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Featured Application: Scheduling of electric vehicles to improve both the system and consumer
benefits.

Abstract: Recently due to air pollution concerns, a large number of electric vehicles have been inte-
grated into the electric distribution system. However, the uncoordinated charging of this technology
can cause different voltage issues. This paper proposes a two-stage optimization approach with
active and reactive power control to coordinate electric vehicles with both grid-to-vehicle and vehicle-
to-grid capabilities to satisfy both grid requirements and electric vehicle prosumer requirements.
The system requirements considered are voltage deviation and unbalance and the electric vehicle
prosumer requirements considered are minimization of charging and battery degradation costs. The
coordination problem is formulated as an optimization problem, where the first stage objectives are:
minimization of voltage unbalance, customer charging and battery degradation costs. The first stage
optimization problem is solved using the meta-heuristic optimization algorithm known as particle
swarm optimization to obtain an optimized real power schedule for the electric vehicles. The second
stage is then solved of which the objective is to minimize the bus voltage deviation and provides
the reactive power schedule for electric vehicles. All the analyses were carried out on the IEEE 34
bus distribution system and the study results show that the proposed method allows prosumers
to charge at a minimum cost without any grid voltage unbalance factors and under/over voltage
problems under different scenarios. Thus, this work can be beneficial for system operators or electric
vehicle aggregators to create a day-ahead schedule.

Keywords: battery degradation; environment-friendly; meta-heuristics; optimization; V2G; VUF

1. Introduction

Recently, CO2 emission has been a major public concern due to its serious envi-
ronmental impact, of which major sources are industries and the fossil fuel-dependent
transportation sector. The electric vehicle (EV) is an empirically-proven technology that
can alleviate dependency on the excessive use of oil and can help to decrease CO2 intensity
and gasoline consumption [1]. Consequently, there is a growing trend in many countries,
especially in residential and commercial areas, for the use of EVs [2]. However, the in-
creasing number of EVs cause a high demand for electricity, which can have detrimental
impacts on existing power systems.

In the uncoordinated charging of EVs, customers arrive at their homes in the evening
and start to charge their vehicles immediately, which may cause different issues, such as
transformer ageing [3], load unbalance in the residential area due to use of single-phase
AC charger [4–6], power quality, peak loading, frequency stability issues, etc.

There have been a number of studies that try to schedule/manage time charging/
discharging of EVs properly to avoid these problems and is commonly known as smart
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charging. From an EV aggregator perspective, the management of an EV fleet should
consider different significant constraints related to the electricity grid, ecosystem, and
customers. The authors of [7] used the EVSCP model, which aims to control an EV fleet
to minimize the charging cost. Their results showed the efficiency and effectiveness of
the model, but there was no mention about the grid effect. The authors of [8] presented
an intelligent fleet disposition algorithm, mixed with electricity generating companies,
which mitigate both financial and ecological parameters by collecting customer behavior
(including V2G) and power generating profiles (including renewable energy). Their results
showed that charging cost and CO2 were decreased by 22% and 33% respectively a year.
Yet the method lacked an energy management system that made the method difficult to
implement in the real-world. Three novel algorithms for the integration of EV to control a
large fleet so as to flatten the duck curve in California was proposed in [9]. The researchers
of [10] proposed V2G scheduling for a railway station to increase the load factor and
minimize the annual energy invoice of the station. However, [9,10] did not considered
the benefits to customers if they participated in the time scheduling. Most power system
issues use multi-objective optimal power flow (MOOPF) to achieve objective functions
in power systems, and have now become an essential application to deal with several
objectives [11–15]. Strategies for smart charging then used multi-objective meta-heuristic
optimization algorithms [16], of which the objectives are to benefit either some grid re-
quirements, such as voltage unbalance and frequency stability, or customer requirements,
such as minimize charging costs, battery degradation costs, etc. [17]. The constraints to
this optimization problem are normally EVs charging, also called Grid2Vehicle (G2V), or
discharging EVs, also called Vehicle2Grid (V2G). This optimization problem is solved using
some meta-heuristics to find an optimized schedule for EVs. Reference [18] proposed a
method to mitigate problems, such as peak shaving and valley filling, and the method
to mitigate power quality is given in [19,20]. References [21–23] proposed methods to
improve system frequency stability under disturbance and methods to maximize EV pro-
sumer revenue are discussed in [24–27]. However, meta-heuristic optimization algorithms
with multi-objective functions have drawback with their weight factors, as they need to
vary each of the weights properly to achieve optimal solutions in all objective functions.
Otherwise, the solution is trapped in a local optimal solution. A huge power system with
a load flow calculation requires the consideration of variable decisions with enormous
and complex computational requirements which are difficult to search in terms of global
optimal solution and grid requirements/customer satisfactions could not be met [28]. The
authors of [29] reviewed several techniques for multi-stage optimization dealing with
real-world problems, particularly in energy management. The partial decision making
of multi-stage optimization can cause complexity in problems, but this model enables
decision makers to alter decision at a later stage. The results of multi-stage models have
potential to find better solution than all decisions at only one stage.

