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Abstract: This research examines the feasibility of hybridizing boosted Chi-Squared Automatic
Interaction Detection (CHAID) with different kernels of support vector machine (SVM) techniques
for the prediction of the peak particle velocity (PPV) induced by quarry blasting. To achieve this
objective, a boosting-CHAID technique was applied to a big experimental database comprising six
input variables. The technique identified four input parameters (distance from blast-face, stemming
length, powder factor, and maximum charge per delay) as the most significant parameters affecting
the prediction accuracy and utilized them to propose the SVM models with various kernels. The
kernel types used in this study include radial basis function, polynomial, sigmoid, and linear. Several
criteria, including mean absolute error (MAE), correlation coefficient (R), and gains, were calculated
to evaluate the developed models’ accuracy and applicability. In addition, a simple ranking system
was used to evaluate the models’ performance systematically. The performance of the R and MAE
index of the radial basis function kernel of SVM in training and testing phases, respectively, confirm
the high capability of this SVM kernel in predicting PPV values. This study successfully demonstrates
that a combination of boosting-CHAID and SVM models can identify and predict with a high level
of accuracy the most effective parameters affecting PPV values.

Keywords: ground vibration; blasting operation; boosting-CHAID: support vector machine; input selection

1. Introduction

Blasting is a usual method of breakage in mining and quarrying processes. It is also one
of the standard techniques used in several projects such as road and tunnel construction [1].
In excavation processes, blasting is formed from boring some series of explosion-holes
nearly equidistant to the bench’s free face [2]. Certain actions generate some undesirable
environmental effects, for example, air overpressure, ground vibrations, flyrock, and back-
break around the blasting area [3–14]. Despite the availability of several experimental
analytic solutions for predicting these environmental effects, these specifications take into
account only a small number of important factors, whereas other influential parameters
such as the blasting pattern and geological circumstances influence these impacts as
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well [15,16]. Therefore, experimental methods are not precise enough, while in some
cases, predicting the environmental effect with greater certainty is crucial for reducing
ecological harm due to blasting [17].

Numerous studies have attempted to investigate ground vibrations [18,19]. They
determined ground vibration as a surging movement that distributes from the explosion
unto close fields. The ground vibrations include two main components, i.e., frequency
and peak particle velocity (PPV). Indian Standards [20] consider PPV as a vibration index,
which is a substantial indication for gauging the physical harm principle. The destruction
of the neighboring arrangements, the groundwater, and damages of nearby area’s ecology
are typically caused by significant ground vibration level [15,21,22]. The most significant
factors for ground vibration resulting from blasting are blast design, the amount of space
from the blast-face, geological circumstances, properties of the rock mass, and explosive
charge weight per delay [23,24].

Some researchers ascertained different experimental indicators for the prediction
of PPV [20,25–27]. Nevertheless, during a specific explosion, forecasted PPVs acquired
by these independent variables are not the same, and no similarity is available in their
outcomes. Moreover, Armaghani et al. [1] demonstrated that these experimental predictors
merely study two important factors including charge per delay and distance from blast-face
whereas other useful factors, for example, blast geometry and geological circumstances
influence on PPV as well.

Many researchers have extensively utilized soft computing (SC) methods to solve
engineering and science problems as well as PPV resulting from blasting [28–68]. Singh
and Singh [69] used artificial neural network (ANN) and regression analysis to determine
the PPV. They showed that ANN outperforms regression analysis for PPV prediction. In
Turkey, Fişne et al. [70] used fuzzy logic method and regression analysis for PPV prediction
using 33 data acquired from Akdaglar mine. They assumed that the charge weight and
distance from the blast-face are independent variables. These authors found that the fuzzy
model outperformed the statistical methods. In Iran, Monjezi et al. [11] estimated PPVs
utilizing various experimental formulas and ANN method. The authors acquired data
from the Shur River Dam. Their ultimate findings indicated the superiority of the ANN
model over the experimental expressions. Again in Iran, Saadat et al. [71] employed ANN
models for PPV prediction. They collected 69 data from Gol-E-Gohar iron mine. The
authors compared their results with those of typical experimental and statistical methods.
As expected, the results showed that ANN outperformed other models. In Malaysia,
Armaghani et al. [1], Hajihassani et al. [17], and Shirani Faradonbeh et al. [72] used particle
swarm optimization (PSO)-ANN, imperialism competitive algorithm (ICA)-ANN and gene
expression programming (GEP) techniques, respectively, to estimate ground vibrations
resulting from blasting. In Vietnam, Nguyen et al. [73,74] respectively developed two new
models namely the K-means clustering (HKM)-Cubist algorithm (CA), and the support
vector regression (SVR)-genetic algorithm (GA) for PPV prediction.

