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Abstract: An efficient coupled mode method for modeling sound propagation in horizontally strati-
fied inhomogeneous waveguides, in which the seabed is modeled as a (layered) acoustic medium, is
presented. The method is based on Fawcett’s coupled mode method and the multimodal admittance
method. The acoustic field is expanded onto the unusual local eigenfunctions composed by normal
modes in the corresponding one-layer homogeneous waveguides with constant depth equal to the
local total depth of the multilayered waveguide. A set of energy-conserving first-order differential
equations governing the modal amplitudes of acoustic fields is derived. The admittance method
is employed to solve the differential equations in a numerically stable manna. The coupled mode
method considers the backscattering effect of inhomogeneities and full coupling between local modes,
and offers improvement from the viewpoint of efficiency and computational cost. The acoustic fields
predicted by the method agree well with those computed by the commercial finite element software
COMSOL Multiphysics. The method can be extended to further establish fast and accurate 3D sound
propagation models in complex shallow water environments.

Keywords: inhomogeneous acoustic waveguides; range-dependent environments; coupled mode
method; multimodal admittance method

1. Introduction

Sound propagation in shallow water in the presence of inhomogeneities has been stud-
ied for several decades, conventionally modeled by the nonseparable Helmholtz equation
in horizontally stratified inhomogeneous waveguides [1–5]. The step-wise coupled mode
method is commonly used for sound propagation in waveguides in which a step-wise
variation of the properties with range occurs [3,4]. However, for the sound propagation
problem in waveguides with continuously varying properties, the stepwise approximation
of the properties renders the numerical solution procedure cumbersome [6]. The contin-
uous coupled mode method is a classical approach to sound propagation problems in
range-dependent waveguides, originally presented by Pierce [1] and Milder [2]. They
expanded the sound field in terms of usual local modes with range-dependent modal
amplitudes and derived a system of coupled mode equations containing two coupled coef-
ficients. Rutherford and Hawker indicated that the Pierce–Milder coupled mode equations
do not conserve the energy among modes because the usual local modes satisfy different
boundary conditions than the acoustic pressure [7]. Fawcett derived a coupled system of
differential equations containing two coupling matrices and two interface matrices, and
treated this coupled mode system by a finite difference scheme [8]. It is noted that, the
coupling matrices and interface matrices, which require a knowledge of derivatives of
usual local modes, can only be approximately computed [9]. Fawcett’s approach considers
the backscattering effect from range-dependent environments and full coupling between
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modes, and conserves the energy among modes. However, the complexity involved in
computing coupling matrices and interface matrices along with the complex numerical
scheme for solving differential equations makes this approach impractical, especially in
long range and high frequency applications, where the computational requirements in-
crease substantially. In order to reduce computational complexity, several asymptotic
coupled mode methods have been developed. The adiabatic coupled mode method ne-
glects mode coupling among modes and provides accurate predictions when the range
dependence of a medium is sufficiently weak [5,10]. The one-way approximation coupled
mode method is efficient for sound propagation in waveguides where the backscattering
effect can be ignored [5,11]. However, asymptotic coupled mode models can provide very
poor solutions when the range dependence of a medium is significant. Thus, it is still very
important to study an efficient two-way coupled mode method for sound propagation in
complex underwater waveguides.

The multimodal admittance method presented by Pagneux [12,13] is a two-way cou-
pled mode method for wave propagation in waveguides with range-dependent cross-
sections. This method basically consists in rewriting the Helmholtz equation into a set of
first-order evolution equations and then projecting onto the usual local modes to obtain a
set of first-order differential equations governing the modal amplitudes of the wave fields.
In the case where these differential equations are to be integrated numerically, the problem
of numerical divergence owing to the presence of evanescent modes appears. The admit-
tance matrix, namely, the Dirichlet-to-Neumann operator in modal domain, is introduced
to avoid numerical problems. Using the admittance matrix, first-order differential equa-
tions are reformulated into the Riccati equation governing the admittance matrix and the
first-order evolution equation governing the modal amplitudes of acoustic pressure. Both
the Riccati equation and the evolution equation can be computed with classical numerical
schemes [12–15]. This method is efficient and numerically stable. Liu and Li [16] derived
a coupled system of first-order differential equations for sound propagation in simple
one-layer waveguides with range-dependent environments based on Fawcett’s coupled
mode method and the multimodal admittance method. We extend the method here to
present an efficient coupled mode scheme for sound propagation and wave scattering
problems in complex inhomogeneous stratified waveguides.

