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Abstract: A novel method is proposed for measuring the six degrees-of-freedom (DOF) geometric
motion errors of a rotary axis based on a polyhedral prism. An error-sensitive unit which consists of
a polyhedral prism and a planar reflector, is designed to carry out measurement of all six DOF errors,
including the angular positioning error, the tilt motion error around the Y axis, the tilt motion error
around the X axis, the radial motion error along the X and Y axes, and the axial motion error along the
Z axis. The mathematical error model, including the six DOF geometric motion errors of the rotary
axis, the installation errors between the polyhedral prism and the rotary axis, the manufacturing
errors of the polyhedral prism, and the position errors of the sensors, are established. The effectiveness
of the proposed method and the compensation model was simulated and experimentally verified.

Keywords: error measurement; six degrees-of-freedom motion errors; rotary axis; error model

1. Introduction

Because they possesses the advantages of high efficiency and strong capability in ma-
chining complex surfaces [1], multi-axis computerized numerical control (CNC) machine
tools are widely used in industrial production such as in the automobile, ship manufac-
turing, and aerospace industries. Rotary axes are important moving parts of a multi-axis
CNC machine tool, which has six degrees-of-freedom (DOF) geometric motion errors when
it moves. The geometric motion errors of a rotary axis are important factors affecting
the accuracy of the machined parts [2]. In order to improve the machining accuracy of
multi-axis CNC machine tools and machining centers, scholars worldwide have conducted
a considerable amount of research to compensate the geometric motion errors of the ro-
tating shaft [3–6]. Geometrical error compensation technology is generally divided into
three steps: error measurement, error model establishment, and error compensation [5].
Therefore, error measurement is the basis of improving the motion accuracy of a rotary axis.
This paper focuses on precisely measuring the geometric motion errors of a rotary axis.

Compared to the linear axis, research on the measurement of multi-DOF geometric
errors of a rotary axis is relatively late [6]. At present, the main measurement methods are
divided into contact measurement and noncontact measurement.

The contact measurement methods include two kinds of methods based on capacitance
sensor and circular trajectory, respectively. Both of them cannot measure the angular
positioning error which is the most important parameter of a rotary axis. Ahn et al. used a
built-in capacitance sensor to measure radial motion error [7]. Kim et al. used a cylindrical
capacitance sensor to measure motion error of milling machine spindle. The sensing range
would be ±30 µm [8]. Xiang et al. used T-type capacitive sensor to measure five DOF
motion errors [9]. The contact measurement method, based on capacitive sensors, has
the advantages of compact structure and low cost, but its measurement range is small.
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The measurement methods of a circular trajectory include the ball-bar and R-test. Bryan
et al. put forward the measuring principle of measuring the motion error of rotary axis by
using the ball-bar in 1982, and it has been used to measure the geometric error of three-
coordinate machine and CNC machine tools [10]. Lei et al. use a double ball-bar clockwise
and anticlockwise measured rotary axis and obtained five DOF motion errors [11]. Hong
et al. used an R-test to measure the trajectories of the rotary axis at different positions and
heights, and the five DOF motion errors were obtained [12]. The measurement methods of a
circular trajectory have the advantages of using simple instruments, convenient portability,
and low system costs; however, error decoupling is complex, the measurement of angle
positioning error cannot be realized, and the measurement results are not given in real
time. Moreover, because the length of the ball bar and R-test measuring rod is short and
can only vary according to limited spacing, there are great limitations in measuring large
CNC machine tools and compensating spatial errors.

