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Abstract: Discretionary multitasking has emerged as a prevalent and important domain in research
on human–computer interaction. Studies on modeling based on cognitive architectures such as
ACT-R to gain insight into and predict human behavior in multitasking are critically important.
However, studies on ACT-R modeling have mainly focused on concurrent and sequential multitask-
ing, including scheduled task switching. Therefore, in this study, an ACT-R cognitive model of task
switching in discretionary multitasking was developed to provide an integrated account of when and
how humans decide on switching tasks. Our model contains a symbolic structure and subsymbolic
equations that represent the cognitive process of task switching as self-interruption by the imposed
demands and a decision to switch. To validate our model, it was applied to an illustrative dual task,
including a memory game and a subitizing task, and the results were compared with human data.
The results demonstrate that our model can provide a relatively accurate representation, in terms
of task-switching percent just after the subtask, the number of task-switching during the subtask,
and performance time depending on the task difficulty level; it exhibits enhanced performance in
predicting human behavior in multitasking and demonstrates how ACT-R facilitates accounts of
voluntary task switching.

Keywords: task switching; cognitive model; ACT-R; cognitive architecture; discretionary multitasking

1. Introduction

Many observational studies have demonstrated that multitasking is prevalent and
important in everyday life, and especially in modern office environments where workers
are frequently are immersed in information overloaded environments [1–3]. In particular,
with the development of autonomous driving systems, task switching between awareness
of driving situations and non-driving related tasks is a representative example of a discre-
tionary multitasking environment [4]. As such, in the field of human–computer interaction,
studies on human performance in multitasking environments to gain insight into and pre-
dict cognition and human behavior in multitasking environments are critically important.

In this way, over the past several decades, considerable progress has been achieved
in the cognitive modeling of human behavior in diverse multitasking environments
through various cognitive architectures—for example, executive-process interactive con-
trol (EPIC) [5], queuing network-model human processor (QN-MHP) [6], and adaptive
control of thought-rational (ACT-R) [7,8]. Specifically, ACT-R is a cognitive architecture
that provides a computational framework for the integrated modeling of various cogni-
tive processes in the domains of various complex systems, such as menu selection [9],
driving [10,11], and virtual games [12]. Thus, ACT-R has been used in several studies on
human performance modeling in multitasking environments (e.g., [13–15]).

Therefore, the objective of this study is to develop a more general and accurate
cognitive model based on ACT-R in order to provide a prediction of when and how humans
perform task switching and gain additional insights into task switching in discretionary
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multitasking. For this purpose, we first identify the limitations of the current ACT-R
in performance modeling in discretionary multitasking environments, based on related
studies. Accounts of the cognitive processes involved in task switching by voluntary
decisions in relevant literature are reviewed, and an ACT-R cognitive model based on such
accounts is proposed to provide an integrated account of task switching by self-interruption
in discretionary multitasking.

Related Work

ACT-R has been extended based on the threaded cognition theory [13], which can
provide an account of concurrent human behavior in multitasking, in which a relatively
brief period is spent on task switching [14]. Additionally, Borst, Taatgen, and van Rijn [15]
proposed a computational method based on ACT-R for modeling human performance in
multitasking, in which an ongoing task is interrupted and then resumed. In this manner,
for the past decade, significant progress has been achieved in using ACT-R to model human
performance based on the abovementioned studies, which focused on the interference
produced by the cognitive bottleneck that occurs when multiple tasks are performed
simultaneously and the effect of switching between tasks because of external interruptions,
such that ongoing tasks are interrupted by other tasks.

However, studies on ACT-R modeling have focused on the manner in which humans
decide to interrupt their task by internally motivating discretionary multitasking. Discre-
tionary multitasking is one of the current general work environments in which workers
have some discretion over what and when to perform among multiple tasks that need
to be performed, in which task switching can occur because of external interruptions as
well as internal interruptions, as evidenced by previous research [16]. Some observational
studies have demonstrated that there are considerable instances of task switching due to
voluntary decisions by internal interruptions, known as self-interruptions, which interrupt
the execution of an ongoing task to focus on the execution of another task in discretionary
multitasking [16]. For instance, Czerwinski, Horvitz, and Wilhite [17] reported that 40%
of task switching was due to internal decisions. Dabbish, Mark, and González [18] ob-
served that workers in open work environments would interrupt themselves more often.
Moreover, discretionary multitasking situations present important practical concerns [19]
in that discretionary multitasking does not necessarily lead to optimal switching between
tasks and workers can make irrational decisions [20]. In particular, Katidioti, Borst, and
Taatgen [21] conducted experiments to study participants switching to another simple task
while playing a memory game, the goal of which was to find all pairs of matching cards,
in order to compare self-interruption and external interruption. The results of their study
indicate that the participants were significantly slower in the decision-making process of
task switching on the self-interruption blocks than on the external interruption blocks;
consequently, the voluntary decision to switch can be costly.