This paper focuses on the two-way solutions in horizontally stratified waveguides
with both bathymetric and volumetric variations. In particular, waveguides with pene-
trable scatterers are also inspected, modeled by horizontally stratified waveguides with
intersecting interfaces. We note that the paper deals with acoustic waveguides in which
the seabed is also modeled as a (layered) acoustic medium. In many applications, the
modeling of seabed needs to account for the shear rigidity (seabed elasticity); see, e.g., [17]
and the references cited therein. In an attempt to reduce the complexity involved in the
computation of usual local modes and their derivatives for complex multilayered envi-
ronments, the local modes for expansion of acoustic pressure in this paper are defined
by the transverse eigenfunctions in a one-layer waveguide with constant depth equal to
the local total depth of the multilayered waveguide and constant physical parameters.
We note that such local modes and their derivatives can be analytically computed. A
set of second-order coupled mode equations governing the modal amplitudes is derived
by projecting the local mode onto the Helmholtz equation. The energy conservation is
guaranteed by introducing interface matrices. Remarkably, we introduce a set of unknown
quantities with respect to the modal amplitudes and their horizontal derivatives. Using
this unknown vector, the second-order coupled mode equations are reduced into a set of
first-order differential equations with respect to the modal amplitudes and the unknown
quantities. This first-order coupled system preserves the energy conservation property,
but no interface matrix is contained. The required coupling matrices can be computed
with numerical integral methods since their integrands are analytical. Moreover, it is
straightforward to implement the admittance method for numerically stable solutions. The
use of the unknown vector substantially increases the efficiency of the method. Since a
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more realistic representation of the ocean bottom is a penetrable infinite half space, the
application of our coupled mode method to waveguides with a penetrable infinite half
space is studied on basis of the elimination of branch cut and branch line integrals [18].
Numerical results for sound propagation in inhomogeneous multilayered waveguides
predicted by commercially available finite element software COMSOL multiphysics are
also presented to validate the efficiency and accuracy of this method.

The remainder of the paper is organized as follows: Section 2 presents the basic
formulation of two-way and one-way asymptotic coupled mode methods for sound propa-
gation in horizontally stratified inhomogeneous waveguides. The sound field expression
generated by an arbitrary incident wave in such an environment is provided. By construct-
ing mapping between incident waves and wave fields, optimal incident waves resulting
in sound self-focusing at any position [19] in the multilayered waveguide are studied.
Section 3 illustrates the sound fields predicted by our coupled mode method and COM-
SOL for a complex multilayered waveguide, and the sound self-focusing pattern in this
numerical example is shown. Section 4 presents the extension of the present coupled
mode formalism to waveguides with the effect of internal waves and a penetrable bottom.
Section 5 gives the conclusions.

2. Method
2.1. Two-Dimensional Two-Way Coupled Mode Equations

Let us start with sound propagation in the multilayered waveguide sketched in
Figure 1 with interfaces hj(x), j = 1, 2, . . . , J − 1, separating the layers. The upper water
column is confined between a flat pressure-release surface and underlying sediment layers
of any shape. The Neumann boundary condition is imposed at the bottom of the lower layer.
The whole region is divided into three subregions. Subregion 0 ≤ x ≤ xR corresponds to
the scattering region where both volumetric and bathymetric variations exist. In subregions
x < 0 (not shown) and x > xR, mass density and sound speed are assumed to be only
depth-dependent, and boundaries and interfaces are horizontal. This assumption allows
for consistently formulating the source and radiation conditions by means of normal-
mode expansions.

Figure 1. (Color online) Geometry of 2D multilayered waveguide.

The Helmholtz equation governing the acoustic pressure is

∂

∂x

[
1

ρ(x, z)
∂p(x, z)

∂x

]
+

∂

∂z

[
1

ρ(x, z)
∂p(x, z)

∂z

]
+

ω2

ρ(x, z)c2(x, z)
p(x, z) = 0, (1)

supplemented by boundary conditions

p(x, h0) = 0,
∂p
∂n
(
x, hJ(x)

)
= 0, (2)
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and continuous conditions
p(x, h−j (x)) = p(x, h+j (x)),

1
ρj(x, h−j (x))

∂p(x, h−j (x))

∂n
=

1
ρj+1(x, h+j (x))

∂p(x, h+j (x))

∂n
,

(3)

where j = 1, 2, . . . , J − 1, c(x, z) is sound speed, and ρ(x, z) is density. c(x, z) and ρ(x, z)
could exhibit sharp discontinuities at the interfaces.

According to the multimodal method, acoustic pressure can be expressed as a sum of
transverse eigenfunctions ψn(z; x):

p(x, z) =
N−1

∑
n=0

Pn(x)ψn(z; x), (4)

where N is the truncation number, Pn(x) are modal amplitudes, and ψn(z; x) are defined to
be normal modes of a one-layer homogeneous waveguide with constant depth equal to the
local depth of the multilayered waveguide, satisfying the following equations:

∂2ψn(z; x)
∂z2 + γ2

nψn(z; x) = 0,

ψn(h0; x) = 0,
∂ψn(hJ(x); x)

∂z
= 0.

(5)

Eigenfunctions ψn(z; x) in the series representation have analytical expressions, i.e.,

ψn(z; x) =

√
2

hJ(x)
sin
(
(n + 0.5)πz

hJ(x)

)
, n = 0, 1, 2, . . . , N. (6)

In contrast, the usual local modes that traditional coupled mode method used in the se-
ries representation for acoustic pressure, namely, transverse modes at (x, z) of the complex
multilayered waveguide, can only be numerically computed. The use of eigenfunctions
ψn(z; x) simplifies computations in this sense.