There are many kinds of noncontact optical measurement methods, including interfero
metry-based, laser tracker-based, diffraction-based, laser collimation-based, and polyhedral
prism-based methods. The interference method usually uses a single-frequency or dual-
frequency laser interferometer as the core device, and its measurement has the advantage
of high precision. Yao et al. used two laser interferometers to measure the six DOF motion
errors in three steps [13]. Pi et al. used laser interferometers to measure two rotary axis
Angular position error in 5-axis CNC machine tool in two steps [14]. In most cases, the
laser interferometer can only measure a single parameter. If multi-DOF motion errors are
being measured, other auxiliary optical devices and measurement steps are needed, which
increases costs and difficulty and has low efficiency. Zhang et al. used Laser Tracker System
to measure the six DOF motion errors by tracking three noncollinear points on the axis of
rotation at different spatial positions, accuracy was 0.9 µm [15]. The laser tracking method
has the advantages of simplicity, high efficiency, and not requiring complex equipment
installation and alignment, but its accuracy is relatively low [13]. Liu et al. used diffraction
grating and position sensitive detectors to measure motion errors, the resolution is 0.2” [16].
The diffraction method, which takes the high-precision diffraction grating as the sensitive
unit, requires high installation accuracy and high maintenance costs. Park et al. used laser
collimation method to measure the six DOF motion errors in two steps [17]. Gao et al. used
two-dimensional slope sensors to measure the six DOF motion errors [18]. Murakami et al.
used a ball lens and rod lens to measure the five DOF motion errors [19]. Bao et al. used a
laser collimation method to measure the five DOF motion errors simultaneously [20]. The
laser collimation method has the advantages of high precision and fast speed, but most
existing methods cannot simultaneously measure all six DOF geometric motion errors of a
rotary axis; in addition, the measurement device is usually complex and difficult to install,
and takes a long time to calibrate. Many studies used a polyhedral prism to measure
angular position error. To our knowledge, no method based on polyhedral prisms has
been proposed which can simultaneously measure the six DOF motion errors. Suh et al.
proposed a measurement method of angular position error based on autocollimation and
polyhedral prisms [21]. This method has been recommended by ISO230-1 as one of the
standard measurement methods of angular position error [22]. Qiu et al. used polygonal
prism and precise angle dividing table accomplish mutual check of angular deviation [23].

A novel method based on polyhedral prisms is proposed for simultaneously mea-
suring the six DOF motion errors in this paper. A high-precision polyhedral prism and a
plane mirror are designed to be the sensitive unit that can carry all six DOF motion errors
of a rotary axis. By using photoelectric autocollimators and laser displacement sensors,
the full-circle and simultaneous measurement of all six DOF motion errors of a rotary axis
can be realized. This has the advantages of simple structure, fast measurement speed, and
convenient installation.

An error model is established, including the six DOF geometric motion errors of a
rotary axis, installation errors between the polyhedral prism and rotary axis, manufacturing
errors of the polyhedral prism, and the position errors of photoelectric autocollimators and
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laser displacement sensors. This model can accurately calculate the six DOF geometric
motion errors of a rotary axis and provide technical support for compensating the geometric
motion errors of a rotary axis and improving its motion accuracy.

2. Measuring Principle

As shown in Figure 1, the measuring device includes a polyhedral prism, two auto-
collimators, and three laser displacement sensors. The polyhedral prism is fixed with the
target rotary axis to be measured and has a plane reflector in the center of the top surface.
The polyhedral prism synchronously rotates with the target rotary axis.
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Figure 1. Measurement principle of six degrees of freedom (DOF) motion errors of a rotary axis 
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Figure 1. Measurement principle of six degrees of freedom (DOF) motion errors of a rotary axis
based on a polyhedral prism. (a) Front view. (b) Top view.

The laser displacement sensors are placed in the X, Y, and Z directions of the target
rotary axis to measure the radial motion error of the rotary axis along the X and Y directions
and the axial motion error along the Z direction. The autocollimators are placed in the X
and Y directions to measure the angular positioning error and the tilt motion error around
the Y axis and X axis of the target rotary axis.

The specific measurement principle is this: The autocollimator beam placed in the
X-axis direction is reflected along the X-axis incident polyhedral prism working surface,
and then enters the autocollimator to obtain the angular positioning error around the
Z-axis and the tilt motion error around the Y-axis. The autocollimator beam placed in the
Y-axis direction is reflected along the working surface of the polyhedral prism, and then
enters the autocollimator to obtain the tilt motion error of the target rotary axis around
the X-axis. The radial motion error of the target axis along the X axis can be obtained by
the laser displacement sensor which is placed in the direction of the X axis after the ray of
the laser displacement sensor is reflected along the working surface of the X-axis incident
polyhedral prism. Similarly, the radial motion error along the Y axis and the axial motion
error along the Z axis can be measured by the other two laser displacement sensors. The
whole measuring device can simultaneously measure all six DOF geometric motion errors
of a rotary axis.

3. Establishment and Simulation of the Error Model

The measurement results of the six DOF geometric motion errors of a rotary axis
are affected by the installation errors, manufacturing errors, and crosstalk errors of each
component. In order to improve measurement accuracy, we analyzed the influence of
various errors on the measurement results and established the error compensation model.