2. ACT-R Modeling for Task Switching
2.1. Theoretical Background

The cognitive processes involved in task switching can be characterized based on
several studies focusing on human performance in discretionary multitasking conducted in
the previous decade. We observed that accounts of task switching can distinguish several
properties, as follows:

First, several studies have included accounts of task-switching based on cognitive
resources. For instance, Salvucci and Taatgen’s [13] threaded cognition theory posits that
task switching depends on the availability of cognitive resources. According to this theory,
if a cognitive resource is no longer required in an ongoing task, the cognitive resource
is released politely, which causes natural task switching. An account of task switching
based on the availability of cognitive resources was also demonstrated in Katidioti and
Taatgen’s [20] experimental study, in which participants performed a primary task and
a secondary interrupting task, including responses to simple questions, and could freely
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switch from the primary task to the secondary task. The results of Katidioti and Taatgen’s
study demonstrated that most subjects switch voluntarily to the secondary task when they
are faced with a brief delay in the primary task, even though task switching degrades their
performance, which indicates that the gap in the usage of cognitive resources results in
task switching. Additionally, experimental studies [22–24] have also demonstrated that
instances in which cognitive resources are released by subtask completion serve as natural
points of task switching. In other words, most tasks consist of repetitions of subtasks,
and points between subtasks represent natural points of task switching. In summary, the
availability of cognitive resources by subtask completion is an important property that
naturally leads to task switching in discretionary multitasking.

Second, according to Adler and Benbunan-Fich’s study [16], imbalances between the
demands of an ongoing task and the level of ability of the person performing the task
can result in the ongoing task being paused. In other words, when the ongoing task is
too difficult compared to the person’s ability, negative emotions such as frustration and
exhaustion are experienced. Additionally, when the ongoing task is too easy compared
with the person’s ability, positive emotions such as stimulation are experienced. The
emotions caused by an imbalance likely serve to trigger self-interruptions. In particular, a
difficult ongoing task consumes cognitive resources more rapidly than an easy task, and
unless a specific reward is associated with the ongoing task, people are more likely to
look for an easier task to conserve their scarce cognitive resources. Baumeister and his
colleagues [25,26] also provided similar accounts. They assumed that for more difficult
tasks, the depletion of resources makes people give up easily on an ongoing task because
of the reduced motivation to complete the task. Consequently, the emotions caused by the
imbalance between the demands of an ongoing task and the performer’s ability to execute
the task can trigger self-interruptions and increase the likelihood of task switching. In
particular, difficult tasks are likely to cause self-interruptions in a typical work environment,
in which rewards are not provided directly.

Third, several studies have reported accounts of task switching in which time spent on
an ongoing task influences the likelihood of task switching [27,28]. These studies suggest
that there is a relatively strong argument for an increasing number of switches away from
an ongoing task as the task execution time increases. According to Kurzban et al. [27], the
greater the difficulty of the task, the greater is the time spent on the task and the greater is
the likelihood of switching when a break is needed because of the accumulated demands.
This argument is similar to the abovementioned difficulty-based accounts. Accounts of
the positive effects of the time spent on a task on task switching can be interpreted as
implying that task switching can be rational when any subgoal in the task is not complete,
despite the accumulated demands. Alternatively, other accounts have also been suggested
in various studies [19,28,29], which stated that the task switching likelihood increases
according to the declining rate of return as time is spent on the ongoing task. However,
some accounts have demonstrated the opposite effect of time spent on an ongoing task.
For instance, with vulnerabilities in memory, according to the memory-for-goal theory, task
switching can be intentionally inhibited to avoid abandoning the accumulated memory of
an ongoing task [28]. Therefore, the inhibition of switching can be increased when more
time is spent on the ongoing task, because a longer time spent on the ongoing task will
naturally accumulate more ongoing task-relevant memory. Combining the accounts of task
switching in terms of the time spent on an ongoing task, it could be interpreted that the
decisions to switch from the ongoing task can be made based on the demands of the task
and the memory accumulated when performing it.