Then, a projection of the Helmholtz equation onto ψm(z; x) gives

∫ hJ(x)

0
ψ∗m

[
∂

∂x

(
1
ρ

∂p
∂x

)
+

∂

∂z

(
1
ρ

∂p
∂z

)
+

ω2

ρc2 p
]

dz = 0. (7)

By substituting Equation (4) into Equation (7) and applying Fawcett’s approach [8],
one can obtain second-order coupled-mode equations

∑
n

AmnP′′n + ∑
n
(Bmn + 2Cmn + Dmn)P′n + ∑

n
(Emn + Fmn + Gmn + Kmn − Lmn)Pn = 0, (8)

where Amn, Kmn, and Lmn are correction coefficients resulting from the use of unusual
eigenfunctions ψn(z; x); Bmn, Cmn, Fmn, and Gmn are mode coupling coefficients; and Dmn
and Emn are interface coefficients given by, respectively,

Amn =
∫ hJ(x)

0

1
ρ1

ψ∗mψndz +
J−1

∑
j=1

∫ hj+1(x)

hj(x)

(
1

ρj+1
− 1

ρ1

)
ψ∗mψndz, (9)

Bmn =
∫ hJ(x)

0

∂

∂x

(
1
ρ1

)
ψ∗mψndz +

J−1

∑
j=1

∫ hj+1(x)

hj(x)

∂

∂x

(
1

ρj+1
− 1

ρ1

)
ψ∗mψndz, (10)

Cmn =
∫ hJ(x)

0

1
ρ1

ψ∗m
∂ψn

∂x
dz +

J−1

∑
j=1

∫ hj+1(x)

hj(x)

(
1

ρj+1
− 1

ρ1

)
ψ∗m

∂ψn

∂x
dz, (11)
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Dmn =
1

ρJ(hJ)
h′J(x)ψ∗m(hJ)ψn(hJ)−

J−1

∑
j=1

(
1

ρj+1(hj)
− 1

ρj(hj)

)
h′jψ
∗
m(hj)ψn(hj), (12)

Emn =
1

ρJ(hJ)
h′J(x)ψ∗m(hJ)

∂ψn(hJ)

∂x
−

J−1

∑
j=1

(
1

ρj+1(hj)
− 1

ρj(hj)

)
h′jψ
∗
m(hj)

∂ψn(hj)

∂x
, (13)

Fmn =
∫ hJ(x)

0

1
ρ1

ψ∗m
∂2ψn

∂x2 dz +
J−1

∑
j=1

∫ hj+1(x)

hj(x)

(
1

ρj+1
− 1

ρ1

)
ψ∗m

∂2ψn

∂x2 dz, (14)

Gmn =
∫ hJ(x)

0

∂

∂x

(
1
ρ

)
ψ∗m

∂ψn

∂x
dz +

J−1

∑
j=1

∫ hj+1(x)

hj(x)

∂

∂x

(
1

ρj+1
− 1

ρ1

)
ψ∗m

∂ψn

∂x
dz, (15)

Kmn =
∫ hJ(x)

0

1
ρ1

ω2

c2
1

ψ∗mψndz +
J−1

∑
j=1

∫ hj+1(x)

hj(x)

(
1

ρj+1

ω2

c2
j+1
− 1

ρ1

ω2

c2
1

)
ψ∗mψndz, (16)

Lmn =
∫ hJ(x)

0

1
ρ1

∂ψ∗m
∂z

∂ψn

∂z
dz +

J−1

∑
j=1

∫ hj+1(x)

hj(x)

(
1

ρj+1
− 1

ρ1

)
∂ψ∗m
∂z

∂ψn

∂z
dz. (17)

Since ψn(z; x) satisfy different boundary and interface conditions than acoustic pres-
sure when the bottom boundary and interfaces are range dependent, interface coefficients
Dmn and Emn are introduced in the derivation to guarantee energy conservation among
modes by properly applying the boundary and interface conditions. Details of the deriva-
tion of Dmn and Emn are presented in Appendix A. The interface coefficients can be analyti-
cally computed. Other coefficients can be numerically computed by numerical integration
method. In this paper, we use the Clenshaw–Curtis method [20] to calculate the correction
and coupling coefficients.

Although the fully two-way coupled system Equation (22) conserves the energy
among modes, as any classical coupled mode method, the local modal series representation
Equation (4) has a slow rate of convergence with the modal amplitudes following the
order O(n−2), where n is the mode number. The poor convergence is attributed to the
differences in the interface and boundary conditions satisfied by ψn(z; x) and acoustic pres-
sure. There are several ways that allow for accelerating the convergence of the local mode
series [6,21–24]. One of them [22,23] uses the idea of boundary modes. It is based on an en-
riched modal series representation in terms of supplementary boundary modes, which are
orthogonal to the local eigenfunctions but satisfy different boundary and interface condi-
tions. Boundary modes have the beneficial effect of acting as evanescent modes and do not
change the form of the coupled mode equations. However, the numerical implementation
of the boundary modes for multilayered waveguides is complicated and generally requires
an amount of computing power. We therefore only consider the nonimproved version of
coupled mode equations for sound propagation analysis in multilayered environments.