Although many studies have proposed smart charging with different objectives, only
a few studies have focused on the benefits to both the customer and power systems. Some
of these works are listed in Table 1. Coordinated smart charging using V2G to minimize
charging costs and battery degradation costs was studied in [30]. Reference [31] presented
an approach to coordinate V2G by focusing specifically on battery health. Customer bene-
fits and maintaining system voltage levels using V2G technology was studied in [32]. The
authors of [33] proposed an approach to minimize charging costs and voltage deviations.
Reference [34] presented multi-objective optimization, including different objectives, such
as charging costs, voltage drops, and voltage unbalance. Reference [35] used V2G with a
reactive droop control and Reference [36] used different phase connections (phase switcher)
to minimize voltage unbalance and voltage deviations. The researchers of [37] scheduled
the active/reactive power of V2G to regulate the voltage and minimize losses in a system.
The authors of [38] used DGs to mitigate the voltage unbalance and improve voltage magni-
tude in connected EV buses. It can be observed from Table 1 that most of the literature only
considered customer objectives [30–32] or system objectives [35–38]; there are few works
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in the literature which considered both [33,34]. The researchers of [33] did not consider
the reactive power exchange of V2G nor battery degradation costs, which are crucial for
discharging EVs. The authors of [34] included different objectives, such as charging costs
and voltage deviation, but did not consider voltage unbalance, battery degradation, or
the reactive power capability of EVs. Thus, this paper tries to address these research gaps
and proposes a two-stage strategy where, in the first stage, different objectives, such as
customer charging costs, battery degradation costs, and voltage unbalance, are considered,
and, in second stage, the voltage deviation problem is considered.

Table 1. Comparison of recent works on coordinated charging of EVs.

Related Work
Customer Objective Function System Objective Function V2G Technology

Charging Cost Battery Degradation Voltage
Unbalance

Voltage
Deviation

V2G in
Active Power

V2G in
Reactive Power

[30] X X - - X -
[31] - X - - X -
[32] X X - - X -
[33] X - - X - -
[34] X - X X X -
[35] - - X X - X
[36] - - X X X -
[37] - - - X X X
[38] - - X X - -

Proposed Method X X X X X X

Thus, this paper tries to address the research gaps outlined in the paragraphs above.
It proposes a two-stage strategy to mitigate different electrical issues, such as VUF, voltage
deviation, and prosumer costs, using V2G technology. The two-stage problem is formulated
as an optimization problem and is solved using a meta-heuristic optimization algorithm,
particle swarm optimization (PSO). The first stage targets the problem of VUF and customer
costs by scheduling EV charging and the second stage targets voltage deviation with the
help of reactive power injection from EVs. Thus, the major contributions of this paper are
as follows:

1. The development of a framework to fulfill grid requirements, such as voltage unbal-
ance factors, voltage deviations, and prosumer requirements, such as charging cost
and battery health, using V2G technology.

2. Consideration of different scenarios, such as a change in load profile, penetration level,
and price changes, have also been considered. Furthermore, this study also conducts
a detailed comparison of the proposed method with other recent approaches.

3. Presentation of a method to solve the proposed method with real-time data exchange
between DIgSILENT and MATLAB.

This paper is organized as follows: Section 2 provides a brief discussion of the pro-
posed method, followed by the formulation of the optimization problem in Section 3.
Section 4 discusses the application of PSO to solve the proposed optimization problem, fol-
lowed by results and a discussion in Section 5. The conclusions of our study are presented
in Section 6.

2. Description of the Proposed Method

Figure 1 shows a pictorial description of a possible application of the proposed method
by both the aggregator and the distribution system operator (DSO). The DSO provides a
day-ahead load forecast and grid requirements (voltage deviation, VUF in this paper) to
the aggregator and the aggregator collects the possible arrival and departure times of EVs.
The aggregator can then provide all this information to the proposed method, which will
then provide an optimized schedule of EVs to satisfy both grid and customer benefits.
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Figure 1. Application of the proposed method for customer and grid benefits.