Finally, similar to the abovementioned accounts of task switching decisions based on
attributes such as accumulated demands and memory, several studies have represented
task switching in terms of a process of deciding which task to perform in discretionary
multitasking. For instance, Wickens and his colleagues developed strategic task overload
management (STOM) [30–32], which addresses multitasking behaviors in overloaded multi-
tasking environments. The model focuses exclusively on the decision process of which task
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to perform or which task to continue performing, and it is based on multiple task attributes,
including difficulty, interest, priority, salience, and time on the task [30]. In particular, in
terms of difficulty, the STOM model assumes that easier alternative tasks can be more
attractive than difficult ones; the validation study of the STOM model demonstrated that
the greater the difficulty of an ongoing task, the more “sticky” is the inhibition to switch
away [31]. Moreover, Gutzwiller et al. [28] presented the conclusion concerning the task
attribute of difficulty as task end-expectancy. The greater the time spent on an ongoing task,
the greater is the expectation of completing a subgoal of the task execution process, which
could lead to a decision to intentionally increase the inhibition of task switching. In this
manner, it can be determined that task switching is executed through the decision process
in accordance with the attributes of the current tasks, such as the difficulty and time spent
on the task in relation to task end-expectancy. Moreover, Katidioti et al. [21] examined
changes in human pupil size during forced and voluntary task switching. The results
showed an increase in pupil dilation for the voluntary condition, which could be attributed
to the decision to switch.

In summary of the abovementioned accounts of task switching, in discretionary
multitasking, imbalanced states can cause self-interruptions, which can indicate the point
at which a decision is made regarding what task to perform. In addition, the point at
which a subtask is completed can also be the time to decide whether to find another task
to perform. The decision regarding what task to perform is made by comparing the task
attributes of the ongoing task, where task switching is executed if it is rationally determined
that a task other than the ongoing task needs to be performed. Accordingly, we herein
propose an ACT-R modeling method to represent the process of task switching by self-
interruptions based on the abovementioned accounts. Prior to presenting the proposed
model, we first discuss the ACT-R cognitive architecture.

2.2. ACT-R Cognitive Architecture

The ACT-R (version 7.0) architecture consists of several core modules, and each
module represents a part of the brain that independently processes different types of
information (see Figure 1) [7]. Perceptual-motor modules, including the vision, motor,
audio, and speech modules, interact with the real environment. The goal module stores the
goal information required to complete a task. The declarative module stores and processes
human declarative knowledge, which is represented in terms of structures called chunks.
Declarative knowledge represents facts, such as 2 + 3 = 5. The imaginal module temporarily
stores subgoal information or new information encoded by perceptual-motor modules. The
procedural module, which is also referred to as a production system, stores and processes
all procedural knowledge, which is represented as the rules of human cognitive behavior,
called procedural rules, in an IF–THEN form. Each procedural rule includes a set of
conditions and actions.

Each module behaves in a parallel manner and has its own buffer that can hold only
one chunk associated with the module; therefore, ACT-R can represent a combination of
both parallel and serial cognitive processing [11]. However, the procedural module does
not have its own buffer. Instead, the procedural module performs a pattern-recognition
function that continuously monitors all ACT-R buffers to identify procedural rules whose
conditions match the state and content of the buffers. Following this, a conflict-resolution
function is performed to select only one of the identified rules based on the highest expected
utility value, and then, the prescribed actions of the selected procedural rule are executed [7].
The three functions in the procedural module represent neural functions in the basal ganglia
structure, which is part of the brain. The basal ganglia evaluate the criterion satisfaction
of the choice between multiple actions by interacting with the functional regions of the
brain and then serve the execution of the prescribed action [33]. Thus, the basal ganglia
implement the procedural rules in the procedural module by interacting with the buffers
in the ACT-R modules and deciding upon the next action. In this manner, ACT-R can
represent cognitive processes as symbolic structures.



Appl. Sci. 2021, 11, 3967 5 of 20
Appl. Sci. 2021, 11, 3967 5 of 22 
 

 
Figure 1. Schematic diagram of the ACT-R cognitive architecture. The neural location of the mod-
ules and buffers are indicated in parenthesis. 