In order to solve the second-order coupled mode equations, we define a set of un-
known quantities Sm, m = 0, 1, . . . , N − 1, by

Sm =
N−1

∑
n=0

AmnP′n +
N−1

∑
n=0

CmnPn. (18)

The x-derivative of Sm gives

S′m =
N−1

∑
n=0

AmnP′′n + (A′mn + Cmn)P′n + C′mnPn, (19)

where
A′mn = Bmn + Cmn + Cnm + Dmn

C′mn = Emn + Fmn + Gmn + Hmn,
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Hmn =
∫ hJ(x)

0

1
ρ1

∂ψ∗m
∂x

∂ψn

∂x
dz +

J−1

∑
j=1

∫ hj−1(x)

hj(x)

(
1

ρj+1
− 1

ρ1

)
∂ψ∗m
∂x

∂ψn

∂x
dz.

By substituting Equations (18) and (19) into Equation (8), and rewriting the resulting
equation into matrix form, we have

S′ = CTA−1S + (L−K)P, (20)

where P = (Pn), S = (Sm), and the elements in matrices A, C, L, and K are Amn, Cmn, Lmn
and Kmn, respectively. In Equation (20), we use the identical relation H− CTA−1C ≡ 0. To
prove this relation, we expand ∂xψn(z; x) by the eigenfunctions ψn(z; x) as

∂ψn(z; x)
∂x

=
N−1

∑
n′=0

ψn′(z; x)Qn′n(x). (21)

Substituting Equation (21) into the expressions of C and H yields C = AQ and
H = QTAQ. Thus, one can obtain H = CTA−1C.

From Equations (18) and (20), we obtain the first-order coupled mode equations

d
dx

(
P
S

)
=

(
−A−1C A−1

L−K CTA−1

)(
P
S

)
. (22)

We note that, to calculate acoustic fields, only four of the nine matrices in Equation (8)
remain to be computed. The first-order coupled system Equation (22) preserves the energy
conservation property but does not contain any interface matrix. For details of energy
conservation of Equation (22), see Appendix B. It is the proper application of S that gives
the coupled mode equations a simple form and substantially reduces computing power,
especially in long-range application.

The first-order differential equations account for source and radiation conditions.
Directly integrating Equation (22) starting from the radiation condition may encounter the
problem of numerical divergence owing to the exponential growth of evanescent modes.
In order to avoid numerical problems, we introduce admittance matrix Y and propagator
matrix M by S(x) = Y(x)P(x) and P(x) = M(x)P(0), respectively. Y satisfies a Riccati
equation and M a first-order differential equation coupled to Y:

Y′ = −YA−1Y+ YA−1C+ CTA−1Y+ L−K, (23)

M′ = −A−1CM+ A−1YM. (24)

Y can be computed by integrating from right to left with the initial value Y(xR) =√
A(xR)

(
L(xR)−K(xR)

)
. Eigenvalues of matrix A−1(xR)Y(xR) are equal to ikx, where kx

are horizontal wavenumbers in region x > xR (for more details, see Appendix C). M(x) can
be solved from left to right with the initial value M(0) = I, where I is the identity matrix.
In this paper, numerical integration of Equations (23) and (24) is performed using the
Magnus method [25,26]. Further, the reflection and transmission matrices that characterize
the scattering properties of the scattering region can be computed. Reflection matrix R
is defined by Pr(0) = RPi(0), and transmission matrix T is defined by Pt(xR) = TPi(0),
where Pi, Pr, and Pt denote the modal amplitudes of the incident, reflected and transmitted
waves, respectively. We obtain

R =
[
Y0 + Y(0)

]−1[
Y0 − Y(0)

]
, (25)

and
T = M(xR)(I+ R), (26)
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where Y(0) is the admittance matrix at x = 0, and Y0 =

√
A(0)

(
L(0)−K(0)

)
is the local

admittance matrix at x = 0.
Eventually, one can write the acoustic pressure in the multilayered waveguide as

p(x, z) =

{
ΨT(z; x)M(x)(I+ R)Pi(0), 0 ≤ x ≤ xR,

ΨT(z; xR)eA
−1(xR)Y(xR)(x−xR)TPi(0), x > xR,

(27)

where Ψ is a vector with elements being ψn. To summarize, once the geometry and medium
parameters of the waveguide are identified, admittance matrix Y and propagator matrix M
are available for all x. Then, reflection matrix R and transmission matrix T can be deduced.
Finally, the sound field generated by any incident wave can be obtained. Although the
derivation of the coupled mode system in the paper is on basis of multilayered waveguides
in which the properties are continuously varying with range in each layer, the method
can be naturally extended to solve sound propagation problems for waveguides in which
sharp discontinuities of the properties with range exist; see, e.g., [27–29].

2.2. Two-Dimensional One-Way Coupled Mode Equations

For waveguides where the range dependence of medium is weak, one-way approx-
imation coupled-mode formulation provides a speed-up way to solve acoustic pressure
by neglecting backscattering energy [30]. This means that elements in reflection matrix R
are relatively small in this case. From Equation (25), it follows directly that the admittance
matrix at any position approximates the local admittance matrix, and the iterative compu-
tation of admittance matrix is no longer necessary. Thus, the admittance matrix takes the
following form:

Ỹ(x) =
√

A(x)(L(x)−K(x)). (28)

The one-way approximation coupled-mode equation reads

P′ = (−A−1C+ A−1Ỹ)P, (29)

with initial condition Pi(0) = P+(0) and P+(0) representing the modal amplitudes of
forward propagating wave.

