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Abstract: Japanese medical device adverse events terminology, published by the Japan Federation
of Medical Devices Associations (JFMDA terminology), contains entries for 89 terminology items,
with each of the terminology entries created independently. It is necessary to establish and verify
the consistency of these terminology entries and map them efficiently and accurately. Therefore,
developing an automatic synonym detection tool is an important concern. Such tools for edit
distances and distributed representations have achieved good performance in previous studies. The
purpose of this study was to identify synonyms in JFMDA terminology and evaluate the accuracy
using these algorithms. A total of 125 definition sentence pairs were created from the terminology as
baselines. Edit distances (Levenshtein and Jaro–Winkler distance) and distributed representations
(Word2vec, fastText, and Doc2vec) were employed for calculating similarities. Receiver operating
characteristic analysis was carried out to evaluate the accuracy of synonym detection. A comparison
of the accuracies of the algorithms showed that the Jaro–Winkler distance had the highest sensitivity,
Doc2vec with DM had the highest specificity, and the Levenshtein distance had the highest value
in area under the curve. Edit distances and Doc2vec makes it possible to obtain high accuracy in
predicting synonyms in JFMDA terminology.

Keywords: terminology; synonym detection; medical device; edit distance; distributed representation;
machine learning

1. Introduction

In Japan, medical facilities and medical device manufacturers are required to submit
medical device adverse event reports (MDAERs) to the Ministry of Health, Labor, and
Welfare when medical devices are involved in adverse events such as catheter breakage
occurring during a medical procedure. In MDAERs, a detailed description of the adverse
events and the problems they give rise to for patients due to the medical devices are
obtained through free writing (there are no guidelines for the written format); and it is
difficult to categorize the cases involved for a statistical analysis of the adverse events.

Therefore, to standardize the terms in MDEARs, medical device adverse event termi-
nology 1st edition (terminology of the Japan Federation of Medical Devices Associations
(JFMDA terminology)) was published in March 2015 [1]. This terminology consists of
89 medical device terminology items developed by 13 industry groups in the industry
that are members of the JFMDA. Each terminology item most commonly has three parts:
medical device problems, patient problems, and components involved. In addition, each
term of the “medical device problem” and “patient problem” categories have definition
sentences, synonyms, and the term code of the Center for Devices and Radiological Health
(CDRH) terminology (FDA code) [2], as shown in Figure 1.
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The 13 industry groups independently created each of the terminology entries using a
bottom-up approach by gathering the terms used regularly in medical facilities to facilitate
communication between medical staff and medical device manufacturers. We are working
on the mapping of these terminologies to ensure that they are consistent. In a previous
study, we integrated the 89 terminology items using the resource description framework
(RDF), based on the spelling of the terms [3]. One problem associated with mapping
terminologies is that the cases where terms are considered to represent the same concept
are included with different spellings (synonyms). There are about 3500 terms related to
medical device problems, and manually conducting the verification/qualification requires
great effort.

We focused on the definition sentences to detect synonym pairs with different spelling.
There are two main approaches to detect similar sentences: edit distance and distributed
representation. The edit distance is an algorithm for quantifying how two dissimilar strings
are related by counting the minimum number of operations required to transform one
string into the other. This algorithm was used to map terms between the International
Classification of Diseases (ICD) code and clinical text [4] and to detect misspellings in the
text [5]. The advantages of this algorithm are misspelling detection and normalization of
clinical terms. Hence, there is a possibility that morphological and typographical variations
in the definition sentences in JFMDA terminology can be identified effectively.

In distributed representation, named Word2vec [6] and Doc2vec [7], compute vectors
of words and documents using simple neural networks with context information. The
similarities between words and documents are calculated via the cosine similarity. The
merit of distributed representation is embedding the concept of words as vectors, and this
algorithm can detect synonyms with different spellings. There are some previous medical
studies for synonym identification [8–10]. Some studies used Doc2vec, which is a method
for conversion from documents to vectors in order for them to be applied in the detection
of similar text [11–13] and allows mapping among the standard codes [14]. We believe
that distributed representations can be applied to identify synonyms efficiently, and it is
necessary to evaluate the applicability to our task. The purpose of our study is to detect
synonyms automatically for JFMDA terminology items and compare the accuracy of the
detection among distributed representations and edit distances.