Each module behaves in a parallel manner and has its own buffer that can hold only 
one chunk associated with the module; therefore, ACT-R can represent a combination of 
both parallel and serial cognitive processing [11]. However, the procedural module does 
not have its own buffer. Instead, the procedural module performs a pattern-recognition 
function that continuously monitors all ACT-R buffers to identify procedural rules whose 
conditions match the state and content of the buffers. Following this, a conflict-resolution 
function is performed to select only one of the identified rules based on the highest ex-
pected utility value, and then, the prescribed actions of the selected procedural rule are 
executed [7]. The three functions in the procedural module represent neural functions in 
the basal ganglia structure, which is part of the brain. The basal ganglia evaluate the cri-
terion satisfaction of the choice between multiple actions by interacting with the func-
tional regions of the brain and then serve the execution of the prescribed action [33]. 
Thus, the basal ganglia implement the procedural rules in the procedural module by in-
teracting with the buffers in the ACT-R modules and deciding upon the next action. In 
this manner, ACT-R can represent cognitive processes as symbolic structures. 

According to the explanation presented on the ACT-R homepage, ACT-R is based 
on symbolic and subsymbolic structures. The symbolic structure relates to the symbolic 
representation of cognitive processes in terms of procedural rules of processing 
knowledge, called chunks, between functional systems in the brain. The subsymbolic 
structure includes mathematical equations concerning functional systems in each mod-
ule, including an abstract representation of which chunks and rules are selected and how 
quickly the chunks and rules are processed. Therefore, a cognitive model of a specific 
task can be developed by establishing the chunks and the procedural rules associated 
with the task, in accordance with the symbolic structure of ACT-R [34], and by supple-
menting additional subsymbolic equations needed to represent human cognition in the 
task to ACT-R. The ACT-R model can then provide a prediction of a performer’s detailed 
cognitive process in the task in chronological order. In the next section, we describe our 
task-switching model in terms of symbolic and subsymbolic structures based on ACT-R. 

2.3. Symbolic Structure of Proposed Task Switching Model 
According to the abovementioned accounts of task switching, a symbolic represen-

tation of the cognitive process of task switching by self-interruption was framed based on 
ACT-R, consisting of three stages, as shown in Figure 2. 

Figure 1. Schematic diagram of the ACT-R cognitive architecture. The neural location of the modules
and buffers are indicated in parenthesis.

According to the explanation presented on the ACT-R homepage, ACT-R is based
on symbolic and subsymbolic structures. The symbolic structure relates to the symbolic
representation of cognitive processes in terms of procedural rules of processing knowledge,
called chunks, between functional systems in the brain. The subsymbolic structure includes
mathematical equations concerning functional systems in each module, including an
abstract representation of which chunks and rules are selected and how quickly the chunks
and rules are processed. Therefore, a cognitive model of a specific task can be developed
by establishing the chunks and the procedural rules associated with the task, in accordance
with the symbolic structure of ACT-R [34], and by supplementing additional subsymbolic
equations needed to represent human cognition in the task to ACT-R. The ACT-R model
can then provide a prediction of a performer’s detailed cognitive process in the task in
chronological order. In the next section, we describe our task-switching model in terms of
symbolic and subsymbolic structures based on ACT-R.

2.3. Symbolic Structure of Proposed Task Switching Model

According to the abovementioned accounts of task switching, a symbolic representa-
tion of the cognitive process of task switching by self-interruption was framed based on
ACT-R, consisting of three stages, as shown in Figure 2.

The first stage is based on the property of task switching related to the account that
self-interruptions can be triggered by emotions experienced when there is an imbalance
between the difficulty of an ongoing task and the performer’s ability [16]. Additionally,
several neuroscience studies [35,36] have shown that the experienced emotions have
affective values that influence the cognitive process in decision making under situations
where the orbitofrontal cortex plays a key role in neural functions between emotion and
decision making and has a neural interconnection with the basal ganglia, represented by
the ACT-R procedural module (see Figure 3). In particular, the procedural module includes
the role of the striatum in the basal ganglia, which performs the pattern-recognition of
information required to determine the next action [7], and the striatum to which the cortical
regions corresponding to ACT-R buffers project is known to have a direct interconnection
with the orbitofrontal cortex. Together, the emotions experienced during the imbalanced
state can be interpreted as directly influencing the cognitive process that determines the
next action in the basal ganglia via the neural functions in the connection between the
orbitofrontal cortex and the basal ganglia. In other words, the orbitofrontal cortex can affect
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the selection of the next action associated with self-interruption by projecting the affective
value of emotion experienced by the imbalance in the basal ganglia. Therefore, in this
study, based on the procedural module representing the basal ganglia, which has a direct
interconnection with the orbitofrontal cortex in cognitive decision making, a procedural
rule was defined; the rule is selected when there is an affective value derived from the
imbalanced state and includes the action related to self-interruption. This rule is depicted in
the interrupt-task stage in Figure 2, and a verbal description of the rule in pseudo-English
form is given as Algorithm 1:

Algorithm 1 INTERRUPT-TASK rule

if goal is to perform the ongoing task,
and there is an affective value from an imbalance state then
clear the imaginal buffer

end if
Appl. Sci. 2021, 11, 3967 6 of 22 
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The interrupt-task rule is implemented when there is an affective value for which
the imaginal buffer is cleared to indicate that the ongoing task is self-interrupted. The
imaginal module is used to store intermediate information that is necessary for performing
a task [37]; thus, clearing the information necessary for the ongoing task interrupts the
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task. The affective value projected to the basal ganglia from the orbitofrontal cortex is
represented by several subsymbolic equations that quantitatively evaluate the imbalance
between the difficulty of an ongoing task and the performer’s ability. Additionally, in this
model, the subsymbolic equations are implemented in the procedural module, which has a
direct connection with the orbitofrontal cortex, because the existing ACT-R has no module
that directly represents the orbitofrontal cortex associated with emotion.

In the second stage, it is decided whether another task is to be performed or the
ongoing task is to be continued, where the imaginal buffer is cleared to represent the
self-interruption in the previous interrupt-task stage. A procedural rule is thus required to
change the current goal to determine what task to perform next, and the rule is defined as
Algorithm 2:

Algorithm 2 DECISION-TO-SWITCHING rule

if imaginal is empty then
change goal to “decision-to-switch”

end if

The absence of any chunks in the buffer of the imaginal module implies that no
information is currently required to perform the ongoing tasks, which indicates that no
cognitive resources are currently required. Therefore, the decision-to-switching rule can be
implemented based on the empty state of the imaginal buffer, not only by the interrupt-task
rule but also when cognitive resources are available because the subtask of the ongoing
task has just been completed. This is based on the abovementioned accounts indicating
that the availability of cognitive resources can induce task switching.

Finally, if the current goal is changed to the “decision to switch” in the previous stage,
the next stage involves continuing the ongoing task or requesting a goal of an alternative
task to perform task switching, as shown in Figure 2. An ACT-R single model may include
procedural rules to allow several strategies for the same task and use the utility mechanism
to represent the selection of different strategies over the course of problem solving [38].
Therefore, the model in this study also uses the utility mechanism to select the next task to
be performed, and two procedural rules are defined; a verbal description of the rules is
given as Algorithms 3 and 4:

Algorithm 3 DO-TASK-SWITCHING rule

if goal is “decision-to-switch” then
request a goal of the althernative task

end if

Algorithm 4 DECISION-TO-SWITCHING rule

if goal is “decision-to-switch” then
request the imaginal buffer to execute the ongoing task

end if

Of the two rules above, the one with the highest utility value is selected; the utility
value can be determined based on several task attributes according to the aforementioned
STOM model.

2.4. Subsymbolic Structure of Proposed Task Switching Model

Several subsymbolic equations must be added to develop a computational model
based on the symbolic structure proposed in the previous section. First, considering the
interrupt-task rule in the symbolic structure, a subsymbolic equation is needed to represent
the timing of starting the rule. In a situation where the interrupt-task rule begins when there
exists an imbalance between the difficulty of the ongoing task and the performer’s ability,
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the subsymbolic equation must be able to evaluate the level of imbalance quantitatively in
real time. According to Wickens et al. [31], difficulty is associated with the mental workload
imposed by a task. The level of ability indicates the speed of cognitive processes [39].
According to these perspectives, the level of imbalance at time T (LIT) is proportional to the
ratio of the value of the imposed mental workload to the speed of the cognitive processes
in the ongoing task at time T.