The main processes include the following: (1) Establish the coordinate system of each
component: the stationary world coordinate system “0” (CS0); the coordinate system “1”
(CS1), fixed on the target axis C and moving with the axis; the coordinate systems “2” (CS2)
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and “3” (CS3), fixed on the polyhedral prism B and moving with the polyhedral prism;
the coordinate systems “4” (CS4) and “5” (CS5), fixed on autocollimators AC1 and AC2;
the coordinate systems “6” (CS6), “7” (CS7), and “8” (CS8), fixed on laser displacement
sensors LDS1, LDS2, and LDS3, as shown in Figure 2. (2) According to the principle of rigid
body kinematics, establish the homogeneous transformation matrix Tm

n (Tm
n represents the

transformation matrix from coordinate m to coordinate n) between each coordinate system
to describe the relative motion between adjacent components. (3) Establish the equations
of the rays. The ray is tracked by the homogeneous coordinate transformation matrix, and
the six DOF geometric motion errors of the target rotary axis are obtained by the spatial
coordinate change of the returned ray.
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Figure 2. Schematic diagram of experimental device and coordinate system. 
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Figure 2. Schematic diagram of experimental device and coordinate system.

3.1. Matrix Description of Relative Motion

The origin of CS0 is located at the center of the top surface of the target rotary axis
measured at the initial timepoint, which represents the position-pose of the initial timepoint
and without errors of the target rotary axis. The origin of CS1 is the center of the top surface
of axis C, which coincides with CS0 at the initial timepoint.

In the movement process of the axis, there are two tilt errors, εx and εy, one angular
positioning error, εz, two radial motion errors, δx, δy, and one axial motion error, δz. The
theoretical angle of rotation is θ, and the coordinate transformation matrix when CS1 is
reached is this:

T1
0 =


cos(θ + εz) − sin(θ + εz)

sin(θ + εz) cos(θ + εz)

εy δx

−εx δy

−εy cos(θ + εz) + εx sin(θ + εz) εysin(θ + εz) + εx cos(θ + εz)

0 0
1 δz

0 1

 (1)

CS2 is fixed at the center of the bottom surface of the polyhedral prism and moves
with that. There are five installation errors between the initial coordinate system and
CS1, excluding the positioning error. The installation error between them is expressed in
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pairwise lowercase letters. For example, δzbc represents the position error between B and C
in the Z direction. Therefore, the transformation matrix from CS2 to CS1 is this:

T2
1 =


1 0
0 1

εybc δxbc
−εxbc δybc

−εybc εxbc
0 0

1 δzbc
0 1

 (2)

CS3 and CS2 have the same origin of coordinates, and its X-axis direction is constantly
perpendicular to the current working surface of the polyhedral prism. Therefore, CS3
and CS2 have an angular difference, θ + εpz, around the Z axis (manufacturing errors of
the working angle of the polyhedral prism) and angular error εpy around the Y axis or
angular error εpx around the X axis (εpx and εpy are perpendicularity errors between the
working surface and datum plane, and change with the θ angle). When the target rotary
axis rotates θ, the transformation matrix from CS3 to CS2 is as follows: (This matrix is for
measuring the error εy. For measuring the error εx, the variables in the matrix should be
changed accordingly).

T3
2 =


cos
(
θ + εpz

)
sin
(
θ + εpz

)
− sin

(
θ + εpz

)
cos
(
θ + εpz

) εpy 0
0 0

−εpy cos
(
θ + εpz

)
−εpy sin

(
θ + εpz

)
0 0

1 0
0 1

 (3)

The original point P of CS4 is at the center of the front surface of autocollimator AC1,
and the P point in CS0 is

(
Px Py Pz 1

)T . The angle installation errors between
CS4 and CS0 are expressed as εxl , εyl , and εzl . The transformation matrix from CS4 to
CS0 is this:

T4
0 =


1 −εzl

εzl 1
εyl Px
−εxl Py

−εyl εxl
0 0

1 Pz
0 1

 (4)

The position of the exit light P4 is
(

0 P4
y P4

z 1
)T

and the direction is parallel

to the X axis. The light vector is
[

x 0 0 0
]T . Therefore, the ray equation L4 is this:

[
0 1 0 −P4

y
0 0 1 −P4

z

]
x4

y4

z4

1

 =

[
0
0

]
(5)

The original point Q of CS5 is at the center of the front surface of autocollimator
AC2, and the Q point in CS0 is

(
Qx Qy Qz 1

)T . The angle installation errors
between CS5 and CS0 are expressed as εxm, εym, and εzm. The position of the exit light Q5

is
(

Q5
x 0 Q5

z 1
)T , and the light vector is

[
0 y 0 0

]T .
Similarly, the position coordinate of the original point K of CS6 in CS0 is(

Kx Ky Kz 1
)T, and the angular installation errors relative to CS0 are expressed as

εxn, εyn, and εzn. The position of the exit light K6 is
(

0 K6
y K6

z 1
)T

, and the light

vector is
[

x 0 0 0
]T.