2. Materials and Methods
2.1. The Flow of this Study

The flow of our study was as follows: definition pair creation, automatic synonym
detection using distributed representation and edit distance, accuracy evaluation using
receiver operating characteristic (ROC) analysis (Figure 2).
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2.2. Dataset Creation

Definition sentences of the terms in the medical device problem descriptions were
the focus of this study. First, we extracted the terms and the sentences with their defini-
tion. We identified approximately 600,000 definition sentence pairs, and 125 pairs were
extracted from these definition sentence pairs. To provide a baseline, for the 125 pairs,
50 similar definition pairs and 75 other definitions were identified by three experts in
medical device safety.

2.3. Similarity Detection

In this study, we employed the Levenshtein distance [15] and the Jaro–Winkler dis-
tance [16] as the edit distance, and Word2vec [6], fastText [17,18], and Doc2vec [7] to
generate distributed representations.

2.3.1. Edit Distance

The Levenshtein distance counts the frequency of editing operations (insert, substitute,
and delete) that converts one string to the other string. The Jaro–Winkler distance accounts
for the lengths of two strings and partially accounts for the type of typographical errors
humans make when typing texts. The Jaro–Winkler distance (dw) is calculated as:

dw = sim(s1, s2) + lp{1− sim(s1, s2)} (1)

where sim is the Jaro Similarity for strings, si, l is the length of a maximum 4 characters
long common prefix, and p is a constant scaling factor for how much the score is adjusted
upwards for having common prefixes. The sim is calculated as:

sim(s1, s2) =

{
0 i f m = 0

1
3

(
m
|s1|

+ m
|s2|

+ m−t
m

)
otherwise

(2)

where |si| is the length of si, m is the number of matching characters, and t is half of the
number of transpositions.

2.3.2. Represented Distribution

Word2vec is used to group vectors of similar words together into a vector space
to determine their similarities using a neural network. There are two architectures to
produce a distributed representation of words: CBOW and skip-gram. Figure 3 shows the
architectures of CBOW and skip-gram.
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The CBOW is a method for predicting the current word from surrounding context
words. The objective function of the CBOW model is:

J =
1
V

V

∑
i=1

logp(wi|wi−n, · · · , wi−1, wi+1, · · · , wi+n) (3)

where V is the size of the vocabulary item, n is the window size, and w(t) denotes words.
Skip-gram is a method for learning the sequence of neighboring words based on a

word and its pattern of appearances. The objective function of the skip-gram model is:

J =
1
V

V

∑
i=1

∑
−n�j�n,j 6=0

logp
(
wi+j

∣∣wj
)

(4)

With the fastText algorithm, it is possible to take character level information into
account in order to capture the meaning for suffixes/prefixes expanding Word2vec [18].
This algorithm assesses each word as a bag of character n-grams (Figure 4). There are
several advantages of fastText: high training speed, applicability to large-scale corpora,
and the efficiency for low-frequency words and words outside the vocabulary [19].
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The Doc2vec creates a numeric representation of a document of a certain length in
order for it to be able to situate similar documents close to one another, much like Word2vec
does. This method extends Word2vec by inputting additional parameters that are treated
as an additional context vector. The learning algorithms are a distributed memory (DM)
and a distributed bag of words (DBOW). Each paragraph or post message is mapped to a
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unique vector using the word as the target in a DM and context words as the target in the
DBOW [18]. Figure 5 shows the architecture of DM and DBOW.
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Wikipedia in Japanese (downloaded on 29 June 2018) was used as the learning data to
create a distributed representation. In a Japanese document, there are no spaces between
words, and spaces were inserted in the text from Wikipedia based on Japanese grammar and
dictionary entries using MeCab [20] and mecab-ipadic-NEologd [21], with verb outputs as
bare infinitives. Then, the Gensim package [22] in Word2vec and the library of fastText [23]
were used to create trained vectors. In the parameters of each of these algorithms, the
number of dimensions of the vectors was set to 300, the number of epochs to 5, and the
size of the context window to 5; loss function was hierarchical softmax and the minimum
number of word occurrences was set as 1. In determining these parameters, the optimal
parameters in Word2vec and fastText were explored as follows: vectors from 200 to 1000,
epochs 5 and 10, context windows from 5 to 20, and loss functions were softmax (only
fastText), hierarchical softmax, and negative sampling. Other parameters were set to
default. In Doc2vec with DM and DBOW, pre-trained word vectors were downloaded
from [24]. All experiments for the training models were run on a computer with the Ubuntu
18.04 operating system, Intel Core i7-9700K, and 64 GB RAM, with the Programming
language Python 3.8.3.

