Dynamic Nonprehensile Manipulation of a Moving Object Using a Batting Primitive
Abstract
:1. Introduction
2. Robot Batting System
3. Method
3.1. Ball Recognition
3.1.1. Color Segmentation
3.1.2. Circle Fitting
3.1.3. Calibration
3.2. Ball Trajectory Estimation
3.2.1. Least Square Regression
3.2.2. Weighted Least Square Regression
3.3. Motion Control of the Robot Arm
3.3.1. Trajectory Interpolation
3.3.2. Robot Batting Trajectory
3.3.3. Ball Direction Control
4. Experiment
4.1. Batting Experiment
4.2. Experiment to Analyze the Predicted Ball Position Accuracy
4.3. Experiment to Analyze the Accuracy of the Predicted Ball Arrival Times
4.4. Constant Posture Control Method
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lynch, K.M.; Mason, M.T. Dynamic nonprehensile manipulation: Controllability, planning, and experiments. Int. J. Robot. Res. 1999, 18, 64–92. [Google Scholar] [CrossRef]
- Ruggiero, F.; Petit, A.; Serra, D.; Satici, A.; Cacace, J.; Donaire, A.; Ficuciello, F.; Buonocore, L.; Fontanelli, G.; Lippiello, V.; et al. Nonprehensile manipulation of deformable objects: Achievements and perspectives from the robotic dynamic manipulation project. IEEE Robot. Autom. Mag. 2018, 25, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Ruggiero, F.; Lippiello, V.; Siciliano, B. Nonprehensile dynamic manipulation: A survey. IEEE Robot. Autom. Lett. 2018, 3, 1711–1718. [Google Scholar] [CrossRef]
- Satici, A.C.; Ruggiero, F.; Lippiello, V.; Siciliano, B. A Coordinate-Free Framework for Robotic Pizza Tossing and Catching. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 3932–3939. [Google Scholar]
- Bätz, G.; Yaqub, A.; Wu, H.; Kühnlenz, K.; Wollherr, D.; Buss, M. Dynamic Manipulation: Nonprehensile Ball Catching. In Proceedings of the 18th Mediterranean Conference on Control and Automation, MED’10, Marrakech, Morocco, 23–25 June 2010; pp. 365–370. [Google Scholar]
- Serra, D.; Satici, A.C.; Ruggiero, F.; Lippiello, V.; Siciliano, B. An Optimal Trajectory Planner for a Robotic Batting Task: The Table Tennis Example. In Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics, Lisbon, Portugal, 29–31 July 2016; pp. 90–101. [Google Scholar]
- Nieuwenhuisen, D.; van der Stappen, A.F.; Overmars, M.H. Pushing a disk using compliance. IEEE Trans. Robot. 2007, 23, 431–442. [Google Scholar] [CrossRef]
- Higashimori, M.; Utsumi, K.; Omoto, Y.; Kaneko, M. Dynamic manipulation inspired by the handling of a pizza peel. IEEE Trans. Robot. 2009, 25, 829–838. [Google Scholar] [CrossRef]
- Donaire, A.; Ruggiero, F.; Buonocore, L.R.; Lippiello, V.; Siciliano, B. Passivity-based control for a rolling-balancing system: The nonprehensile disk-on-disk. IEEE Trans. Control Syst. Technol. 2016, 25, 2135–2142. [Google Scholar] [CrossRef]
- Woodruff, J.Z.; Lynch, K.M. Planning and Control for Dynamic, Nonprehensile, and Hybrid Manipulation Tasks. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 4066–4073. [Google Scholar]
- Chen, X.; Huang, Q.; Wan, W.; Zhou, M.; Yu, Z.; Zhang, W.; Yasin, A.; Bao, H.; Meng, F. A robust vision module for humanoid robotic ping-pong game. Int. J. Adv. Robot. Syst. 2015, 12, 35. [Google Scholar] [CrossRef] [Green Version]
- Nakabo, Y.; Ishikawa, M.; Toyoda, H.; Mizuno, S. 1 ms Column Parallel Vision System and Its Application of High Speed Target Tracking. In Proceedings of the ICRA, Millennium Conference, IEEE International Conference on Robotics and Automation, Symposia Proceedings, San Francisco, CA, USA, 24–28 April 2000; pp. 650–655. [Google Scholar]
- Hsiao, T.; Yang, C.M.; Lee, I.H.; Hsiao, C.C. Design and implementation of a ball-batting robot with optimal batting decision making ability. In Proceedings of the 2014 IEEE International Conference on Automation Science and Engineering (CASE), New Taipei, Taiwan, 18–22 August 2014; pp. 1026–1031. [Google Scholar]