The position coordinate of the original point U of CS7 is
(

Ux Uy Uz 1
)T, and

the angular installation errors are expressed as εxu, εyu, and εzu. The position of the exit light

U7 of the light is
(

U7
x 0 U7

z 1
)T, and the light vector is

[
0 y 0 0

]T.

The position coordinate of the original point V of CS8 is
(

Vx Vy Vz 1
)T, and

the angular installation errors are expressed as εxv, εyv, and εzv. The position of the exit light
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V8 of the light is
(

V8
x V8

y 0 1
)T

, and the light vector is
[

0 0 z 0
]T.

According to the above definition, the corresponding equations of light rays L5, L6, L7, and L8

and coordinate transformation matrix T5
0 , T6

0 , T7
0 , and T8

0 can be obtained, respectively.
The above homogeneous coordinate transformation matrix describes the relative

motion relationship between each component, which not only includes the six DOF motion
errors of the target rotary axis, but also includes the installation errors of each component.
Through ray tracing, the six DOF geometric motion errors of the rotary axis can be obtained
by using the spatial coordinate change of the returned ray.

3.2. Ray Tracing and Error Representation

The core of ray tracing is the light reflection process on the working surface of the
polyhedral prism. When the coordinate of the incident light point is the origin of the
coordinate system in CS3, the reflection matrix of the reflecting surface is this:

R0
P =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (6)

The position of the actual incident light P is
(

Pin3
x Pin3

y Pin3
z 1

)T
. The

reflection matrix of the point P can be obtained by using the translation transformation of

the matrix: RP = Trans
(

Pin3
y, Pin3

y, Pin3
z

)−1
R0

PTrans
(

Pin3
y, Pin3

y, Pin3
z

)
.

3.2.1. Angular Positioning Error and Tilt Motion Error around Y Axis

When calculating the six DOF motion errors of a rotary axis according to the relation-
ship between the ray tracing method and the spatial geometric coordinates, it is necessary
to transform all rays, reflection surfaces, and receiving surfaces into the same coordinate
system by using the matrix coordinate transformation. The exit light of autocollimator
AC1 is defined in CS4, and its reflection surface of the polyhedral prism is defined in CS3.
The incident light of AC1 can be obtained by converting the outgoing light of AC1 to the
reflection in CS3, and then converting the reflected light to CS4. The coefficient matrix of
the incident light is shown in Equation (7).

LoutLP = LPT0
4 T1

0 T2
1 T3

2 RPT2
3 T1

2 T0
1 T3

4 (7)

The plane where the incident light is received by AC1 is x = Lr. The coordinate
SC(XSC, YSC, ZSC) of the autocollimator’s incident point can be obtained from the inci-
dent ray and the receiving surface. The reflection surface of the polyhedral prism is
defined x = Pin3

x in CS3, which can be transformed into CS4 and expressed as shown
in Equation (8).

[
1 0 0 −Pin3

x
]
T4

3


X4

Y4

Z4

1

 = 0 (8)

In CS4, the coordinates of the reflection point PH can be obtained from the incident
light and the reflector. The rotation angle around the Z axis measured by AC1 is denoted

as θSCz. According to the geometric position relationship, θSCz= |YSC−P4
y |

2|X4
PH−X4

SC|
.

The rotation angle θ is zero at the initial timepoint. We can eliminate some of the
system errors by setting all errors’ initial values to zero, so as to obtain the rotation angular
positioning error:

εz = θSCz − θSCz(t=0) + εpz − εpz(t=0) (9)
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θSCz(t=0) is the value of the autocollimator AC1 at the initial timepoint; εpz(t=0) is the
manufacturing error of the first working surface of the polyhedral prism.

Only the manufacturing error εpz will affect the angular positioning error, and the
influences of the installation errors and manufacturing errors of other components can
be neglected. The manufacturing errors of each working surface of the polyhedral prism
are constant values, which does not affect repeatability. The measurement data can be
compensated by measuring the manufacturing errors of each working surface.

Similarly, the tilt motion error of a rotary axis around the Y-axis can be obtained:

εy = θSCy − θSCy(t=0) − εpycosθ + εpy(t=0) − εxbcsinθ − εybccosθ + εybc (10)

In the formula, θSCy is the angle value of the Y direction measured by the AC1.
The perpendicularity error εpy and the installation errors εxbc and εybc have an effect

on the measurement of the tilt motion error around the Y axis and are related to the
rotation angle of the target rotary axis. Among them, εpycosθ, εxbcsinθ, and εybccosθ are
trigonometric function terms, and εpy(t=0) and εybc are constant terms. These errors can be
compensated by the triangular fitting method.