2.4. Similarity Calculations

In the edit distance, the similarity index is the distance between two definition sen-
tences without symbols using the python-Levenshtein module (version 0.12.0) [25]. In
Word2vec, fastText, and Doc2vec, cosine similarity was also introduced. The average vector
values were calculated using vectors allocated to each word in definition sentences with
symbols deleted and verbs changed to dictionary forms. In addition, sentence vectors were
inferred using the genism package in Doc2vec. The cosine similarities of the pairs were
calculated as follows:

cosine similarity =
A·B
‖A‖‖B‖ (5)

where A is an average vector of an input definition sentence and B is an average vector of
the other definition sentence.

2.5. Evaluation

Receiver operating characteristic (ROC) analysis was carried out to evaluate the
extraction accuracy of similar definition sentences, and the area under the curve (AUC)
was calculated. In addition, the cutoff value was identified from the ROC curve using the
Youden Index. Sensitivity and specificity were also calculated based on the cutoff value.
The ROC analysis was conducted using JMP 13.2.1.
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3. Results

The number of characters per definition sentence was 20.1 characters, and the differ-
ence in the number of characters between the definition sentence pairs was 7.1 characters.
The number of words per definition sentence was 11.8 words, and the difference in the
number of words was 4.3 words. The sensitivities, specificities, and AUC were obtained
from the ROC analysis (Table 1). In the sensitivity, the values in all algorithms tend to be
low. The value of the Jaro–Winkler Distance was 0.780, and this value was the highest
among the sensitivities. In addition, only the sensitivity of the Jaro–Winkler Distance
was higher than the specificity. In specificity, the highest was 0.880 in Doc2vec with DM.
The second-best methods were the Levenshtein distance, fastText with skip-gram, and
Doc2vec with DBOW. In AUC, the AUC values in the edit distance algorithms tended to be
better compared to those in the distributed representation. In particular, the AUC in the
Levenshtein distance was the highest. The distributed representation that has the highest
AUC was Doc2vec with DBOW. Table 2 shows examples of our results.

Table 1. Accuracy of the algorithms. Underlined numbers are the highest value of each item.

Algorithm Sensitivity Specificity AUC

Levenshtein Distance 0.680 0.840 0.814
Jaro–Winkler Distance 0.780 0.680 0.737
Word2vec with CBOW 0.600 0.733 0.707

Word2vec with skip-gram 0.560 0.787 0.723
fastText with CBOW 0.600 0.787 0.744

fastText with skip-gram 0.560 0.840 0.745
Doc2vec with DBOW 0.640 0.853 0.768

Doc2vec with DM 0.480 0.880 0.681

Table 2. Examples of similar and non-similar definition pairs (English terms in parentheses). The bold, italic underlined
numbers were determined to be similar.

Term 1 Term 2 Definition 1 Definition 2 Baseline LD JWD
W2V
with

CBOW

W2V
with
skip-
gram

FT
with

CBOW

FT with
skip-
gram

D2V
with

DBOW

D2V
with

DMPV

火事
(Fire)

機器不具合
(Device
failure)

機器から煙がで
ること

(Smoke is
emitted by a

device)

装置から煙がで
ること。
(Smoke is

emitted by a
machine)

Similar 2 0.867 0.977 0.984 0.950 0.950 0.908 0.833

機器材料の
不良

(Poor of
device

material)

反応容器の
破損

(A fracture
of the

reaction
container)

全体又は一部の
欠け

(A fragment in
whole or part of

the
components)