- Serra, D.; Ruggiero, F.; Satici, A.C.; Lippiello, V.; Siciliano, B. Time-optimal paths for a robotic batting task. In Informatics in Control, Automation and Robotics; Springer: Cham, Switzerland, 2018; pp. 256–276. [Google Scholar]
- Gardner, M.; Jia, Y.B.; Lin, H. Batting Flying Objects to the Target in 2D. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016; pp. 3225–3232. [Google Scholar]
- Jia, Y.-B.; Gardner, M.; Mu, X. Batting an in-flight object to the target. Int. J. Robot. Res. 2019, 38, 451–485. [Google Scholar] [CrossRef]
- Schüthe, D.; Frese, U. Optimal Control with State and Command Limits for a Simulated Ball Batting Task. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 3988–3994. [Google Scholar]
- Pekarovskiy, A.; Nierhoff, T.; Hirche, S.; Buss, M. Dynamically consistent online adaptation of fast motions for robotic manipulators. IEEE Trans. Robot. 2017, 34, 166–182. [Google Scholar] [CrossRef] [Green Version]
- Kober, J.; Mülling, K.; Krömer, O.; Lampert, C.H.; Schölkopf, B.; Peters, J. Movement Templates for Learning of Hitting and Batting. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–7 May 2010; pp. 853–858. [Google Scholar]
- Mori, S.; Tanaka, K.; Nishikawa, S.; Niiyama, R.; Kuniyoshi, Y. High-speed and lightweight humanoid robot arm for a skillful badminton robot. IEEE Robot. Autom. Lett. 2018, 3, 1727–1734. [Google Scholar] [CrossRef]
- Senoo, T.; Namiki, A.; Ishikawa, M. High-Speed Batting Using a Multi-Jointed Manipulator. In Proceedings of the IEEE International Conference on Robotics and Automation, New Orleans, LA, USA, 26 April–1 May 2004; pp. 1191–1196. [Google Scholar]
- Senoo, T.; Namiki, A.; Ishikawa, M. Ball Control in High-Speed Batting Motion Using Hybrid Trajectory Generator. In Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, FL, USA, 15–19 May 2006; pp. 1762–1767. [Google Scholar]
- Park, I.W.; Kim, J.Y.; Lee, J.; Oh, J.H. Mechanical design of the humanoid robot platform, HUBO. Adv. Robot. 2007, 21, 1305–1322. [Google Scholar] [CrossRef]
- Plataniotis, K.N.; Venetsanopoulos, A.N. Color Image Processing and Applications; Springer Science & Business Media: Berlin, Germany, 2013. [Google Scholar]
- Bradski, G.; Kaehler, A. Learning OpenCV: Computer Vision with the OpenCV Library; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2008. [Google Scholar]
- Gonzalez, R.C.; Woods, R.E. Digital Image Processing; Addison-Wesley Publishing Company: Boston, MA, USA, 1992. [Google Scholar]
- Strutz, T. Data Fitting and Uncertainty. A Practical Introduction to Weighted Least Squares and Beyond; Vieweg + Teubner: Wiesbaden, Germany, 2010. [Google Scholar]
- Lawson, C.L.; Hanson, R.J. Solving Least Squares Problems; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1995. [Google Scholar]
- Nonprehensile Dynamic Manipulation: High Speed Ball Batting Using Visual Feedback. Available online: https://www.youtube.com/watch?v=BPGVibfnOXg (accessed on 19 January 2018).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joe, H.-M.; Lee, J.; Oh, J.-H. Dynamic Nonprehensile Manipulation of a Moving Object Using a Batting Primitive. Appl. Sci. 2021, 11, 3920. https://doi.org/10.3390/app11093920
Joe H-M, Lee J, Oh J-H. Dynamic Nonprehensile Manipulation of a Moving Object Using a Batting Primitive. Applied Sciences. 2021; 11(9):3920. https://doi.org/10.3390/app11093920
Chicago/Turabian StyleJoe, Hyun-Min, Joonwoo Lee, and Jun-Ho Oh. 2021. "Dynamic Nonprehensile Manipulation of a Moving Object Using a Batting Primitive" Applied Sciences 11, no. 9: 3920. https://doi.org/10.3390/app11093920
APA StyleJoe, H. -M., Lee, J., & Oh, J. -H. (2021). Dynamic Nonprehensile Manipulation of a Moving Object Using a Batting Primitive. Applied Sciences, 11(9), 3920. https://doi.org/10.3390/app11093920