3.2.2. Tilt Motion Error around X Axis

Similar to the calculation process of the tilt motion error around the Y axis, the tilt
motion error around the X axis can be obtained by the following equation:

εx = θSCx − θSCx(t1=0) − εpxcosθ + εpx(t=0) − εybcsinθ − εxbccosθ + εxbc (11)

The perpendicularity error εpx and the installation errors εxbc and εybc have an effect
on the measurement of the tilt motion error around the X axis and are related to the
rotation angle of the target rotary axis. Among them, εpxcosθ, εybcsinθ, and εxbccosθ are
trigonometric function terms, and εpx(t=0) and εxbc are constant terms. These errors can be
compensated by the triangular fitting method.

3.2.3. The Radial Motion Error along X Axis

The output surface and incident surface of laser displacement sensor LDS1 are defined
in CS6. The output surface is expressed as x = 0. The light receiving plane of LDS1 is x = Lr.
We can obtain the reflected light of the polyhedral prism from the output light of LDS1 and
the reflection matrix of the reflector.

The coordinate LDSX(XLDSX , YLDSX , ZLDSX) of the incident point of LDS1 can be
obtained from the reflected light of the polyhedral prism and the receiving surface of the
LDS1. The coordinate PHLX(XPHLX , YPHLX , ZPHLX) of the reflection point on the polyhe-
dral prism can be obtained according to the incident light and the reflection surface. The
measured value of the LDS1 is expressed as LXlds. Using the spatial geometric relationship,

LXlds =
√

X6
PHLS

2 +
(
Y6

PHLS − K6
y
)2

+
(
X6

PHLS − K6
x
)2. Because the values of Y6

PHLS − K6
y

and X6
PHLS − K6

x are first order infinitesimal, LXlds ≈ X6
PHLS. Some system errors can be

eliminated by reducing the initial value. Then, the radial motion error along the X axis
is obtained:

δx = LXlds − LXlds(t=0) − cosθ
(
δxbc +

(
Kz + K6

z
)(

εpy + εybc
))

+ sinθ
(
δybc −

(
Kz + K6

z
)
εxbc

)
+δxbc +

(
Ky + K6

y

)
εpz(t=0) +

(
Kz + K6

z
)(

εpy(t=0) + εybc

)
−
(

Ky + K6
y

)
εpz +

(
Ky + K6

y

)
εz

−
(
Kz + K6

z
)
εy

(12)

The main factors affecting the measurement of the radial motion error along the
X axis include the following: installation errors δxbc, δybc, εxbc, and εybc; perpendicu-
larity error εpy; working angle manufacturing error εpz; the coordinates Ky + K6

y and

Kz + K6
z of the light emission point in CS0. Where cosθ

(
δxbc +

(
Kz + K6

z
)(

εpy + εybc

))
,

sinθ
(

δybc −
(
Kz + K6

z
)
εxbc

)
, δxbc,

(
Ky + K6

y

)
εpz(t=0),

(
Kz + K6

z
)(

εpy(t=0) + εybc

)
are con-
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stants and can be compensated by triangular fitting,
(

Ky + K6
y

)
εpz can be compensated by

measuring the spatial coordinates of the LDS1 and the manufacturing errors of the polyhe-
dral prism working surface. εz and εy in

(
Ky + K6

y

)
εz −

(
Kz + K6

z
)
εy can be calculated by

the method mentioned above.

3.2.4. The Radial Motion Error along Y Axis

Similar to the derivation process of radial runout error along the X axis, the radial
motion error along the Y axis is this:

δy = LYlds − LYlds(t=0) + δybc(1− cosθ) + δxbcsinθ −
(
Ux + U7

x
)(

εz − εpz + εpz(t=0)

)
+
(
Uz + U7

z
)(

εpxcosθ + εx + εybcsinθ + εxbccosθ − εpx(t=0) − εxbc

) (13)

The main factors affecting the radial motion error along the Y axis include the fol-
lowing: the installation errors δxbc, δybc, εxbc, and εybc; the perpendicularity error εpy; the
working angle manufacturing error εpz; the position coordinates of the laser exit point
Ux + U7

x and Uz + U7
z . The error compensation method is the same as the radial motion

error along the X axis.