A plot of the proposed method to coordinate EVs is shown in Figure 2 and a brief
description of this process is as follows:

(i). The first step requires the preparation of the data of EV-user behaviors, e.g., plug-in
time, plug-out time, daily distance, initial SOC, wear costs, information of the test
systems, such as the residential baseload, dynamic price, and significant parameters
of the PSO optimization algorithm.

(ii). Stage 1 uses the input data from the previous step for further processing and for-
mulates an optimization problem in which the objectives are to minimize VUF, EV
charging costs, and battery degradation costs. This optimization problem is then
solved using the PSO. The output from Stage 1 provides an optimized power schedule
for charging (G2V)/discharging (V2G) as well as the best costs for customers.

(iii). Once the electrical schedule for EVs is obtained, Stage 2 will use this information
to formulate another optimization problem with the purpose of minimizing voltage
deviation. The constraint to this optimization is the reactive power capability of
V2Gs, which can be produced/absorbed by controlling the inverter [39,40]. Moreover,
the reactive power compensation from EVs will not cause any degradation to the
battery [41,42]. Thus, Stage 2 provides a reactive power schedule for EVs.

Figure 2. Proposed method to schedule EVs.
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3. Optimization Problem Formulation

This section discusses the formulation of the optimization problem to mitigate different
electrical problems, such as voltage unbalance factors and voltage deviations, minimization
of customer charging, and battery degradation costs.

3.1. Objective Function
3.1.1. Voltage Unbalance

Voltage unbalance is given by Equation (1) and the goal is to minimize this quantity
according to the IEEE standard [43] by controlling the active/reactive power from EVs.

F1 = Minimize
N

∑
n=1

∣∣∣∣∣V−n,t

V+
n,t

∣∣∣∣∣ (1)

The minimization of F1 will reduce the VUF of the network.

3.1.2. Voltage Deviation

The second objective of the proposed approach is to minimize the voltage deviation
between the actual and desired voltage values. This can also be controlled by charg-
ing/discharging of the active and reactive power from EVs.

F2 = Minimize
24

∑
t=1

N

∑
n=1

∣∣∣VMeas(n,t) −VRe f

∣∣∣ (2)

The minimization of F2 will help to keep the bus voltages closer to the desired values.

3.1.3. Customer Costs

A major objective from the customer perspective is to minimize charging costs and
maximize discharging intervals. However, battery life will deteriorate if there is excessive
discharging, and so this price (wp) must be included in the optimization problem and is
calculated using the method described in [44]. The objective functions for customers are
given by Equations (3) and (4).

F3 = Minimize
N

∑
n=1

((PEV_Chg(n,t) × Ct)− (PEV_Dchg(n,t) × RV2G))× ∆t (3)

The minimization of F3 will reduce the charging costs by managing charging/discharging
in proper time.

F4 = Minimize
N

∑
n=1

(PEV_Chg(n,t)ηch +
PEV_Dchg(n,t)

ηDch
)wp × ∆t) (4)

The minimization of F4 will help customers to decrease the battery degradation costs.

3.2. Constraints

All the objective functions given by Equations (1)–(4) are subject to several constraints.
Equation (5) ensures that the number of EVs charging and discharging does not exceed
the total number of EVs in the system. Equations (6) and (7) control EV charging and
discharging, and Equations (8) and (9) ensure that EVs will not charge and discharge at the
same time.

NChg + NDchg = Ntotal (5)

xChg,i PChgMin ≤ PChg,i ≤ xChg,i PChgMax (6)

xDchg,i PDchgMin ≤ PDchg,i ≤ xDchg,i PDchgMax (7)

xChg,i ∈ (0, 1) (8)
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xDchg,i ∈ (0, 1) (9)

The constraints for the maximum efficiency of charging and discharging are presented
in Equations (10) and (11), respectively. Equation (12) computes the maximum amount
of available reactive power exchange from an EV, which is taken as 58% of the maximum
rated power of EVs in this study [39,45]. Equation (13) defines the range of the reactive
power discharge.

PEV_Chg,i = ηChg × PChg,i (10)

PEV_Dchg,i =
PDchg,i

ηDchg
(11)

QDchgMax,i = (0.58× PEV_Chg/Dchg,i) (12)

−QDchgMax,i ≤ QDchg,i ≤ QDchgMax,i (13)

Equations (14)–(16) calculate the SOC values and helps them to be in the customer
desired range.