Jo et al. [40] developed a methodology to quantitatively predict the mental workload
over time using ACT-R, in which the accumulated mental workload over a time interval
[T1, T2] (AW[T1,T2]) is represented as the sum of the activated times of ACT-R modules
during the time period, as indicated below:

AW[T1, T2] = ∑
i

(
Wi

∫ T2

T1
Ai(t)dt

)
(1)

where Wi is the weight assigned to module i (Wi ≥ 1), and Ai(t) is a function that determines
if module i is activated at the given time t (0 or 1 according to inactive or active, respectively),
and Ai(t)dt represents the activated time of module i during the infinitesimal time dt, such
that each module in ACT-R is activated to process relevant information associated with
the execution of a task [40]. Additionally, because affective experiences such as frustration,
which can be caused by mental workload, are affected by the temporal dimension that
includes recovery time [41], we can assume that the imposed mental workload decays over
time. Therefore, the general decay function is applied to Equation (1) for the accumulated
mental workload, as follows:

MWT = ∑
j
(AW)j · t−d

j (2)

where MWT is the imposed mental workload at time T, (AW)j is the accumulated mental
workload imposed by the jth subtask in the ongoing task, tj is the time since the jth subtask
has been executed, and d is the decay parameter and can be decimal number between 0
and 1. Furthermore, it can be assumed that the speed of cognitive processes is related
to the number of subtasks in the ongoing task that have been processed, which can be
represented as the number of accomplished subgoals in the ongoing task. Consequently,
LIT can be denoted as the ratio of MWT to the number of accomplished subgoals at time T,
N(SubgoalsT), as expressed below:

LIT = MWT / N(SubgoalsT) (3)

In Equation (3) above, LIT can be interpreted as the amount of mental workload
imposed per subtask. Finally, the scaled value of the level of imbalance, as in Equation (4),
can be obtained by dividing LIT by the standard value (MWstd), which is calculated using
the accumulated workload imposed when performing a basic subtask.

Scaled LIT = LIT/MWstd (4)

In Equation (4), if the scaled LIT value is greater than unity, it means that the subtask
being performed at time T is more difficult than the standard subtask in the ongoing
task. Therefore, in the proposed model, the interrupt-task rule is implemented when the
scaled LIT value is greater than the sum of unity and the imbalance threshold value, as
expressed below:

Scaled LIT > 1 + ε (imbalance threshold value) (5)

where the imbalance threshold value, ε, can be a decimal number between 0 and 1.
Next, the utility values concerning the do-task-switching rule and the do-not-task-

switching rule must be determined to select the implementation of the next rule after the
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decision-to-switching rule. To determine the utility values, although several task attributes
could be used, attributes related to difficulty and task end-expectancy were used in this
study. In other words, if the degree of difficulty of an ongoing task is greater than the degree
of task end-expectancy, task switching will be performed, and if not, the ongoing task will
continue to be performed. Therefore, the subsymbolic equations associated with difficulty
and task end-expectancy were used to indicate the utility values of the do-task-switching
and do-not-task-switching rules, respectively. For the utility value concerning difficulty,
the accumulated mental workload value, MWT, was used to denote the demand imposed
by the ongoing task until the current time T. Additionally, by dividing the utility value by
the above-used standard value, MWstd, the scaled utility value associated with difficulty
can be obtained. The utility value concerning task end-expectancy is represented as the
number of chunks associated with the subgoal currently being performed in the ongoing
task in the retrieval module. It is expected that the greater the amount of information
associated with the ongoing task, the sooner the task will be completed, which is consistent
with the abovementioned account indicating that task switching can be inhibited to avoid
abandoning the accumulated information concerning the ongoing task [28].

2.5. Discussion

As mentioned earlier, considerable efforts have been devoted toward accounting for
the cognitive process of task switching in discretionary multitasking. The proposed model
contributes toward such efforts using an ACT-R-based approach for integrating different
accounts of task switching. ACT-R includes several significant features that facilitate the
establishment of an integrated account of voluntary task switching.

One of the significant aspects of ACT-R in the proposed model is the production sys-
tem. Task switching can be affected by several task attributes; even the same task attribute
can have different effects on task switching depending on the situation. For example, the
task attribute of difficulty is considered to have positive effects on task switching under
self-interruption [16], but during the decision process of task switching, the difficulty of the
ongoing task is considered to have negative effects on task switching [30]. The production
system in ACT-R facilitates an integrated account of the conflicting circumstances of task
switching by providing a rule-based representation of cognitive control to adapt to different
cognitive states. Additionally, the utility system in the production system can provide a
rational criterion for selecting one of the procedural rules and facilitates the representation
of a rational decision process in humans. Through the utility system, the proposed model
can make rational decisions by considering several task attributes without unconditionally
switching to alternative tasks.