Similarly, we introduce propagator matrix M̃(x) by P(x) = M̃(x)P(0). M̃(x) satisfies
the equation M̃′ = (−A−1C+ A−1Ỹ)M̃ with the initial value M̃(0) = I. Then, acoustic
pressure under one-way approximation can be written as

p(x, z) = ΨT(z; x)M̃(x)P+(0). (30)

2.3. Optimal Incident Waves for Sound Focusing

As a byproduct of our coupled mode algorithms, the optimal incident wave that leads
to sound focusing at a certain position in a multilayered waveguide is investigated.

From Equation (27), the acoustic pressure at any position (x0, z0) can be rewritten as

p(x0, z0) =


〈(

ΨT(x0, z0)M(x0)(I+ R)
)†

, Pi(0)
〉

, 0 ≤ x0 ≤ xR,〈(
ΨT(x0, z0)exp

(
A−1(xR)Y(xR)(x0 − xR)

)
T
)†

, Pi(0)
〉

, x0 > xR,
(31)

where < a1, a2 >= a†
1a2 denotes the scalar product of vectors in Hilbert space, and

‘†’ denotes the conjugate transpose. The energy flux of the incident wave is assumed
to be unity. Then, acoustic pressure modulus at (x0, z0) can reach its maximum value,
max

pi
|p(x0, z0)|, when the modal amplitudes of the incident wave take the following form:
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Pi(0; x0, z0) =


1√
Λ

(
Ψ(x0, z0)

TM(x0)(I+ R)
)†

, 0 ≤ x0 ≤ xR,

1√
Λ

(
Ψ(x0, z0)

Texp
(
A−1(xR)Y(xR)(x0 − xR)

)
T
)†

, x0 > xR,
(32)

where Λ is fixed by the normalization of the sound energy flux of incident wave
Epi = Im(

∫ h2(0)
0 ρ−1 p∗i ∂x pidy)/2ω.

3. Numerical Results

In this section, we validate the present coupled mode method by comparing the
results for a numerical example with those obtained using the acoustics module of the
commercially available finite element software COMSOL Multiphysics and show the sound
focusing pattern by injecting optimal incident waves.

Let us consider sound propagation in a two-layer waveguide with a penetrable
scatterer being located in the upper water column. We model such an inhomogeneous
waveguide as a virtual four-layer waveguide with intersecting interfaces. In scattering
region (0 < x < 400 m), sound speed and mass density are c1 = (1500− 0.1z + 0.1x) m/s,
ρ1 = (1000 + 0.1z + 0.1x) kg/m3, c2 = (1700− 0.2z + 0.1x) m/s, and ρ2 = (1500 + 0.2z +
0.1x) kg/m3. In the transmission region (x ≥ 400 m), parameters are c1 = (1540− 0.1z) m/s,
ρ1 = (1040 + 0.1z) kg/m3, c2 = (1740 − 0.2z) m/s, and ρ2 = (1540 + 0.2z) kg/m3.
The scatterer has 20m radius, (xs = 350, zs = 25) m center, and is fluid-filled with
cs = 1800 m/s and ρs = 1600 kg/m3. The shapes of the interface and bottom are for-
mulated by Equations (33) and (34), respectively,

h1(x) =

{
40 + 10(1− cos(πx/400)), 0 < x < 400,

60. x ≥ 400.
(33)

h2(x) =

{
100− 10(1− cos(πx/400)), 0 < x < 400,

80, x ≥ 400.
(34)

The waveguide is excited by a distributed source pi(z) = sin(1.5πz/100) from the
left at frequency f = 100 Hz. There are 10 propagating modes in the left lead and 12
propagating modes in the right lead. From radiation condition Y(x = 400), Y, M, R, and
T are available. Then, acoustic pressure can be computed using Equation (27) with the
source condition Pi = (0, 1/

√
0.02, 0, . . . , 0)T. Figure 2a,b, respectively, show the acoustic-

pressure moduli calculated by the present two-way coupled-mode method (CMM) and
COMSOL. The results were computed on a quad-core 3.6GHz processor running the 64-bit
Windows operating system. The truncation number used for the local series representation
is N = 20. The average computation time per output grid [31] is 1.4× 10−4 s. Clearly, the
sound field wildly oscillates in the scattering region, which is expected for the case where
the backscattering energy is large and the mode coupling effect is significant. Figure 2c
illustrates the acoustic pressure distributions in the horizontal direction at a depth z = 20 m
predicted by the two-way CMM, one-way CMM and COMSOL. The spatial discretization
and truncation numbers used in the two- and one-way CMM are identical. We see that the
calculations by the two-way CMM and COMSOL are in excellent agreement. The slight
differences are attributed to the truncation of the infinite modal series Equation (4), and
the interpolation difference between COMSOL and our code. It can be minified, of course,
by increasing truncation number N and improving mesh quality. However, the results
predicted by the one-way CMM are remarkably different, meaning that backscattering
energy cannot be neglected in this environment. Since the modal method only necessitates
the trace of the the modal amplitudes of the first N local basis functions, the present coupled
mode algorithm is much more efficient than COMSOL is, which is a direct Helmholtz
solver, for sound propagation over long-range distances.
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Figure 2. (Color online) Sound field (acoustic pressure modulus) in a two-layer waveguide with a
penetrable scatterer. (a) Sound field computed by the present two-way coupled mode method with
N = 20. (b) Sound field computed by COMSOL. (c) Acoustic pressure modulus distribution along x
direction at z = 20. The waveguide is forced by a distributed source at 100Hz.