SOCi,t = SOCi,t−1 +
(ηch × PEV_Chg,i −

PEV_Dchg,i
ηDch

)

PNC,i
(14)

SOCmin ≤ SOCi,t ≤ SOCmax (15)

SOC f inal = SOCdesired (16)

Equations (17) and (18) are the power flow constraints.

Pi,t − Pd,i,t −Vi,t

Nbus

∑
j=1

Vj,t(Gij cos φij,t + Bij sin φij,t) = 0 (17)

Qi,t −Qd,i,t −Vi,t

Nbus

∑
j=1

Vj,t(Gij cos φij,t + Bij sin φij,t) = 0 (18)

4. Application of PSO to Solve the Proposed Optimization Problem

Meta-heuristic optimization algorithms are highly popular for solving complex, non-
linear, and non-convex optimization problems. Particle swarm optimization (PSO) is one
such popular meta-heuristic optimization algorithm and is based on swarm-intelligence,
which is popularly used to obtain a global solution for several problems [46]. PSO uses the
position and velocity of swarms to find a global solution. Thus, it was chosen to solve the
proposed optimization problem formulated in the previous section of this paper.

The proposed method is used for minimizing four objective functions (VUF, VD, CC,
BC). A high penetration with different phase connections can cause voltage unbalance
and voltage deviations. The proposed method is separated into two stages, where the first
stage aims to minimize voltage unbalance, charging costs, and battery degradation costs by
using active power as a decision variable. The second stage aims only to minimize voltage
deviation by obtaining the optimal active power to calculate the proportional reactive
power, which is the decision variable of the second stage. The advantage of dealing with
voltage deviation in the second stage is to avoid overvoltage occurring in some time
intervals if it is located in first stage, and it is able to improve positive sequence voltage,
which reduces voltage deviation, as well as VUF, according to Equation (6). Another
advantage is that decreasing the objectives in the first stage decreases complicated searching
of global optimal solution.

The major steps of the proposed method are shown in Figure 3 and are as follows:
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Figure 3. Application of PSO to solve the proposed method.

Step 1: Specification of the total number of iterations, population size, and hours (h).
Step 2: Random initialization of the particle position according to the population size

in each bus that connects to EVs.

PEV = [Pj
EV,1, Pj

EV,2, Pj
EV,3, . . . Pj

EV,i] (19)

Step 3: Find the position of PEV,i at j + 1 iteration Pj+1
EV,i and velocity of the Pj+1

EV,i at

j + 1 iteration vj+1
i as:

Pj+1
EV,i = Pj

EV,i + vj+1
i (20)

vj+1
i = ωvj

i + c1•randj
1(pbestj

i − Pj
EV,i) + c2•randj

2(gbestj
k − Pj

EV,i) (21)

Step 4: Calculate the fitness values for the Stage I objective functions given by
Equations (1), (3), and (4). The weight sum method is used to combine the multiple
objectives into a single one.

Min
x

Fws = θ1(F1(x)/F1,nor) + θ2(F2(x)/F2,nor) + . . . θn(Fn(x)/Fn,nor) (22)

This process utilizes DIgSILENT software to run the unbalance load flow and obtain
the value of the fitness function.

Step 5: PSO will then compare the obtained fitness with the global best solution. The
global best solution is changed if the local best solution is better.
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Step 6: Continue until a maximum number of iterations is reached.
Step 7: Proceed to the second stage and initialize the constraints according to the

population size for each bus, which has EVs, using Equation (23) when EVs are charging
and discharging.

QEV = [Qj
EV,1, Qj

EV,2, Qj
EV,3, . . . Qj

EV,i] (23)

Step 8: Find the position of the particle at j + 1 iteration Qj+1
EV,i and velocity of the

particle at j + 1 iteration vj+1
i as Step 3.

Qj+1
EV,i = Qj

EV,i + vj+1
i (24)

vj+1
i = ωvj

i,k + c1 × randj
1(pbestj

i,k −Qj
EV,i) + c2 × randj

2(gbestj
k −Qj

EV,i) (25)

Step 9: Compute the fitness function by solving Equation (6). This step utilizes
DIgSILENT software.

Step 10: Find the best current and global solution.
Step 11: Continue until a maximum number of iterations is reached.
Step 12: Store the optimal PChg, PDchg, QDchg,G2V, QDchg,V2G.
Step 13: Increase the hours and stop when the maximum hour is reached.
Step 14: Generate the final schedule for the EVs.