3.2.5. The Axial Motion Error along Z Axis

The outgoing light L8 of the LDS3 along the Z direction can be expressed as this:

[
1 0 0 −V8

x
0 1 0 −V8

y

]
x8

y8

z8

1

 (14)

The top surface matrix of the polyhedral prism is
[

0 0 1 0
]
, and the reflec-

tion surface matrix of the plane reflector is
[

0 0 1 −Hb
]
; Hb is the sum of the

thickness of the polyhedral prism and the plane reflector. Considering the parallel error of
the polyhedral prism, the bottom surface of the plane reflector can be expressed as this:

[
0 0 1 −Hb

]
1 0 εyb 0
0 1 −εxb 0
−εyb εxb 1 0

0 0 0 1

 =
[
−εyb εxb 1 −Hb

]
(15)

The εxb and εyb are the parallel errors between the top surface and the bottom surface.
In CS8, the reflection surface of the plane reflector can be expressed as this:

[
−εyb εxb 1 −Hb

]


X2

Y2

Z2

1

 =
[
−εyb εxb 1 −Hb

]
T1

2 T0
1 T8

0


X8

Y8

Z8

1

 (16)

The coordinates of the reflection points that can be obtained from the incident light
and the reflection surface are as follows:

X8 = V8
x , Y8 = V8

y , Z8

= V8
x

(
−εybcosθ − εxbsinθ + εy − εyv

)
+ V8

y

(
−εybsinθ + εxbcosθ + εx + εxv

)
−εyb

(
cosθVx + sinθVy

)
+ εxb

(
−sinθVx + cosθVy

)
+ εyVx − εxVy + Vz − δz − Hb

(17)

The measurement value of the LDS3 is LZlds. We can use the spatial geometric position

relationship to obtain LZlds =
√

Z82
+
(
X8 −V8

x
)2

+
(
Y8 −V8

y
)2 ≈ Z8. Because the values
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of X8−V8
x and Y8−V8

y are first order infinitesimal, LZlds ≈ Z8. Some system errors can be
eliminated by reducing the initial value. The axial motion error along the Z direction is this:

δz = LZlds − LZlds(t=0)–
(

Vy + V8
y

)
εx +

(
Vx + V8

x
)
εy

−(cosθ − 1)
[(

Vx + V8
x
)(

εyb − εybc

)
+
(

Vy + V8
y

)
(εxbc − εxb)

]
−sinθ

[(
Vx −V8

x
)
(εxb − εxbc) +

(
Vy + V8

y

)(
εyb − εybc

)] (18)

The main factors affecting the axial motion error along Z axis include the following: the
parallel errors εxb and εyb; the perpendicularity error εpy; the working angle manufacturing
error εpz; the position coordinates Vx and Vy of the origin of CS8 in CS0. The position of
LDS3 outgoing light is the coordinates V8

x and V8
y in CS8. The error compensation method

is the same as the radial motion error along X axis.
The effects of the polyhedral prism’s manufacturing errors on the measurement of the

six DOF motion errors are shown in Table 1.

Table 1. The effects of the polyhedral prism’s manufacturing errors on the measurement of the six
DOF motion errors.

εx εy εz δx δy δz

εpx
√

× × ×
√

×
εpy ×

√
×

√
× ×

εpz × ×
√ √ √

×
εxb × × × × ×

√

εyb × × × × ×
√

The above model includes forty-six errors: the six DOF motion errors of the rotary
axis, the installation errors of each component, and the manufacturing errors. Because the
complete expansion of the model is rather complex, the above model ignores the influence
of the second or higher order infinitesimals.

3.3. Model Simulation Analysis

MATLAB matrix calculation software was used to simulate the proposed error model
for verification. By introducing certain installation errors and manufacturing errors, the
model compensation calculation results of the six DOF motion errors of a rotary axis are
compared with the preset values.

Setting of the simulation parameters: the six DOF motion errors of the target rotary
axis are set to zero at the initial timepoint. Thirteen measurement points are set from 0◦

to 360◦ with intervals of 30◦, corresponding to the twelve faces of the polyhedral prism.
Except for the 0◦ and 360◦ points, the εZ, εY, and εX values of other points are set to 100”;
the δX and δY values are set to 100 µm, and the δZ value is set to 10 µm.