Next, the acoustic wave self-focusing pattern in a multilayered waveguide is presented.
The geometry and medium parameters of the waveguide are kept the same as those in
Figure 2; the frequency is f = 100 Hz. Figure 3a shows wave focusing at (450, 20) m in the
transmission region by injecting the incident wave of Figure 3b, which is computed from
Equation (32). Figure 3c plots the corresponding distribution of acoustic pressure along the
z direction at x = 450 m. We see that energy in the vicinity of the focus occupies the vast
majority of energy along the z direction. This method allows one to enhance the energy
density of any position in a multilayered waveguide.
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Figure 3. (Color online) Acoustic waves self-focusing in a two-layer range-dependent waveguide
with a penetrable scatterer. The focus is at (450, 20) m. (a) Sound field. (b) Acoustic pressure modulus
of the optimal incident wave. (c) Acoustic pressure modulus along z-direction at x = 450 m.

4. Application to Waveguides with Penetrable Infinite Half Space and Internal Wave

In this section, we apply the coupled mode formalism to sound propagation problems
in a multilayered waveguide, considering the effect of a penetrable infinite half space and
internal waves, which is a common scenario in real ocean environments.

In previous sections, we assumed that the bottom is acoustically rigid. However,
a more realistic representation of the ocean bottom is an infinite half space that allows
for energy penetrating into the half space. The rigid bottom assumption neglects one or
more components of sound fields depending on the choice of branch cut, for instance,
leaky modes plus an integral along the Pekeris cut for Pekeris branch cut, or an integral
of the continuous spectrum along the EJP cut for EJP branch cut. Difficulties in the
application of bounded coupled mode models to a Pekeris waveguide consist of the discrete
approximation of continuous spectrum. An available algorithm eliminates the branch cut
and branch line integrals by introducing a small complex sound speed gradient in the half
space [18]. The branch cut contribution is represented by discrete modes. This method has
the advantage that leaky modes do not increase in amplitude with increasing depth. Since
branch line modes make a minor contribution to the sound field in the water column, it is
possible to ignore the branch line modes in numerical implementation [32]. Therefore, it
provides a straightforward way to incorporate with the couple mode algorithms. We extend
this approach here to coupled mode sound propagation in multilayered waveguides.

We consider the waveguide shown in Figure 4.
A two-layer system of sound speed in the water column is used. The upper mixed

layer has sound speed cml and water density ρ1. The lower water layer has sound speed c1
and the same density ρ1. The shape of the internal solitary wave is formulated by

hin(x) = h + ∆hsech2
(

x− xwave

L

)
, (35)

where ∆h is the amplitude of the internal wave, xwave denotes the wave center, and L is the
width parameter [33]. The ocean bottom is characterized by a penetrable infinite half space
with sound speed c2 and density ρ2. To apply the coupled mode formalism, the penetrable
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infinite half space is approximately reproduced by a bounded layer. The corresponding
sound speed c̃2 has a small gradient,

c̃2 =
c2

1 + iα/αc
, (36)

where the attenuation α is in Gaussian form, α = α0e−(z−h2(x))2/(2λ2
2), α0 is in the unit

of dB/λ2, λ2 = c2/ f , and αc = 40πlog10e. The thickness of the lower bounded layer,
h2 − h1(x), is meant to be larger than 3λ2, such that attenuation increases gently in the
beginning, then grows rapidly with increasing depth, and finally smoothly reaches its
maximum at z = h2. We use such a form of α in an attempt to reduce the spurious reflection
that can return to the water column and provide accurate solutions in the water column
using an acceptable truncation depth.

Figure 4. Approximation model for a waveguide with an internal solitary wave and a penetrable
infinite homogeneous half space.

Figure 5 shows an example of computation of the sound field excited by a point
source in the waveguide shown in Figure 4. The physical parameters are ρ1 = 1000 kg/m3,

cml = 1530 m/s, c1 =
(

1490− 0.1(z− hin(x))
)

m/s, c2 = 1700 m/s, and ρ2 = 1500 kg/m3.
The internal wave shape is

hin(x) = 50 + 50sech2
(

x− 0.5xR
1200

)
, (37)

where xR = 16 km. The water–sediment interface is sloping,

h1(x) =

{
200− 0.005x, 0 < x < xR,

120, x ≥ xR.

In numerical implementation, a false rigid boundary is placed at h2 = 200 + 5λ2
beneath the water column, and the sound speed in the bottom layer is replaced by c̃2
(Equation (36)) with α0 = 10 dB/λ2. The point source is located in (xs, zs) = (0, 30) m at a
frequency of 50 Hz. The source condition, which is represented by the modal amplitudes
of the Green’s function in the waveguide of Figure 4, is [20]

Pi =
Ψ(zs; xs)

2
(A−1(xs)Yxs)

−1 exp(A−1(xs)Yxs |x− xs|), (38)

where Ψ is a vector with elements being functions ψn, and Yxs =

√
A(xs)

(
L(xs)−K(xs)

)
.