反応容器または
一部の欠け

(A fragment in
a part of the

components or
the reaction
container)

Similar 6 0.722 0.775 0.884 0.531 0.675 0.786 0.591

誤穿刺
(Incorrect
puncture)

使用
(Use)

間違った部位を
穿刺すること

(Puncturing the
wrong part)

本来の穿刺部位
でないところを
誤って刺してし
まうこと

(Accidentally
puncturing at a
point that was
not the target

(point))

Similar 19 0.463 0.896 0.942 0.751 0.871 0.867 0.417

圧力不良
(Insufficient

pressure)

動作不良
(Malfunction)

意図した加圧動
作をしないこと

(The device
does not

perform the
intended

pressurization)

意図した作動を
しないこと
(The device

does not work
as intended)

Dissimilar 3 0.955 0.965 0.965 0.739 0.899 0.847 0.857
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Table 2. Cont.

Term 1 Term 2 Definition 1 Definition 2 Baseline LD JWD
W2V
with

CBOW

W2V
with
skip-
gram

FT
with

CBOW

FT with
skip-
gram

D2V
with

DBOW

D2V
with

DMPV

機器材料の
不良

(Failure
of the

material)

損傷
(Damage)

機器の破れ
(A device split)

穴が開いた状態
(A state with an

open hole)
Dissimilar 7 0.000 0.496 0.750 0.006 0.417 0.718 0.506

故障
(Defect)

機械的不良
(Mechanical

failure)

構成部品の全体
又は一部が外
れて機械的に分
離すること

(All or part of
the components

come off the
machine

mechanically
and separately)

構成部品の全体
又は一部を損な
い傷ついたりす
ること

(All or part of
the components

come off a
machine and
are damaged)

Dissimilar 10 1.000 0.914 0.957 0.668 0.892 0.849 0.763

The thresholds were as follows: Levenshtein Distance (LD), 7; Jaro–Winkler distance (JWD), 0.683; Word2vec (W2V) with CBOW, 0.916;
W2V with skip-gram, 0.959; fastText (FT) with CBOW, 0.776; FT with skip-gram, 0.905; Doc2vec (D2V) with DBOW, 0.860; and D2V with
DM, 0.804. Underlined parts were evaluated to be similar based on the thresholds. In the LD, the pair was determined to be similar if the
distance of the pair was equal or less than the threshold. The others were opposite.

4. Discussion

This study clearly shows that the sensitivity and AUC in the editing distances were
better than those in the distributed representation. In particular, the Jaro–Winkler distance
had the best sensitivity value and the Levenshtein distance had the best AUC value. In
term of specificity, the value in Doc2vec with DM was the best.

As one of the features of the baseline with the models, the pairs with similar definition
sentences tended to have the smaller differences in the number of characters; the differences
in the number of characters with the pairs by different definition sentences had a wider
variable range (Figure 6). In the Levenshtein Distance, the threshold value by ROC analysis
was 7, and it is considered that the specificity was higher because the number of similar
pairs with the value of 7 or more was small.
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The Jaro–Winkler distance had the best sensitivity. As a feature of the description of
a definition sentence of the JFMDA terminology, there is a common phrase that occurs:
“A fragment in a part of the components (一部の欠け)”, “A fragment in whole or part
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of the components (全体又は一部の欠け)”, or “A fragment in a part of the components
or the reaction container (反応容器または一部の欠け)”. Further, common phrases are
sometimes found at the beginning and end of sentences, such as “Dirt, foreign matter, etc.,
adhere to the entire or to parts of the surface of a component (構成部品の全体又は一部
の表面に汚物、異物等が付着すること)” and “Dirt, foreign matter, stain, etc., adhere to
the surface or inside of a component (構成部品の表面や内部に汚物、異物、汚れ等が付着
すること”. This definition pair was evaluated as dissimilar in Levenshtein distance but
similar in Jaro–Winkler distance for all differences in the number of characters between the
definition sentences. In addition, in the definition sentences in the terminology, there were
many sentences that included common phrases such as “A device does not perform the
intended XX”. The value of sim in the Jaro–Winkler distance formula tends to increase as
it contains a common phrase. As a result, it is considered that the Jaro–Winkler distance
is the algorithm that detects similar pairs, including common phrases, better than the
Levenshtein distance, and the sensitivity in Jaro–Winkler distance become the highest
among all models. However, although the words or phrases that fill out “XX” are different
in their meanings, it is a drawback that the pairs with common phrases may be determined
as synonymous from the calculation characteristics.