In the present study, we compiled the most influential studies for the prediction of PPV
using soft computing and artificial intelligent techniques (Table 1). While a considerable
number of studies used Adaptive Neuro-Fuzzy Inference System (ANFIS) and ANN to
predict the PPV, a limited number of studies used Support Vector Machine (SVM) to predict
the PPV. Among the researchers that utilized the SVM to examine the PPV, no study
assessed the applicability of different kernels of SVM for the PPV prediction. In addition, a
very limited number of studies employed the decision trees to forecast the PPV, which also
has been noted by other researchers [75]. The decision trees that were used by these studies
were mostly Classification and Regression Tree (CART), Random Forest (RF), and Chi-
Squared Automatic Interaction Detection (CHAID). No study utilized the decision trees for
input selection while the suitability of these techniques especially those including ensemble
and boosting features are acknowledged in the literature [30]. Therefore, this study uses
a boosted-CHAID technique for input selection and uses the results of this approach to
develop the SVM models with various kernels for PPV prediction. Then, the best SVM
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kernel will be selected and introduced to predict the PPV induced by mine blasting. The
paper explains the research as follows. In the next section, the modelling methodology
and case study are presented. The methodology section is followed by research results and
their evaluations. This paper closes with a discussion and conclusion of the findings of
this research.

Table 1. The most prominent research on the PPV prediction by means of the SC procedures.

Study Model Model Input Number Site Location

Singh and Singh [69] ANN 9 India
Iphar et al. [76] ANFIS 2 Turkey

Khandelwal and Singh [18] ANN 10 India
Monjezi et al. [19] ANN 4 Iran

Mohamed [77] ANN, FIS 2 Egypt
Khandelwal et al. [78] ANN 2 India

Fişne et al. [70] FIS 2 Turkey
Mohamadnejad et al. [79] SVM, ANN 2 Iran

Mohammad et al. [80] ANN 9 Malaysia
Monjezi et al. [11] ANN 3 Iran
Ghasemi et al. [81] FIS 6 Iran

Armaghani et al. [1] PSO-ANN 10 Malaysia
Hajihassani et al. [17] ICA-ANN 7 Malaysia

Dindarloo [82] SVM 12 Iran
Hajihassani et al. [2] PSO-ANN 8 Malaysia

Hasanipanah et al. [83] SVM 2 Iran
Armaghani et al. [84] ANFIS 2 Malaysia

Ghoraba et al. [85] ANN, ANFIS 2 Iran
Shirani Faradonbeh et al. [72] GEP 6 Malaysia

Hasanipanah et al. [86] CART 2 Iran
Shahnazar et al. [87] PSO-ANFIS 2 Malaysia
Armaghani et al. [88] ICA 2 Malaysia

Nguyen et al. [73] HKM-CA 4 Vietnam
Nguyen et al. [74] SVR-GA 4 Vietnam
Zhang et al. [75] RF, CART, CHAID 6 Malaysia
Zhou et al. [16] RF, BN 5 Malaysia
Huang et al. [5] FA-ANN 4 Malaysia

FIS: fuzzy inference system, CART: Classification and regression tree, FA: firefly algorithm, BN: Bayesian network.

2. Materials and Methods

In this study, a systematic approach was employed to combine the boosting-CHAID
as an input selection technique, with SVM models with diverse kernels to predict the
PPV resulting from blasting. Initially, a boosting-CHAID model was developed and the
most important variables for predicting the PPV were identified. Subsequently, the SVM
models with various kernels (sigmoid, SIG; polynomial, POL; linear, LIN; and radial basis
function, RBF were built using the aforementioned variables. Finally, the models’ results
were evaluated by applying certain performance criteria. Figure 1 presents the flowchart of
the approach employed in this study. It is important to note that three methods of model
evaluation, including performance indices, variable importance, and ranking system, were
used in this study.