The diameter of the polyhedral prism is 100 mm, its thickness is 17 mm, the distance
from the reflection surface to the center is 48.3 mm, and the width of each surface is
12.94 mm. Assuming that the distance from the light point position of the autocollimators
and the laser displacement sensors on the reflection surface of the polyhedral prism to
the axis in X and Y directions is 100 µm, the installation errors of the polyhedral prism
around the X and Y axes are 50”, the radial installation errors along the X direction and Y
direction are 10 µm, and the axial installation error along the Z direction is 10 µm. Because
the manufacturing errors of the working angle of the 0-level polyhedral prism in practical
application are within 1”, the manufacturing errors of the working angle of each surface are
set to a random number within 1”. The perpendicularity error between the working surface
and the datum plane of the polyhedral prism is ≤5”; subsequently, the perpendicularity
errors εpx and εpy between the working surface and the datum plane of the polyhedral
prism are set to be 5”. The parallel error between the top surface and the reference surface is
less than 2 µm. Because the diameter of the polyhedral prism is 100 mm, the angle between



Appl. Sci. 2021, 11, 3960 10 of 15

the top and bottom surfaces around the X axis and the Y axis is less than 4.13”; therefore,
the angle between the two surfaces around the X and Y directions is 4.13”. The maximum
distance between the origin coordinates of the measurement unit coordinate systems 4, 5,
6, and 7 and the origin coordinates of the world coordinate system is 100 mm. The angle
installation errors of the autocollimators and laser displacement sensors are set to 100”.
The positions of the emitted light of the autocollimators and the laser displacement sensors
are located at 100 µm deviation from the X axis and Y axis of their respective coordinate
centers. The specific simulation results are shown in Figure 3.
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Figure 3. (a) The difference between the simulation compensation results of the angular positioning error and the tilt motion
errors around the X and Y axes and the set value. (b) The difference between simulation compensation results of radial and
axial motion errors and the set value.

According to the simulation results, the proposed error model is able to compensate
the installation errors and manufacturing errors for measuring all six DOF geometric
motion errors of a rotary axis. The differences between the compensated measurement
results and the errors’ set values are 0.0509”, 0.0003”, 0.0003”, 0.084 µm, 0.036 µm, and
0.028 µm, respectively. The compensation effect is significant, which verifies the accuracy
and effectiveness of the compensation model.

4. Measurement Experiment

In order to verify the proposed measurement method and error model, an experimen-
tal device was designed and built. As shown in Figure 4, all components were installed
on the optical platform. The target rotary axis was an SKQ-12200 numerically controlled
rotary table made by Yiliya Company. The angular positioning accuracy is about 40” and
repeatability precision is about 20”. The polyhedral prism adopted the 0-level 12-face
prism from Hongce Company. The manufacturing error of the working surface was ≤±1”,
and the perpendicularity between the working face and the datum plane was ≤±5”. The
Collapex-EXP photoelectric autocollimator was used as the rotation angular error mea-
surement unit. An ILD2300-2LL laser displacement sensor from Micro-Epsilon, Germany,
was used as the measurement unit of the radial and axial motional errors of the target
rotary axis. The specific parameters of the autocollimator and laser displacement sensor
are shown in Table 2.
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Table 2. The specific parameters of the autocollimator and laser displacement sensor.

Autocollimator
Range Maximum Error System Accuracy Resolution

±300” ±0.05” ±0.2” ±0.01”

laser displacement sensor Wavelength range absolute error resolution

670 nm 2 mm 0.6 µm 0.03 µm

The laboratory environment temperature was about 25 ± 1 ◦C. The measurement
angle interval was 30◦ (determined by the number of polygon faces), and the rotation
speed of the target rotary axis was 0.57◦/s. Limited by laboratory conditions, one laser
displacement sensor and one autocollimator were used to carry out the experiment step
by step.

The specific steps were as follows: Firstly, the autocollimator was installed in the X
direction of the target rotary axis to measure the angular positioning error and the tilt
motion error around the Y axis. The laser displacement sensor was installed in the Y
direction to measure the radial motion error of the rotary axis along the Y axis, as shown in
Figure 4. The second step was to install the autocollimator in the Y direction to measure
the tilt error of the target rotary axis around the X axis. The laser displacement sensor was
installed in the X direction to measure the radial motion error of the target rotary axis along
the X direction. Finally, the axial motion error along the Z direction was measured by a
laser displacement sensor placed on the target rotary axis through a fixed device.

The SKQ-12200 numerically controlled rotary table was measured ten times with
the above measuring device, and errors were compensated by the proposed model. The
measurement results before and after the compensation of the six DOF motion errors of the
rotary axis are shown in Table 3. The motion error of a certain DOF is the maximum absolute
value of the motion errors of all measurement points. According to the compensation
results, εx, εy, δx and δy are significantly reduced after compensation. The maximum
reduction is 79.1%. According to Equation (9), εz is only affected by the manufacturing
errors of the polyhedral prism’s working surface, and the values of manufacturing errors
of the polyhedral prism is small (≤±1”). It can be seen that the other error terms have
small influence on the measurement of δz.
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Table 3. The measurement results before and after the compensation of the six DOF motion errors of
the rotary axis.

