Order-Based Identification of Bearing Defects under Variable Speed Condition
Abstract
:1. Introduction
2. Update of SPRO SPRI and SPRR Features
3. Validation of the Proposed Features
3.1. Experimental Setup
3.2. Methodology
3.3. Results and Discussion
3.3.1. Pre-Processing
3.3.2. Features Extraction
3.3.3. Classification
- ▪
- Healthy bearing (H)
- ▪
- Faulty bearing with an outer race defect (ORD)
- ▪
- Faulty bearing with an inner race defect (IRD)
- ▪
- Faulty bearing with a ball defect (BD)
- ▪
- Faulty bearing with combined outer race, inner race, and ball defects (CD)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, R.; Yang, B.; Zio, E.; Chen, X. Artificial intelligence for fault diagnosis of rotating machinery: A review. Mech. Syst. Signal Process. 2018, 108, 33–47. [Google Scholar] [CrossRef]
- Wang, T.; Liang, M.; Li, J.; Cheng, W. Rolling element bearing fault diagnosis via fault characteristic order (FCO) analysis. Mech. Syst. Signal Process. 2014, 45, 139–153. [Google Scholar] [CrossRef]
- Lv, Y.; Zhu, Q.; Yuan, R. Fault Diagnosis of Rolling Bearing Based on Fast Nonlocal Means and Envelop Spectrum. Sensors 2015, 15, 1182–1198. [Google Scholar] [CrossRef] [PubMed]
- Shiroishi, J.; Li, Y.; Liang, S.; Kurfess, T.; Danyluk, S. Bearing Condition Diagnostics via Vibration and Acoustic Emission Measurments. Mech. Syst. Signal Process. 1997, 11, 693–705. [Google Scholar] [CrossRef]
- Lei, Y.; He, Z.; Zi, Y.; Chen, X. New clustering algorithm-based fault diagnosis using compensation distance evaluation technique. Mech. Syst. Signal Process. 2008, 22, 419–435. [Google Scholar] [CrossRef]
- Wang, J.; Peng, Y.; Qiao, W. Current-Aided Order Tracking of Vibration Signals for Bearing Fault Diagnosis of Direct-Drive Wind Turbines. IEEE Trans. Ind. Electron. 2016, 63, 6336–6346. [Google Scholar] [CrossRef]
- Lei, Y.; Yang, B.; Jiang, X.; Jia, F.; Li, N.; Nandi, A.K. Applications of machine learning to machine fault diagnosis: A review and roadmap. Mech. Syst. Signal Process. 2020, 138, 106587. [Google Scholar] [CrossRef]
- Farhat, M.H.; Chiementin, X.; Chaari, F.; Bolaers, F.; Haddar, M. Digital twin-driven machine learning: Ball bearings fault severity classification. Meas. Sci. Technol. 2020, 32, 044006. [Google Scholar] [CrossRef]
- Carvalho, T.P.; Soares, F.A.; Vita, R.; Francisco, R.D.P.; Basto, J.P.; Alcalá, S.G. A systematic literature review of machine learning methods applied to predictive maintenance. Comput. Ind. Eng. 2019, 137, 106024. [Google Scholar] [CrossRef]
- Stetco, A.; Dinmohammadi, F.; Zhao, X.; Robu, V.; Flynn, D.; Barnes, M.; Keane, J.; Nenadic, G. Machine learning methods for wind turbine condition monitoring: A review. Renew. Energy 2019, 133, 620–635. [Google Scholar] [CrossRef]
- Zhang, W.; Jia, M.P.; Zhu, L.; Yan, X.A. Comprehensive Overview on Computational Intelligence Techniques for Machinery Condition Monitoring and Fault Diagnosis. Chin. J. Mech. Eng. 2017, 30, 782–795. [Google Scholar] [CrossRef] [Green Version]
- Farhat, M.H.; Hentati, T.; Chiementin, X.; Bolaers, F.; Chaari, F.; Haddar, M. Numerical model of a single stage gearbox under variable regime. Mech. Based Des. Struct. Mach. 2020, 1–28. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, T.W.; Na, J.; Fung, R.F. Envelope order tracking for fault detection in rolling element bearings. J. Sound Vib. 2012, 331, 5644–5654. [Google Scholar] [CrossRef]
- Huang, H.; Baddour, N. Bearing vibration data collected under time-varying rotational speed conditions. Data Br. 2018, 21, 1745–1749. [Google Scholar] [CrossRef] [PubMed]
Type | Pitch Diameter | Ball Diameter | Number of Balls | |||
---|---|---|---|---|---|---|
ER16K |
Actual | (a), Accuracy = 0.32 | Actual | (b), Accuracy = 0.79 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Predicted | Predicted | ||||||||||||
class | H | ORD | IRD | BD | CD | class | H | ORD | IRD | BD | CD | ||
H | 4 | 0 | 4 | 21 | 1 | H | 26 | 0 | 1 | 3 | 0 | ||
ORD | 0 | 3 | 6 | 18 | 3 | ORD | 1 | 23 | 0 | 6 | 0 | ||
IRD | 3 | 1 | 20 | 6 | 0 | IRD | 0 | 0 | 23 | 1 | 6 | ||
BD | 4 | 5 | 0 | 19 | 2 | BD | 0 | 2 | 2 | 24 | 2 | ||
CD | 0 | 2 | 22 | 4 | 2 | CD | 0 | 0 | 0 | 7 | 23 |
Actual | (a), Accuracy = 0.37 | Actual | (b), Accuracy = 0.87 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Predicted | Predicted | ||||||||||||
class | H | ORD | IRD | BD | CD | class | H | ORD | IRD | BD | CD | ||
H | 11 | 9 | 0 | 8 | 2 | H | 28 | 0 | 1 | 1 | 0 | ||
ORD | 7 | 13 | 0 | 9 | 1 | ORD | 2 | 26 | 0 | 2 | 0 | ||
IRD | 0 | 5 | 13 | 9 | 3 | IRD | 0 | 0 | 24 | 2 | 4 | ||
BD | 6 | 10 | 0 | 12 | 2 | BD | 0 | 0 | 0 | 26 | 4 | ||
CD | 5 | 12 | 0 | 6 | 7 | CD | 0 | 0 | 0 | 3 | 27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farhat, M.H.; Chiementin, X.; Chaari, F.; Bolaers, F.; Haddar, M. Order-Based Identification of Bearing Defects under Variable Speed Condition. Appl. Sci. 2021, 11, 3962. https://doi.org/10.3390/app11093962
Farhat MH, Chiementin X, Chaari F, Bolaers F, Haddar M. Order-Based Identification of Bearing Defects under Variable Speed Condition. Applied Sciences. 2021; 11(9):3962. https://doi.org/10.3390/app11093962
Chicago/Turabian StyleFarhat, Mohamed Habib, Xavier Chiementin, Fakher Chaari, Fabrice Bolaers, and Mohamed Haddar. 2021. "Order-Based Identification of Bearing Defects under Variable Speed Condition" Applied Sciences 11, no. 9: 3962. https://doi.org/10.3390/app11093962
APA StyleFarhat, M. H., Chiementin, X., Chaari, F., Bolaers, F., & Haddar, M. (2021). Order-Based Identification of Bearing Defects under Variable Speed Condition. Applied Sciences, 11(9), 3962. https://doi.org/10.3390/app11093962