The acoustic pressure can be computed using Equation (27) with the source condition and

radiation conditions. In addition, the eigenvalues of matrix −i
√

A−1(x)
(
L(x)−K(x)

)
,
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which fall in the interval
(

ω/c2, max(ω/c1(z))
)

, correspond to the horizontal wavenum-
bers of the trapped modes. At the chosen frequency, there are six trapped modes at x = 0
and four trapped modes in the transmission region. Figure 5a presents the computed sound
field using the present two-way coupled mode method. The truncation number is N = 30,
which has been proved to be enough for numerical convergence. Figure 5b compares the
transmission loss predicted by the two-way CMM, one-way CMM, and COMSOL. The
numerical model used for COMSOL is a waveguide with a PML beneath the water column.
The receiver depth is zr = 60 m. The transmission loss is defined by

TL(x, zr) = −10 log10
|p(x, zr)|2
|p(x = 1, zs)|2

. (39)

We see that the agreement between the two-way CMM and COMSOL is excellent.
Differences are attributed to the deviations in spatial discretization. The results of the
one-way CMM are accurate for the range internal from 0 m to about 6 km, implying that
the backscattered energy is small in this region. As sound propagates through the internal
wave, waves interact with the sloping interface and internal waves, and differences in the
results between the one- and two-way CMM increase gradually. Since the computation
model used in COMSOL mimics the real waveguide with a penetrable infinite half space,
one can conclude that acoustic pressure in the water column of a waveguide with a
penetrable infinite half space and internal waves predicted by our two-way coupled mode
method is accurate.

Figure 5. (Color online) Sound field (acoustic pressure modulus) generated by a point source in a
waveguide with a penetrable infinite half space and an internal wave. (a) Sound field computed
by the present two-way coupled mode method with N = 30. (b) Transmission loss versus range
predicted using the present two-way coupled mode method, one-way coupled mode method, and
COMSOL. The point source is located at (0, 30) m. The frequency is 50Hz.

5. Conclusions

An efficient coupled mode method is presented for sound propagation through mul-
tilayered inhomogeneous waveguides based on Fawcett’s coupled mode method and
the multimodal admittance method. The inhomogeneous environments include range-
dependent physical parameters and range-dependent interfaces (boundaries). The method
uses the unusual local transverse eigenfuctions in the series representation of the acoustic
pressure, which are defined to be the transverse modes in a one-layer homogeneous waveg-
uide with constant depth equal to the local total depth of the multilayered waveguide and
constant physical parameters. The unusual local modes have analytical solutions. Pro-
jecting the Helmholtz equation onto the unusual local modes yields a set of second-order
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differential equations with respect to the modal amplitudes of acoustic pressure. Energy
conservation among modes is guaranteed by the introduction of two interface matrices
in the case of a lossless acoustic waveguide. By properly applying a set of unknown
quantities S in terms of the modal amplitudes of acoustic pressure and their horizontal
derivatives, the second-order coupled mode equations are reduced into a set of first-order
differential equations. This first-order coupled system preserves the energy conservation
property but requires no knowledge of interface matrices. The admittance method was
employed to solve the first-order differential equations for avoiding numerical problems.
The reflection and transmission matrices that characterize the scattering properties are
also given. Our coupled mode method considers the full coupling between modes and
the backscattering effect and substantially reduces computing power compared with fully
numerical methods, especially in long-range and high-frequency applications. Numerical
results show that our two-way coupled mode method provides us with accurate solu-
tions for multilayered inhomogeneous waveguides with acoustically rigid bottom or a
penetrable infinite half space. Our coupled system is appropriate for two-way solutions
in long-range/high-frequency propagation and scattering problems and can be naturally
extended to treat sound propagation through real ocean environments.

Author Contributions: Conceptualization, J.L. and Q.L.; methodology, J.L.; software, J.L.; validation,
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Q.L.; project administration, Q.L.; funding acquisition, Q.L. Both authors have read and agreed to the
published version of the manuscript.
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Appendix A. Interface Matrices D and E

Here, we present the derivation of Dmn and Emn. Integrating by part for the projec-
tion of the term ∂/∂z(ρ−1∂p/∂z) in Equation (1), and using the following boundary and
interface conditions,

∂p(hJ)

∂y
= h′J

∂p(hJ)

∂x
,

1
ρj

(
∂p(h−j )

∂y
− h′j

∂p(h−j )

∂x

)
=

1
ρj+1

(
∂p(h+j )

∂y
− h′j

∂p(h+j )

∂x

)
,

(A1)

where j = 1, 2, . . . , J − 1, one can obtain

∫ hJ

0
ψ∗m

∂

∂z

[
1
ρ

∂p
∂z

]
dz =

J−1

∑
j=0

[
ψ∗m

1
ρj+1

∂p
∂z

]h−j+1

h+j

−
J−1

∑
j=0

∫ h−j+1

h+j

∂ψ∗m
∂z

1
ρj+1

∂p
∂z

dz

=
1

ρJ(hJ)
h′J(x)ψ∗m(hJ)

∂p(hJ)

∂x
−

J−1

∑
j=1

(
1

ρj+1(hj)
− 1

ρj(hj)

)
h′j(x)ψ∗m(hj)

∂p(hj)

∂x

−
∫ hJ(x)

0

1
ρ1

∂ψ∗m
∂z

∂p
∂z

dz−
J−1

∑
j=1

∫ hj+1(x)

hj(x)

(
1

ρj+1
− 1

ρ1

)
∂ψ∗m
∂z

∂p
∂z

dz.