2.1. Input Selection Technique

The Chi-Squared Automatic Interaction Detection (CHAID) algorithm creates deci-
sion trees employing ChiSquare statistics to establish the optimal divisions [89]. CHAID
generates non-binary trees. Some divisions may possess more than two branches that are
especially suitable for the examination of complex datasets. CHAID converts continuous
inputs into ordinal type employing binning techniques since it handles merely categorical
inputs. During the learning process, a heuristic statistical technique is employed to exam-
ine the relationship between a set of categorical inputs and the target variable. It offers
a tree diagram that shows the kinds of inputs that most significantly affect the value of
the target variable. CHAID modelling steps are (1) binning, (2) merging, (3) splitting, and
(4) stopping.
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Boosting procedures were introduced by Freund and Schapire [90], who utilized
resampling and merging algorithms to develop the weights of misclassified examples. In
this study, we utilized boosted-CHAID technique for input selection since a single tree may
not show the importance of ranking variables, and they could be completely masked by
other related inputs.
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2.2. SVM Model and Its Variants

One of the most prominent supervised machine learning (ML) techniques that apply
statistical learning principles and the necessary risk minimization system is the SVM [91].
This technique revises the non-linear system into a linear format by creating a hyperplane
and converting the aforementioned system into a simplistic and processable setup [92] as
shown in Figure 2. The data transmutation is conducted utilizing an analytical and precise
function recognized as the Kernel function. The SVM intends to obtain the best margin
of division between the groups and creates a classification hyperplane within the middle
of the most significant margin [93]. These couple classes are named as “+1” (positive
samples), which indicates the circumstance over the hyperplane, and “−1” (negative
samples) describes the circumstance under the hyperplane. The characteristics of new data
afterward can forecast the assortment to which a new record should fit.
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The abovementioned step is executed for both classification and regression. With
regards to classification, the aforementioned minimization is made assuming that all
samples are entirely classified, while the regression analysis follows the provision that
the “y” value of each example varies less than the demanded precision of ε from f (x).
For classification, the main aim is to find a function f (x) = wx + b where f (x) ≥ 1 for
positive examples and f (x) ≤ −1 for negative examples. Under these conditions, we want
to maximize the margin which is nothing more than minimizing the derivative of f ′ = w.
For regression, the objective is to determine a function f (x) = wx + b (pale diagonal line)
following the condition that f (x) is within a required accuracy ε from the value y(x) (vertical
bars) of every data point, namely |y(x) − f (x)| ≤ ε where epsilon is the distance between
the dashed and the pale diagonal line (Figure 3).
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This research examined the SVM model with diverse kernels, including RBF, LIN,
SIG, and POL to predict the PPV caused by quarry blasting. Typically, “Kernel” refers to
implementing a linear classifier to resolve a non-linear problem. In ML technique, this
Kernel is also called “Kernel trick”. LIN Kernel is suitable for simple and linearly separated
data. Otherwise, other functions should be employed. It is worth mentioning that the
SIG are identical to the RBF for some parameters of SVM [94]. The kernel of LIN is the
particular form of the RBF and in circumstances that RBF is adopted during processing,
it is unnecessary to apply the kernel of LIN. With regards to precision, the RBF has a
greater ability to interpolate compared to the SIG. This triggers RBF to produce additional
consistent outcomes. Instead, the RBF is not able to create longer-range extrapolation. The
SIG may have a great inconsistency since it is not severely positive certain which may
cause incorrect calculation. In a study by Tehrany et al. [95], it was asserted that the POL is
able to produce better extrapolations. Figure 4 presents the kernels’ formulas. This study
utilized every type of kernels to investigate the efficiency of each kernel to predict the PPV
induced by blasting. Figure 4 shows that there are some critical coefficients like “γ” and
“d” for different kernels such as RBF and POL that need to be designed. In Figure 4, “γ” is
the kernel width and “d” is degree of polynomial kernel. It is vital to discover the correct
value of “γ” and “d” because “γ” regulates the level of nonlinearity of the SVM model and
“d” determines the level of the polynomial kernel.
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2.3. Experimental Database

While in the process of developing a forecast model, much attention has been devoted
to the computational model itself, only marginal attention has been paid by researchers to
the actual database used for the development, training, and validation of the model.
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Without underestimating the high importance and added value of research efforts
towards the development of new computational models, we strongly believe that the
reliability of the database is of utmost importance in achieving the ultimate goal of a
reliable forecast. In fact, in addition to reliable data, a reliable database must comprise a
sufficient amount of data, covering the full range of parameter (input and output) values
that influence the problem under investigation.