The represented distribution tended to have low sensitivity and high specificity.
Cosine similarity values of the similar pairs tended to be narrower and better than the
values of the dissimilar pairs in all models. Because the range of the cosine similarity
in similar pairs overlapped in a part of the higher range of cosine similarities of the
dissimilar pairs shown in Figure 7, we considered that the sensitivity became poorer than
the specificity. In addition to the above, the fact that the number of dissimilar pairs is larger
than that of similar pairs may contribute to the improvement in specificity.
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Among the definition sentence pairs that were similar in the baseline, there were
10 definition sentence pairs that were not determined to be similar in editing distances.
Among 10 pairs, 2 pairs were judged to be similar by only Doc2vec with DBOW. For
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example, it could determine the pair, “Puncturing the wrong part (間違った部位を穿刺
すること)” and “Accidentally puncturing at a point that was not the target (point) (本
来の穿刺部位でないところを誤って刺してしまうこと)” as similar and agreed with the
baseline shown in Table 2, and another pair was “Puncturing the wrong part (間違った
部位を穿刺すること)” and “ Punctuation to a site that is not the intended area. (目的以
外の部位への穿刺).” However, edit distances were not determined to be similar because
the order of characters and words was different and there was no common phrase. Even
using Word2vec and fastText, this definition sentence pair could not be determined to be
synonyms. Although discussing two similar cases detected by Doc2vec with DM may
not be sufficient because it was not statistically significant, we believe it is meaningful to
conduct more investigations while increasing the number of pairs in the future.

5. Conclusions

This article evaluates the accuracy of synonym identification in JFMDA terminology
using three distributed representation methods and two edit distance methods. We may
conclude as follows: The Levenshtein distance was the most useful method for evaluating
the similarity of definition sentences among the different algorithms because it acquired
the highest AUC. The Jaro–Winkler distance has the potential to identify common phrases.
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visualization, A.Y.; supervision, H.Y.; project administration, H.Y.; funding acquisition, H.Y. All
authors have read and agreed to the published version of the manuscript.
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22. Řehůřek, R.; Sojka, P. Gensim–Python Framework for Vector Space Modelling; NLP Centre, Faculty of Informatics, Masaryk University:

Brno, Czech Republic, 2011; Volume 3.
23. FastText. Available online: https://github.com/facebookresearch/fastText (accessed on 21 February 2021).
24. Pretrained doc2vec Models on Japanese Wikipedia. Available online: https://github.com/yagays/pretrained_doc2vec_ja

(accessed on 21 February 2021).
25. Python-Levenshtein 0.12.2. Available online: https://pypi.org/project/python-Levenshtein/ (accessed on 21 February 2021).

http://doi.org/10.1186/s12911-019-0880-2
http://www.ncbi.nlm.nih.gov/pubmed/31391038
http://doi.org/10.1016/j.artmed.2020.101900
http://www.ncbi.nlm.nih.gov/pubmed/32972652
http://doi.org/10.1371/journal.pone.0234880
http://www.ncbi.nlm.nih.gov/pubmed/32645050
http://doi.org/10.3233/SHTI190502
http://doi.org/10.1162/tacl_a_00051
http://doi.org/10.1186/s12859-018-2543-1
https://taku910.github.io/mecab/
https://github.com/neologd/mecab-ipadic-neologd
https://github.com/neologd/mecab-ipadic-neologd
https://github.com/facebookresearch/fastText
https://github.com/yagays/pretrained_doc2vec_ja
https://pypi.org/project/python-Levenshtein/

	Introduction 
	Materials and Methods 
	The Flow of this Study 
	Dataset Creation 
	Similarity Detection 
	Edit Distance 
	Represented Distribution 

	Similarity Calculations 
	Evaluation 

	Results 
	Discussion 
	Conclusions 
	References