5. Simulation Results and Discussion
5.1. Description of the Test System

This study uses the IEEE 34 distribution system as the test system. The EVs are
added randomly at buses 816, 824, 854, 842, and 846, as shown in Figure 1. The residential
load profile for this study is taken from [47] and the charging/discharging price is taken
from [48]. This study assumes all EVs are a Nissan Leaf model, and the battery size and the
range under full charge are 24 kWh and 170 km, respectively [49]. A Board Level II Type
charger is assumed to be used in this study. This is a single-phase AC IEC 61851-1 standard
charger that connects to AC with a rating of 240 V and 32 A [50]. The driving behavior is
generated randomly for all EV users based on data from [51]. The arrival/departure times
(Figure 4) are randomly generated from [34]. Moreover, a daily distance of around 40–75
km a day is used to calculate the initial state of charge given by Equation (26) and is also
shown in Figure 5. Different EV penetration levels have been used for this study, and the
details are given in Table 2.

SOCInitial = 100%× (DM − DD)

DM
(26)

Table 2. EV penetration for different phases and nodes.

Phase A Phase B Phase C

EV Bus Connection 816 824 854 842 846 816 824 854 842 846 816 824 854 842 846

30% (162 EVs) 22 1 0 21 0 5 0 41 15 21 0 21 15 0 0
50% (271 EVs) 32 11 0 31 0 20 0 51 25 31 0 31 35 4 0
75% (407 EVs) 45 23 4 43 10 23 4 63 37 43 13 43 37 15 4
100% (542 EVs) 55 32 13 52 19 32 13 72 46 51 22 52 46 24 13
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The proposed method is analyzed under three different scenarios: case study when
EV penetration varies from 30% to 100% (Table 2), case study when there are different
price signals according to seasons (Figure 6), and case study when there are different load
profiles according to weekdays and weekends (Figure 7). Furthermore, we also compared
the performance of the proposed method to four other methods.
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Figure 7. Residential load profile with different electric load profiles.

Uncontrolled Charging: EV charging when the users arrives (the arrival time is
assigned randomly from 5:00 p.m. to 12:00 a.m., as shown in Figure 4).

Randomly as:
Method 1: CC, VUF, VD with P-V2G (both system and customer objectives) [29,30]
Method 2: CC, BC (only customer objective) [26–28]
Method 3: VUF, VD with Q-V2G (only system objective) [31–34]
All the results are only shown for bus 846 and in the 5 p.m.–10 a.m. time period, which

represents the worst-case scenarios for this study. Tables 3 and 4 show the simulation
parameters for the constraints and PSO used in this study, respectively.

Table 3. Simulation parameters for constraints.

Parameter Value

E0 24 kWh
EDriving 0.4 p.u

EV2G 0.3 p.u
PMax

Chg(t,n) 7.68 kW

PMax
Dchg(t,n) 7.2 kW

Ct Obtained from Figure 6
RV2G 0.324 EUR/kWh

SOCInitial Obtained from Figure 5
SOC f inal ≥95%

∆t 1 h
η

Chg
i,t

93%

η
Dchg
i,t

93%
CC 110.97 EUR/kWh

CSLV 60% of CC
S f 2.22
Kw 0.00015 kWh/kWh

CL,NoV2G 1035.19 days (3 years)
CL,V2G 706.214 days (2 years)

wp,NoV2G 0.179 EUR/kWh
wp,V2G 0.122 EUR/kWh
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Table 4. Simulation parameters for PSO.

Parameter Value

c1 1.4962
c2 1.4962

Iteration 50
Population size 25

Weight for VUF in Stage 1 (θ1) 0.5
Weight for CC in Stage 1 (θ2) 0.25
Weight for BC in Stage 1 (θ3) 0.25

5.2. Results and Discussion under Different Scenarios
5.2.1. Case Study under Different EV Penetration Levels

This case study analyzes the performance of different methods for different penetration
levels. At 30% penetration, we can observe from Figure 8a that the proposed method
activates the V2G mode during the peak period and starts charging during the off-peak
period. Similarly, the reactive power discharge with the proposed method can be seen in
Figure 8b. Figure 9a shows that there is a severe undervoltage problem with uncoordinated
charging during peak load conditions, whereas the system voltage is close to the desired
limit with the proposed method. We can observe from Figure 9b that the VUF lies under
2% for all methods except Method 1.

Figure 8. Schedule of (a) active power for EVs for different methods; (b) reactive power for EVs for different methods under
30% EV penetration.