Another significant aspect of the ACT-R in the proposed model is its symbolic and
subsymbolic structures. The symbolic structure facilitates the representation of an ACT-R
model for each part of the brain as a module and describes the process of performing a task
through a series of processes in which the modules are activated. The subsymbolic structure
provides predictions of the time related to the duration for which the modules are active.
Considering these structures together, ACT-R can predict the extent to which the brain’s
parts are activated, which implies that ACT-R facilitates the quantitative prediction and
explanation of the mental workload exposed by the execution of a task. The quantitative
prediction of mental workload plays an important role in determining the point of task
switching in the proposed model.

In this manner, ACT-R is beneficial for developing an integrated model of task switch-
ing in discretionary multitasking. We developed a task-switching model by using the
features of ACT-R to represent an integrated account of task switching. However, the
question of whether the proposed model can quantitatively represent the cognitive pro-
cesses of task switching in real humans when dual tasks are performed simultaneously
still remains unaddressed. Therefore, an experimental study was conducted to validate the
proposed model.
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3. Model Validation
3.1. Design

The model in this study represents the cognitive process of task switching as self-
interruption according to the imposed mental demands, followed by a decision as to
whether to switch tasks based on the task attributes. To validate the model, an illustrative
model of a dual task was developed based on the modeling method, and the simulated
results of the model were compared with the results of an empirical test. The dual task
used in this study includes a primary task that has several mental demand levels and a
secondary task that is easy in comparison to the primary task. The primary task involves a
memory game, usually referred to as a concentration or pair game. In the memory game, a
deck of cards that includes pairs of matching images is used. The goal of this game is to
match all the pairs. All cards are laid face down at the start of the game. The players then
flip two cards sequentially. If the flipped cards match, they are kept facing upwards; if not,
they are flipped to face downwards.

The memory game has been altered in various ways in certain studies to meet their
respective goals [21,42]. Therefore, this game was slightly altered for the experiment in this
study, such that there were 20 cards consisting of ten pairs arranged in a 5 × 4 matrix, as
shown in Figure 4a. The cards depicted four types of images, depending on the level of
difficulty, as shown in Table 1.
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Table 1. Four types of images on the cards in the primary task.

Difficulty Image Form Alternative Image Form Instance

Level 1 Diamond at playing card Diamond at playing card (see Figure 4a)
Level 2 Three-letter word Reverse order of the word DOG, GOD
Level 3 Simple calculation Simple calculation with the same answer 2 × 3, 4 + 2
Level 4 Simple equation Simple equation with the same answer X + 2 = 3, 2X + 3 = 5

The secondary task in the experiment involved a visual attention task called a subitiz-
ing task [43]. In this type of task, several visual objects are presented to the subject, and
the subject must identify the number of objects present [44]. In the experiment, the subject
must identify the number of target cards with only one diamond on the screen and then
click on the card corresponding to the number of identified target cards (see Figure 4b).
The number of target cards varied between five and nine. Because this secondary task is
less demanding than the easiest version of the primary task, it can result in a switch to
the secondary task when the primary task is too difficult. Additionally, at least five visual
objects must be identified in this task, which prevents the rehearsal of the primary task
when performing the secondary task. In other words, the subitizing task was chosen for
the experiment.
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The primary task, i.e., the memory game, includes a subgoal of matching a pair of
cards by repeating a small unit of a task to select and click on a card, and the primary task
is to perform the repetition of the subtask associated with the subgoal ten times. According
to the characteristics of the memory game, three results concerning task switching can
be expected based on the abovementioned accounts of task switching. First, most task
switching will be performed just after achieving a subgoal, that is, when cognitive resources
are free because of the completion of the subtask of matching a pair of cards, in accordance
with accounts based on the availability of cognitive resources. Second, according to
difficulty-based accounts, the greater the difficulty of the memory game, the greater the
task switching that occurs during the execution of a subtask. If the level of difficulty of the
memory game is high, each time a card is identified, it will consume considerable cognitive
resources and increase the likelihood of switching to another task. Third, because task
switching occurs through decision processes, if task switching occurs during the execution
of a subtask, the subtask will involve a longer performance time than the other subtasks,
including the time for the decision process. In addition, a small unit of a task involving the
selection and clicking of a card in the subtask in which switching occurred will involve
a longer performance time than the other subtask. This was also demonstrated in an
experimental study by Katidioti et al. [21], in which the mental workload increased before
voluntary task switching occurred, implying that a cognitive process is performed prior to
task switching.