Motion Errors Before Compensation After Compensation

εx 26.15” 15.93”
εy 33.36” 16.69”
εz 27.28” 27.38”
δx 37.65 µm 12.74 µm
δy 53.09 µm 11.12 µm
δz 2.66 µm 2.57 µm

The measurement results after compensated and the repeatability values of the six
DOF geometric motion errors are shown in Figure 5. The repeatability of each measurement
point is half of the peak-to-peak value of the ten measurements, and the repeatability of
the motion error of a certain degree of freedom is the maximum value of the repeatability
of all measurement points.

The experimental results show that after error model compensation, the repeatability
deviation of the angular positioning error is 15.13; the repeatability deviation of the tilt
motion error around the Y axis is reduced from 1.35 to 1.28”; the repeatability deviation
of the tilt motion error around the X axis is reduced from 1.92 to 0.87”; the repeatability
deviation of the radial motion error along the X axis is reduced from 1.12 to 0.74 µm; the
repeatability deviation of the radial motion error along the Y axis is reduced from 1.36 to
0.87 µm; the repeatability deviation of the axial motion error along the Z axis is reduced
from 0.53 to 0.34 µm; the maximum reduction is 54.69%. According to Equation (9), the
angular positioning error is only affected by the manufacturing error of the polyhedral
prism working surface, and the manufacturing error of the polyhedral prism is determined
as a fixed value. Therefore, the model’s compensation does not affect the measurement
repeatability of the angular positioning error. The measurement repeatability of the angular
position error is determined by the repeatability of the target rotary axis itself, and the
measurement results are essentially consistent with the nominal repeatability of the target
rotary axis.

5. Conclusions

A new method based on a polyhedral prism is proposed to simultaneously measure
the six DOF geometric motion errors of a rotary axis by using autocollimators and laser
displacement sensors. An analysis model of 46 errors was established, which included the
motion errors of the target rotary axis and the manufacturing errors and installation errors
of each component. The results simulated by the professional matrix analysis software
show that the six DOF motion errors of the target rotary axis after being compensated
by our model are essentially equal to the preset errors. This provides a theoretical basis
for the high precision of this method. The six DOF geometric motion errors of a rotary
axis were measured ten times by the measurement device built on the optical platform.
After compensation, the motion errors of the target rotary axis, εZ, εY, εX, δX, δY, and δZ,
were, 27.38”, 16.69”, 15.93”, 12.74 µm, 11.12 µm, and 2.57 µm, respectively. The maximum
reduction is 79.1%. The repeatability values were 15.13”, 1.28”, 0.87”, 0.74 µm, 0.89 µm, and
0.34 µm, respectively. Repeatability was significantly improved, with a maximum of up
to 54.69%. The results verified the effectiveness of our method and error model. It can be
used as a new reliable measurement method of six DOF geometric motion errors of a rotary
axis. Subsequently, by analyzing the influence of the higher order errors on the geometric
motion errors of the six DOF rotary axis, measurement accuracy and the repeatability can
be further improved.
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5. Conclusions 

A new method based on a polyhedral prism is proposed to simultaneously measure 

the six DOF geometric motion errors of a rotary axis by using autocollimators and laser 

displacement sensors. An analysis model of 46 errors was established, which included the 

motion errors of the target rotary axis and the manufacturing errors and installation errors 

of each component. The results simulated by the professional matrix analysis software 

show that the six DOF motion errors of the target rotary axis after being compensated by 

our model are essentially equal to the preset errors. This provides a theoretical basis for 

the high precision of this method. The six DOF geometric motion errors of a rotary axis 

were measured ten times by the measurement device built on the optical platform. After 

compensation, the motion errors of the target rotary axis, 𝜀𝑍, 𝜀𝑌, 𝜀𝑋, 𝛿𝑋, 𝛿𝑌, and 𝛿𝑍, were, 

27.38″, 16.69″, 15.93″, 12.74 μm, 11.12 μm, and 2.57 μm, respectively. The maximum re-

duction is 79.1%. The repeatability values were 15.13″, 1.28″, 0.87″, 0.74 μm, 0.89 μm, and 

0.34 μm, respectively. Repeatability was significantly improved, with a maximum of up 

to 54.69%. The results verified the effectiveness of our method and error model. It can be 

used as a new reliable measurement method of six DOF geometric motion errors of a ro-

tary axis. Subsequently, by analyzing the influence of the higher order errors on the geo-

metric motion errors of the six DOF rotary axis, measurement accuracy and the repeata-

bility can be further improved. 
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