Figure 9. Bus 846 (a) voltage and (b) VUF under 30% EV penetration.
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Figure 10a shows the result for 50% penetration; it can be seen that Methods 1 and 3
are unable to maintain the voltage level near the prescribed limit (±5%) for this case study.
The other methods, however, can keep the bus voltage at the prescribed limits. The plot of
VUF, as shown by Figure 10b, shows that the VUF also lies within the prescribed limit of
the proposed method for this case study.

Figure 10. Bus 846 (a) voltage and (b) VUF under 50% EV penetration.

At 75% penetration, the bus voltage profile is improved for most methods, but lies
closest to the desired voltage with the proposed method, as shown by Figure 11a. The
plot of VUF as given by Figure 11b shows that the VUF exceeds the 2% limit with other
methods but it lies within the limits for the proposed method.

Figure 11. Bus 846 (a) voltage and (b) VUF under 75% EV penetration.

Figure 12a,b shows the plots of the bus voltage and VUF at a 100% penetration level.
It can be seen from the figures that both the bus voltage and the VUF also lie within the
prescribed limits using the proposed method compared to other methods.

Figure 13 shows that the final SOC lies within the desired limits for customers with
the application of the proposed method.
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Figure 12. Bus 846 (a) voltage and (b) VUF under 100% EV penetration.

Figure 13. State of charge for the proposed method.

5.2.2. Case Study under Different Price Signals

This scenario considers analysis under different price signals. Three price signals
corresponding to three different seasons (winter, summer, and spring on weekdays) have
been considered for the analysis. An EV penetration of 100% is assumed for this scenario as
it represents the worst-case scenario based on the results obtained in the previous section.

Figure 14a,b shows the active and reactive power schedules obtained using different
methods. The plot given in Figure 15a, shows that the bus voltage lies well below the
prescribed limit with uncoordinated charging. However, the voltage profile improves with
Method 1 and is nearest to the prescribed limit with the proposed method. The plot of VUF
as shown by Figure 15b shows that the VUF is worse with Method 2 but lies within the
limit for the other methods. A similar inference can also be made from Figures 16 and 17
regarding voltage and VUF for other seasonal price variations.

Figure 18a–c shows that the total costs for the winter, summer, and spring seasons are
lowest with the proposed method, but the battery degradation costs are a little bit expensive
with the proposed method. However, the revenue savings from the charging costs and the
reward from V2G far outweigh the battery degradation costs with the proposed method.
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Figure 14. Schedule of (a) active power for EVs under different methods and (b) reactive power for EVs under different
methods for price signals in the spring season.

Figure 15. Bus 846 (a) voltage and (b) VUF for price signals in the spring season.

Figure 16. Bus 846 (a) voltage and (b) VUF for price signals in the summer season.
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Figure 17. Bus 846 (a) voltage and (b) VUF for price signals in the winter season.
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Figure 18. Total cost for (a) winter, (b) summer, and (c) spring (1 = uncoordinated charging; 2 = Method 1; 3 = Method 2;
4 = Method 3; 5 = proposed method).

We can observe from Table 5 that the total cost is lowest with the proposed method
compared to the other methods and the VUF and voltage also lie within the prescribed
limits for this scenario.
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Table 5. Comparison results of case study under different price signals.

100%
Penetration Weekday Uncontrolled

Charging Method 1 Method 2 Method 3 Proposed
Method

Winter

Max VUF (%) 2.1 2.2 4 2 1.98
Min Voltage (p.u) 0.825 0.94 0.94 0.95 0.97
Max Voltage (p.u) 1 1 1 0.98 1.01

Total Cost (EUR/day) −3.00 −2.70 −2.47 −4.15 −1.723

Summer

Max VUF (%) 2.1 2.2 4 2.1 1.98
Min Voltage (p.u) 0.82 0.925 0.94 0.935 0.98
Max Voltage (p.u) 1 1.01 1 0.99 1.02

Total Cost (EUR/day) −3.015 −2.9 −2.4 −3.61 −1.99

Spring
Max VUF (%) 2.1 2.5 5 2.1 1.95

Min Voltage (p.u) 0.85 0.925 0.94 0.925 0.975
Max Voltage (p.u) 1 1.01 1 0.97 1.01

Total
Cost (EUR/day) −3.006 −2.75 −2.169 −4.21 −1.94

5.2.3. Case Study under Weekend Load Profile

This scenario considers an analysis of the weekend load profile for domestic consumers
(Figure 7). From the previous case study, it can be assumed that the proposed method is
able to provide VUF, voltage in prescribed limits with the lowest total cost.