It should be noted that the term “sufficient amount of data” does not necessarily imply
a high amount of data, but rather datasets that cover a wide range of combinations of
input parameter values, thus assisting in the model capability to simulate the problem. The
demand for a reliable and capable database is especially crucial in the case of experimental
databases, that is databases which are compiled using experimental results. In this case,
high deviation between experimental values is frequently noticed, not only between exper-
iments conducted by different research teams and laboratories, but even between datasets
that derive from experiments conducted on specimens of the same synthesis, produced by
the same technicians, cured under the same conditions and tested implementing the same
standards and the same testing instruments.

In light of the above discussion, a big experimental database consisting of 166 datasets
was composed. To provide a significant amount of data for the calculation of the environ-
mental effects of mine blasting, we studied four quarries in Malaysia. Details for these
sites are presented in Figure 5. The goal of mine explosion is to provide aggregate material
for various applications. Depending on the weather, six to twelve mine explosions are
performed each month.
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Among these 166 data samples and investigated blasting events, 80 blasting events
were investigated in Kulai quarry site. Then, 31, 29, and 26 blasting events were investigated
in Bukit Indah, Senai Jaya, and Taman Bestari quarry sites, respectively. The lowest hole
depth (10 m) was in the Kulai site, while the biggest hole depth (28 m) was in the Bukit
Indah site. We compiled a database of 166 data samples from field measurements. The
following parameters influencing the blast effect were recorded: powder factor (kg/m3),
spacing (m), stemming length (m), burden (m), the maximum charge per delay (kg), and
the blast-face distance to the monitoring point (m). Actually, the mentioned parameters are
considered as a common blasting data and have been utilized by many published works in
literature [1,17,19,22]. It is also important to mention that the most important input factors
in measuring/predicting the PPV are the maximum charge per delay and the distance from
the blast-face [21,22,96,97]. In the established database, we used a 115 mm diameter for
blast-holes. Fine gravel as a well-known stemming material was used in these operations.
We recorded the PPV using a VibraZEB seismograph equipment at specific locations.
Table 2 presents a summary of the measured input and output variables including unit,
maximum, minimum, mean, and standard deviation. The frequency distributions of the
PPV employed in this investigation are presented in Figure 6.
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Table 2. Summary of parameters in the projecting models.

Variable (Category) Unit Minimum Maximum Mean Standard Deviation

Burden to spacing (input) - 0.41 0.91 0.75 0.103
Distance from the blast-face (input) m 65 710 329 142.961
Maximum charge per delay (input) kg 69.79 309.09 202.44 64.534

Powder factor (input) kg/m3 0.24 0.98 0.69 0.197
Spacing (input) m 2.2 5.1 3.65 0.721

Stemming length (input) m 1.4 4 2.87 0.619

PPV (target) mm/s 1.21 37.44 14.4 8.673
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3. Models’ Application
3.1. Input Selection

We employed a hybrid approach for input selection. This technique was applied to
six inputs for predicting the PPV values. The model was developed using the following
parameters and settings: the tree growing algorithm was set to CHAID; the maximum tree
depth was set as five; the minimum records in parent and child branches were assigned
to two and one, respectively; the number of component models for boosting was selected
as 10, and significance level for splitting and merging was set as 0.05. The accuracy of the
CHAID and boosted CHAID models were 79.6% and 0.89%, which showed the superiority
of the boosted model over the single tree model. According to the boosted-CHAID model
results, four inputs, including distance (m), stemming (m), powder factor (kg/m3), and
maximum charge per delay (kg), were the most important predictors/variables for the
PPV forecast. Then, these critical inputs were used to apply the SVM models with diverse
Kernels to predict the PPV caused by quarry blasting.

3.2. SVM Models with Different Kernels

This study applied four SVM models with four different Kernels, including RBF,
polynomial, sigmoid, and linear. We used four parameters, including stemming, powder
factor, the maximum charge per delay, and distance, which were identified as the most
critical and relevant parameters for developing the SVM models. The research team
used several considerations for developing these models. Stopping criteria were set as
1.0 × 10−3; the regularization parameter (C) was established as 10; and the regression
precision (epsilon) was developed as 0.1. Before the models’ development, the data were
split into train and test partitions using a ratio of 80:20. Thus, 104 samples were used in the
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training phase, and 36 samples were used for the testing phase. The measured PPV values
and predicted values by all four models are shown in Figure 7.
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This research used two commonly used criteria for assessing the models’ performance.
These criteria included the Pearson’s correlation coefficient (R) and the mean absolute
error (MAE). In addition, a gain chart also was used to illustrate the performance of the
models graphically:
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where yim, yip, and yim indicate the measured, predicted and the mean of measured values,
n represents the total number of data.