(A2)

Substituting the mode expansion Equation (4) into Equation (A2), we have

∫ hJ

0
ψ∗m

∂

∂z

[
1
ρ

∂p
∂z

]
dz = ∑

n
DmnP′n + ∑

n
(Emn − Lmn)Pn. (A3)
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Appendix B. Energy Conservation

Let us start with the energy conservation property of the boundary value problem of
Helmholtz equation Equation (1). Supposing that p and p∗ are two solutions, we have

∂

∂x

[
1
ρ

∂p
∂x

]
+

∂

∂z

[
1
ρ

∂p
∂z

]
+

ω2

ρc
p = 0, (A4)

∂

∂x

[
1
ρ

∂p∗

∂x

]
+

∂

∂z

[
1
ρ

∂p∗

∂z

]
+

ω2

ρc
p∗ = 0, (A5)

By applying the operator
∫ hJ(x)

0 (Equation (A4)×p∗− Equation (A5)×p)dz, one can obtain

∫ hJ(x)

0

[
∂

∂x

(
p∗

1
ρ

∂p
∂x
− p

1
ρ

∂p∗

∂x

)
+

∂

∂z

(
p∗

1
ρ

∂p
∂z
− p

1
ρ

∂p∗

∂z

)]
dz = 0. (A6)

Equation (A6) can be reduced to

∂

∂x

∫ hJ(x)

0

(
p∗

1
ρ

∂p
∂x
− p

1
ρ

∂p∗

∂x

)
dz +

J−1

∑
j=0

[
p∗

1
ρj+1

∂p
∂n
− p

1
ρj+1

∂p∗

∂n

]h−j+1(x)

h+j (x)

= 0, (A7)

where the second term is equal to zero accounting for the interface and boundary conditions,
and the first term corresponds to the conservation of energy flux E(x),

∂

∂x

∫ hJ(x)

0

(
p∗

1
ρ

∂p
∂x
− p

1
ρ

∂p∗

∂x

)
dz ∝ E′(x) =

d
dx

(
1

2ω
Im
∫ hJ(x)

0

1
ρ

p∗
∂p
∂x

dz
)
= 0. (A8)

Then, translating Equation (A8) on our modal amplitudes, we have

∂

∂x

[
P†S− S†P

]
∝

d
dx

(P†S) = 0. (A9)

The modal amplitudes satisfy the coupled mode equations Equation (22) with
(−A−1C)T + CTA−1 = 0, A−1 = (A−1)T, and L−K = (L−K)T, meaning that our numerical
scheme preserves the energy conservation property. It follows directly that without the
introduction of interface matrices D and E, the coupled mode equations will not conserve
the energy among modes.

Appendix C. Radiation Condition

The initial value of the admittance matrix (Equation (23)) corresponds to the radia-
tion condition, which is represented by the admittance matrix in the range-independent
region x > xR. The transverse normal modes φi(z) in a range-independent multilayered
waveguide are solutions of the eigenproblem

d
dz

(
1

ρ(z)
dφi(z)

dz

)
+

ω2

ρ(z)c2(z)
φi(z) =

1
ρ(z)

k2
xiφi(z), (A10)

with boundary conditions φi(0) = 0, φ′i(hJ) = 0, and continuous conditions φi(h−j ) = φi(h+j )
and φ′i(h

−
j )/ρj(h−j ) = φ′i(h

+
j )/ρj+1(h+j ), j = 1, 2, . . . , J− 1, where kxi are the axial wavenum-

bers. To solve φi, we first employ a mode expansion,

φi(z) =
N−1

∑
n=0

wi,nψn(z), (A11)
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where wi,n are the modal amplitudes, and ψn(z) are transverse normal modes in a ho-
mogeneous waveguide with a constant depth equal to hJ , i.e., ψn(z) =

√
2/hJ sin

(
(n +

1/2)πz/hJ
)
. Applying the operator

∫ hJ(x)

0
ψ∗m(·)dz,

one can obtain
A−1(K− L)W = WK2

x, (A12)

where the elements in W are wi,n, and Kx is a diagonal matrix with diagonal elements being
kxi. Therefore, the eigenvalue problem governed by Equation (A10) is transformed into a
matrix eigenvalue problem of Equation (A12). The axial wavenumbers kxi and the modal
amplitudes wi,n can be obtained by eigen-decomposing the matrix A−1(K− L).

Alternatively, for environments of which the properties are invariant in the horizontal,
the coupling among modes is lost. The second-order coupled mode equation is then
reduced to

P′′ = A−1(L−K)P. (A13)

Since S = YP and P′ = A−1S, the admittance matrix in the transmission region takes
the following form

Y =
√

A(L−K). (A14)
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