Figure 19a,b shows the active and reactive power schedule obtained using different
methods under this scenario, and it can be seen that the proposed method charges and
discharges less under peak load hours. The plot of the bus voltage as given by Figure 20a
shows that the bus voltage lies well below the prescribed limit with uncoordinated charging.
However, the voltage profile is nearest to the prescribed limit with the proposed method for
this case study as well. The VUF, as shown by Figure 20b, shows that the VUF lies within
limits with the proposed method, for both weekdays and weekends.

Figure 19. Schedule of (a) active power for EVs using different methods for weekend electric load profiles and (b) reactive
power for EVs under different methods for weekend electric load profiles.
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Figure 20. Bus 846 (a) voltage and (b) VUF for weekend electric load profiles.

Figure 21a shows that the proposed method is able to provide the lowest total cost for
weekdays/weekends for different residential power demands, which can also be inferred
from the results in Table 6. Figure 21b shows that the final SOC lies within the prescribed
limits for weekends with the application of the proposed method.

Figure 21. Total cost and SOC. (a) Charging cost in different electric load profiles (weekend). (b) Average SOC in different
electric load profiles (weekend).

Table 6. Comparison of result of the case study under different load profiles.

100%
Penetration Winter Uncontrolled

Charging Method 1 Method 2 Method 3 Proposed
Method

Weekday

Max VUF (%) 2.1 2.2 4 2 1.98
Min Voltage (p.u) 0.825 0.94 0.94 0.95 0.97
Max Voltage (p.u) 1 1 1 0.98 1.01

Total Cost (EUR/day) −3.00 −2.70 −2.47 −4.15 −1.723

Weekend

Max VUF (%) 2 2.25 3.8 2 1.98
Min Voltage (p.u) 0.89 0.96 0.97 0.97 0.99
Max Voltage (p.u) 1.01 1.03 1.01 1.01 1.02

Total Cost (EUR/day) −2.33 −2.11 −2.42 −4.18 −1.76

5.2.4. Discussion

The results from the case study under different EV penetration levels show that the
voltage deviation problem gets worse when EV penetration ranges from 30% to 100% in
uncoordinated charging, and the voltage unbalance problem get worse when EV pene-
tration ranges from 75% to 100% with uncoordinated charging. The results show that all
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of these problems are reduced with the proposed method and that the final desired SOC
is maintained.

In the case study under different EV price signals, the impact of voltage deviation
and the voltage unbalance problem is worst with uncoordinated charging. The proposed
method schedules times for charging/discharging of both the active power and reactive
power of EVs in such a manner that it largely improves voltage profile and reduces VUF
with customer benefits compared to the uncoordinated charging.

In the case study under a weekend load profile, the voltage unbalance problem does
not occur with uncoordinated charging but the bus voltage is below the desired limit.
The proposed method is capable of scheduling EVs to improve both the system and
customer requirements.

However, battery degradation costs with the proposed method, in all case studies, are
a bit higher than with uncoordinated charging, Method 2, Method 3, and Method 4, but
the benefits from the total costs are better with proposed method, which helps to outweigh
this drawback.

Method 2 is exclusively designed to minimize the charging costs and battery degrada-
tion costs and thus the total cost is the second lowest after the proposed method. However,
as the researchers do not control VUF, its value is high compared to other methods for all
seasons. This shows that EVs with V2G have to consider VUF failure, which can lead to
deterioration of the system.

This study shows that battery degradation has little impact on voltage deviation.
However, it is an important objective to consider as it directly affects battery lifetime.

6. Conclusions

This paper proposes a two-stage approach to schedule EV charging with both G2V and
V2G capabilities to improve grid voltage, reduce VUF, and reduce prosumer charging costs.

Our study yielded the following findings:

(i). The proposed method provides the lowest cost for customers to charge/discharge
their EVs compared with other existing methods for all the scenarios considered
in this study. For the summer season, the total cost using the proposed method is
around 1.515 times lower than uncontrolled charging and 1.206 times lower than the
result obtained using the method which provided the least cost next to the proposed
method. A similar trend was seen for other scenarios considered in this study.

(ii). The battery degradation costs with the proposed method are around 1.756 times lower
than Method 1 but 1.64, 1.86, and 1.37 times higher than with uncontrolled charging,
and Methods 2 and 3, respectively, when EV penetration is 100%. Similar results were
obtained for other case studies taken in this paper.