A simplistic ranking system that rates the performance of the models for each partition
was also developed. In this system, training and testing rankings were assigned to each
model. Also, an accumulative ranking was produced, which was the total of the training
and testing ranks. The formula for computing the accumulative ranking for each model is
presented below:

A-R = ∑(αtr + βtr) + (αte + βte) (3)

where, A-R is the accumulative ranking of each model, α denotes the ranking of R, β shows
the ranking of MAE, “tr” means the training ranking, and “te” signifies the testing ranking.

The performances of the models developed in this study are shown in Table 3. As
can be seen, for the training phase, the BC-SVMRBF model achieved the highest ranks of
R and MAE compared to other models. On the other hand, the lowest rankings of R and
MAE belonged to the BC-SVMSIG model in the training phase. For the testing phase, the
BC-SVMRBF model outperformed other models in terms of R; however, regarding the MAE,
the BC-SVMLIN achieved the highest ranking. Again, the BC-SVMSIG model achieved the
lowest ranking in the testing phase comparing with other models. With regards to the accu-
mulative ranking, the BC-SVMRBF model achieved the highest ranking (A-R ranking = 15),
followed by the BC-SVMLIN model (A-R ranking = 12). Alternatively, BC-SVMSIG had the
worst performance and consequently had the lowest accumulative ranking.
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Table 3. Performance results and ranking values of different ML approaches applied in this study.

Model

TRAIN TEST
Train

Ranking
Test

Ranking A-RR MAE R MAE

V R V R V R V R

BC-SVMRBF 0.955 4 0.372 4 0.965 4 0.472 3 8 7 15
BC-SVMPOL 0.946 3 0.388 2 0.935 2 0.488 2 5 4 9
BC-SVMSIG −0.208 1 10.793 1 −0.342 1 14.455 1 2 2 4
BC-SVMLIN 0.944 2 0.387 3 0.959 3 0.471 4 5 7 12

Value: V; Ranking: R; Accumulative ranking: A-R.

We also employed a gain chart to compare the models developed in this study. It
is critical to note that the “gain” refers to the successfulness of a predictive technique
to gauge the amounts higher than the middle point of the field’s range (PPV > 0.557).
Mathematically, the gain is calculated as follow:

Gain% =
q
w
× 100 (4)

where, “q” refers to the quantity of hits in quantile and “w” shows the whole quantity
of hits.

In the diagram resulted from the gain calculation, the faultless model with tremendous
confidence is denoted by the blue line, the diagonal red line denotes the accidental model,
and the other lines in the middle denote the models utilized in this research. Generally
speaking, the higher-level lines indicate higher prediction accuracy models, especially on
the chart’s left side. The domain within a red line model illustrates the gain difference
between an applied and an accidental model. The domain mentioned above illustrates the
superiority of an implemented versus accidental model. The range between an applied
and the best model indicates areas of improvement for the applied model. The results of
the gain’s computation are presented in Figure 8. The results showed that BC-SVMSIG (the
green line) had the worst gain for both the training and testing phases.
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The prominence of the input variables of different SVM models was identified and
shown in Figure 9. As can be seen, all models except BC-SVMSIG identified distance as the
most important predictor for the PPV prediction. Besides, BC-SVMRBF and BC-SVMLIN
models similarly acknowledged “distance” as the most influential factor on the PPV. The
“stemming” was recognized as an influential predictor only by BC-SVMPOL and BC-
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SVMSIG models. While the former model identified the “stemming” as another significant
variable, the latter identified the “stemming” as the most significant PPV predictor. The
“maximum charge per delay” and “powder factor” were selected as an influential factor
only by the BC-SVMSIG model.
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4. Discussion

This study aimed to assess the feasibility of using a hybrid approach that combines
a boosted-CHAID technique and SVM technique with different Kernels to predict the
PPV induced by quarry blasting. The applied models were analyzed regarding accuracy,
error, gain performance, and input variables’ importance. The models’ evaluation showed
that the BC-SVMRBF model achieved the best performance, which shows the efficiency of
hybridizing boosted-CHAID and SVM with RBF Kernel to predict the PPV. Alternatively,
the BC-SVMSIG had the weakest performance in terms of accuracy, error, and gain, which
showed that this hybridization approach is not suitable for predicting the PPV.

