Google Scholar]
- Varenberg, M. Towards a unified classification of wear. Friction 2013, 1, 333–340. [Google Scholar] [CrossRef] [Green Version]
- Bardzinski, P.J.; Król, R. Quantitive ore assessment for the purpose of simulation of the ore flow distribution in the mine’s transport system. Transp. Przem. iMaszyny Rob. 2018, 1, 2–5. [Google Scholar] [CrossRef] [Green Version]
- Dobrzański, A.L.; Dobrzańska-Danilkiewicz, D.A. Obróbka Powierzchni Materiałów Inżynierskich; International OCSCO World Press: Gliwice, Poland, 2011; ISBN 83-89728-93-1. [Google Scholar]
- Chudzikiewicz, A.; Góra, I. Dynamic properties of railway wheelset with innovative self-lubricating coatings–modeling and concept of simulation analysis. Pr. Nauk. Politech. Warsz. Transp. 2017, 118, 75–84. [Google Scholar]
- Głuszko, M. Problems of anticorrosion protection of steel structures and electro energetic equipment exploited in atmospheric conditions. Prace Inst. Elektrotechniki 2008, 235, 1–173. [Google Scholar]
Metrics | Support | Confidence | Lift | |
---|---|---|---|---|
Rule | ||||
If A then B | 24.49% | 65.45% | 1.58 | |
If A then B and C | 31.03% | 52.94% | 1.49 |
Mining Unit | Sum of Repairs |
---|---|
I | 19 |
II | 76 |
III | 35 |
IV | 15 |
V | 15 |
VI | 9 |
Bunker No. | Replacement of Feeder trough Linings | Replacement of Vertical Sealings | Replacement of Hopper Linings | Replacement of Front Linings in the Hopper | Service Works on the Crown of the Hopper | Replacement of Running Rails in the Feeder | Replacement of Feeder trough | Replacement of Back Linings in the Hopper | Total | Number of Bins | Failure Indicator |
---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | H | ||||
1 | 2 | 4 | 3 | 2 | 0 | 0 | 0 | 0 | 11 | 2 | 5.50 |
2 | 7 | 8 | 7 | 0 | 5 | 0 | 1 | 0 | 28 | 2 | 14.00 |
3 | 3 | 2 | 5 | 3 | 2 | 2 | 0 | 0 | 17 | 1 | 17.00 |
4 | 3 | 3 | 2 | 0 | 0 | 0 | 1 | 0 | 9 | 3 | 3.00 |
5 | 0 | 1 | 4 | 0 | 0 | 0 | 1 | 0 | 6 | 1 | 6.00 |
6 | 4 | 9 | 6 | 1 | 1 | 0 | 1 | 0 | 22 | 8 | 2.75 |
7 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 9 | 8 | 1.13 |
8 | 6 | 7 | 8 | 0 | 0 | 0 | 0 | 0 | 21 | 2 | 10.50 |
9 | 7 | 8 | 4 | 0 | 3 | 0 | 0 | 0 | 22 | 2 | 11.00 |
10 | 8 | 7 | 6 | 1 | 0 | 1 | 0 | 0 | 23 | 2 | 11.50 |
11 | 3 | 0 | 0 | 1 | 0 | 0 | 0 | 3 | 7 | 2 | 3.50 |
12 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 2 | 2.00 |
13 | 5 | 5 | 1 | 5 | 0 | 0 | 1 | 0 | 17 | 3 | 5.67 |
14 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 1.00 |
15 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 6 | 1 | 6.00 |
Bunker No. | Replacement of Feeder trough Linings | Replacement of Vertical Sealings | Replacement of Hopper Linings | Replacement of Front Linings in the Hopper | Total Mass of Transported Ore, Thousands Mg | Mass Indicator A, Thousands Mg | Mass Indicator B, Thousands Mg | Mass Indicator C, Thousands Mg | Mass Indicator D, Thousands Mg |
---|---|---|---|---|---|---|---|---|---|
A | B | C | D | ||||||
1 | 2 | 4 | 3 | 2 | - | - | - | - | - |
2 | 7 | 8 | 7 | 0 | 9436 | 1348 | 1179 | 1348 | |
3 | 3 | 2 | 5 | 3 | 9436 | 3145 | 4718 | 1887 | 3145 |
4 | 3 | 3 | 2 | 0 | - | - | - | - | |
5 | 0 | 1 | 4 | 0 | 6290 | 6290 | 1573 | ||
6 | 4 | 9 | 6 | 1 | 12,653 | 3163 | 1406 | 2109 | 12,653 |
7 | 3 | 3 | 3 | 0 | 10,720 | 3573 | 3573 | 3573 | |
8 | 6 | 7 | 8 | 0 | 10,729 | 1788 | 1533 | 1341 | |
9 | 7 | 8 | 4 | 0 | 16,396 | 2342 | 2050 | 4099 | |
10 | 8 | 7 | 6 | 1 | 5723 | 715 | 818 | 954 | 5723 |
11 | 3 | 0 | 0 | 1 | - | - | |||
12 | 2 | 2 | 0 | 0 | - | - | - | ||
13 | 5 | 5 | 1 | 5 | 4946 | 989 | 989 | 4946 | 989 |
14 | 0 | 0 | 2 | 0 | 4483 | - | 2242 | ||
15 | 2 | 2 | 2 | 0 | 2421 | 1211 | 1211 | 1211 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szczerbakowicz, M.; Suchorab, N.; Król, R. Preliminary Failure Frequency Analysis of Receiving Bins in Retention Bunkers Operated in Underground Copper Ore Mines. Appl. Sci. 2021, 11, 3628. https://doi.org/10.3390/app11083628
Szczerbakowicz M, Suchorab N, Król R. Preliminary Failure Frequency Analysis of Receiving Bins in Retention Bunkers Operated in Underground Copper Ore Mines. Applied Sciences. 2021; 11(8):3628. https://doi.org/10.3390/app11083628
Chicago/Turabian StyleSzczerbakowicz, Mateusz, Natalia Suchorab, and Robert Król. 2021. "Preliminary Failure Frequency Analysis of Receiving Bins in Retention Bunkers Operated in Underground Copper Ore Mines" Applied Sciences 11, no. 8: 3628. https://doi.org/10.3390/app11083628
APA StyleSzczerbakowicz, M., Suchorab, N., & Król, R. (2021). Preliminary Failure Frequency Analysis of Receiving Bins in Retention Bunkers Operated in Underground Copper Ore Mines. Applied Sciences, 11(8), 3628. https://doi.org/10.3390/app11083628