(iii). The minimum voltages (p.u) of the critical bus for winter, summer, spring, 100%
penetration scenario, weekday and weekend load profiles were 0.97, 0.98, 0.975, 0.97,
and 0.99, respectively, and the maximum voltages (p.u) of the critical bus for winter,
summer, spring, 100% penetration scenario, weekday and weekend load profile were
1.01, 1.02, 1.01, 1.01, and 1.02, respectively, which shows that the voltage profile lies
within the ±5% voltage limit. However, the minimum voltage under uncontrolled
charging lies below the desired limits for all the scenarios.

(iv). The values of VUF under uncontrolled charging for winter, summer, spring, 100%
penetration scenario, weekday and weekend load profile were 2.1, 2.1, 2.1, 2.1, and
2, respectively. The values of VUF with the proposed method for winter, summer,
spring, 100% penetration scenario, weekday and weekend load profile were 1.98, 1.98,
1.95, 1.98, and 1.98, respectively. Thus, it can be seen that the VUF also lies within the
prescribed limit (<2% IEEE standard) with the application of the proposed method
for all the case studies considered in this study.

This study is limited to only main two grid requirements, namely VUF and voltage
deviation; however, there are many other grid requirements, such as minimization of
loss, maximization of reliability, stability improvement, reactive power pricing, etc. Thus,
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this work can be extended to consider these objectives. Thus, our future work will use
multi-objective optimization, such as NSGA-III, to coordinate EVs while considering
many objectives.
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Nomenclature

Bi,j Susceptance
Ct Charging Cost in time t (EUR/kWh)
CC Capital Cost (EUR/kWh)
CSLV Salvage value of the battery (EUR/kWh)
CL,NoV2G Battery cycle life wthout V2G mode (days)
CL,V2G Battery cycle life wth V2G mode (days)
c1,c2 Accerlelation Coefficent
DD Daily distance of EV (km)
DM Maximum distance of EV type (km)
E0 Initial rated energy (kWh)
EDriving Energy in driving (kWh)
EV2G Energy in V2G (kWh)
Fn(x), Fn,nor Objective function and normalized function
gbestj

i,k global best of PSO
Gi,j Conductance (S)
Kw Spectively denote the initial and final SOC (kWh/kWh)
N Number of nodes in the system.
NChg, NDchg Number of EVs charging, discharging

pbestj
i,k Local best for PSO

PChgMax, PDchgMax Maximum power charging/discharging (kW)
PChg,i, PDchg,i Individual EVs charging/discharging (kW)
PEV_Chg(n,t) Power charging at node n (kW)
PEV_Dchg(n,t) Power discharging at node n (kW)
Pi,t, Pd,i,t Active power supply and demand of bus i at time t (kW)
QDchgMax,i Maximum individual reactive power discharging (kVar)
QDchg,i Individual reactive power discharging (kVar)
Qi,t, Qd,i,t Reactive power supply and demand of bus i at time t (kVar)
rand1, rand2 Random number
RV2G V2G reward (EUR/kWh)
SOCi,t Individual state of charging of EV i at time t
SOCinitial , SOC f inal Initial/final state of charging of EVs
SOCmax,SOCmin, Maximum/minimum stage of charge of EVs
S f Scaling factor of battery wear during driving
Vi,t, Vj,t Voltage of bus i and j at time t

vj
i,k velocity of a swarm i in j-th iteration

VMeas(n,t) Measured voltage at node n
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VRe f Reference voltage
V− Negative sequence components in voltage
V+ Positive sequence components in voltage
wp wear price (EUR/kWh)
wp,V2G wear price with V2G (EUR/kWh)
wp,NoV2G wear price with V2G (EUR/kWh)
xChg,i , xDchg,i Charging/discharging indicator ∈ (0, 1)

xj
i,k, yj

i,k Position in Stage 1 and 2 of a swarm i in j-th iteration
∆t Differential time (1 h)
ηch Efficiency of charging
ηDch Efficiency of discharging
ηChg, ηDchg Efficiancy of charging/discharging
ω Inertial weight factor
θn Weight of multi objective function
φi j,t Voltage phase angle between buses i and j at time t
AC Alternating current
BC Battery degradation cost
CC Charging cost
DC Direct current
DGs Distributed generation
EV Electric vehicle
EVs Electric vehicles
G2V Grid to vehicle
PSO particle swarm optimization
SOC State of charge
VD Voltage deviation
VUF Voltage unbalance factor
V2G Vehicle to grid
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