The finding of the present study in terms of better performance of RBF over other
kernel types is in line with those of studies in other disciplines, which pointed out that the
SVM model with RBF kernel has the greatest forecast capability (e.g., [91]).

Several properties of the RBF kernel may lead to its better performance over other
kernel types. These properties included its stationarity and smoothness. Besides, the RBF
kernel is isotropic. Here, stationary implies that the RBF is invariant to translation. RBF’s
isometric property refers to the fact that in RBF, the scaling by γ gives a similar value in
all directions.

To support the efficiency of the proposed approaches, we applied two ANN models
with two different structures, including Multilayer Perceptron (MLP) and Radial Basis
Function (RBF) to the same data. The training R values of 0.858 and 0.849 were achieved for
ANNMLP and ANNRBF models, respectively. The results of these ANN models showed
that all SVM models except SVMSIG outperformed the ANN models while were hybridized
with the Boosted-CHAID method.

Compared to the previous studies on the same dataset, this study achieved a slightly
lower accuracy than that of the study by Armaghani et al. [98]. In their study, Armaghani
et al. applied ANN and ANFIS models to five inputs parameters to achieve an R of
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0.96, while in this study, the authors applied the hybrid models on four inputs to achieve
acceptable training accuracy, especially for SVM with RBF Kernel (0.95). It can therefore be
concluded that the proposed models in this study are considered as reliable and sufficiently
accurate in predicting the PPV induced by blasting, while retaining the advantage of
reduced complexity by employing fewer input parameters.

5. Conclusions

The aim of this research was to predict the PPV using a hybrid ML model enhanced
with both boosted-CHAID and SVM techniques with different Kernels. The boosted-
CHAID model required only four out of a total of five input variables (distance from
blast-face, stemming length, powder factor, and maximum charge per delay). Based
on these input variables, different SVM kernels, i.e., SVMRBF, SVMPOL, SVMSIG, and
SVMLIN, were designed to predict PPV values. Among these four SVM kernels, SVMRBF
and SVMSIG were selected as the best and worst models, respectively, in predicting the
PPV. The performance of the R and MAE index of the radial basis function kernel of SVM
in training and testing phases respectively, confirm the high capability of this SVM kernel
in predicting PPV values. With regards to the importance of PPV predictors, “distance”
had the greatest importance, which is in line with the boosted-CHAID model results. All
models also identified this input parameter as an influential predictor, which implies the
importance of this predictor for PPV forecasting. The results of model importance are in
line with the published intelligence and empirical studies in the area of PPV prediction.

This investigation intends to emphasize that this study’s modeling method can be
utilized in other disciplines to add a different problem-solving perspective. The perfor-
mance of the SVM models is extensively impacted by the choice of the right values for “γ”
and “d”. In the present study, we employed the grid-search technique for determining
the optimal value for “γ” and “d”. Hence, the performance of the SVM models can be
improved if the process of choosing “γ” and “d” is conducted by novel optimization tech-
niques. Therefore, future studies on the employment of SVMs for PPV prediction should
concentrate on adopting innovative soft computing optimization techniques to optimize
values of kernel parameters.

While the present study selected the RBF kernel as the best kernel, it should be
mentioned that the proper kernel function is problem specific. Thus, it can be an interesting
topic for future studies to determine the practical process for picking appropriate kernel
functions and their corresponding parameters’ values consistent with the given problem.

Future investigations aiming at utilizing the SVM models may apply single and
hybrid forms with various kernels in other environmental issues of blasting. It may
also be of interest to apply the model to a wider database and enhance the model’s
prediction accuracy.
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Abbreviations

CHAID Chi-Squared Automatic Interaction Detection
ANN Artificial neural network
PPV Peak particle velocity
MAE Mean absolute error
SVM Support vector machine
GEP Gene expression programming
ICA Imperialism competitive algorithm
R Correlation coefficient
SC Soft computing
PSO Particle swarm optimization
HKM K-means clustering
CA Cubist algorithm
SVR Support vector regression
SIG Sigmoid
GA Genetic algorithm
POL Polynomial
ANFIS Adaptive Neuro-Fuzzy Inference System
LIN Linear
RF Random Forest
CART Classification and regression tree
FIS Fuzzy inference system
FA Firefly algorithm
BN Bayesian network
RBF Radial basis function
ML Machine learning
yim mean of measured values
n Total number of data
C Regularization parameter
yim Measured values
yip Predicted values
tr Training ranking
te Testing ranking
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