Therefore, the proposed modeling method was validated by confirming whether the
results of both the subjects and the model of the dual task, including the memory game
and subitizing task, demonstrate the abovementioned phenomenon. The hypotheses are
as follows:

1. Both the model and subjects are more likely to perform task switching just after the
completion of the ongoing subtask.

2. The greater the difficulty in the ongoing task, the greater the task switching signifi-
cantly increases when a subtask is executed.

3. A small unit of a task involving the selection and clicking of a card in the subtask
where task switching occurs involves a longer performance time than the small unit
task in the other subtask.

3.2. Subjects and Apparatus

Twelve subjects were recruited for this study, including nine males and three females
with a mean age of 24.9 years (σ = 2.36). All subjects had adequate experience in performing
multiple tasks using a computer, and informed consent was obtained from each subject.

A personal computer featuring a 42-inch LCD monitor with a resolution of 1024 × 768
and a standard mouse were used in the experiment. The experimental tasks for the
subjects were programmed in Python, and the ACT-R model was programmed in Allegro
Common Lisp.

3.3. Procedure

Before beginning the experiment, the subjects were provided with instructions regard-
ing the experimental procedure and the experimental program from the experimenter, and
the subjects were provided time to familiarize themselves with the experimental program
at each level of difficulty. In particular, to prevent the subjects from assigning a high priority
to a specific task or focusing too much on the performance of the task, it was emphasized to
the subjects that there was no reward and that they were free to perform the dual task. The
subjects then began with one of the levels of difficulty in the primary task according to the
guided experiment sequence. To perform the primary task, subjects had to click on a card
with the left button of the mouse, remember the value on the card by mentally determining
the answer of the simple calculation or solving the equation in accordance with the level
of difficulty, and continue by clicking on another card. If the clicked cards matched, the
cards disappeared. The subjects could voluntarily switch to the secondary subitizing task
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at the desired time while performing the primary task. To switch to the secondary task, the
subjects had to click the right button of the mouse. When the secondary task is completed,
the primary task is automatically resumed, and the subjects execute the secondary tasks
ten times through task switching. A trial ended when the secondary task was completed
ten times and all cards in the primary task disappeared. The experiment was performed
repeatedly under four different conditions for each level of difficulty.

3.4. Model

An illustrative model for the experiment was developed based on the proposed
modeling method. The symbolic structure of the model consists of nine procedural rules
concerning the primary task, eight procedural rules concerning the secondary task, and the
abovementioned four procedural rules concerning task switching, as shown in Figure 5.
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The primary task, i.e., the memory game, consists of ten repetitions of a subtask, and
the goal of the subtask, i.e., the subgoal, is to find a pair of matching cards. The nine
procedural rules represent the accomplishment of the unity subgoal. Therefore, by starting
the memory game, the start-memory-game rule is fired, and a request is made to the
imaginal buffer to initialize the subgoal. Each subtask repeats the process of selecting and
clicking on a card until it achieves its subgoal, that is, until it finds a pair of matching cards.
If the imaginal buffer is initialized with information concerning the subgoal, the choose-
random-card rule or the choose-target-card rule is fired. The choose-random-card rule
requests the vision module to find a visual-location chunk, including location information
concerning an arbitrary card, and requests the vision module to move the visual attention
to the location based on the found visual-location chunk. Next, the open-the-card rule
requires the visually attended card to be clicked to flip the card, and subsequently, the re-
attend-the-card rule requests the card to be visually attended again. Under higher-difficulty
conditions, the procedural rules associated with mentally determining the answer to simple
calculations or solving equations are additionally fired after the execution of the re-attend-
the-card rule. Through this series of rules, the model can identify the content of a card,
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which, in turn, leads to the inspect-the-opened-card rule, which requests the declarative
module to retrieve information concerning the card that was just identified. This represents
the cognitive process used to determine whether the location information of the other card
that matches the card that has just been identified needs to be recalled. Therefore, if the
retrieval fails, it means that the content of the card that has just been identified is not in the
declarative module; thus, the choose-random-card rule is fired again. Conversely, if the
retrieval succeeds, it means that the declarative module includes the location information
of the card with the same content as the card that has just been identified; in this case, the
choose-target-card rule is fired and a request is made to the vision module to identify the
location. If the clicked cards match and are cleared, the check-the-matched-cards rule is
fired instead of the inspect-the-opened-card rule. The check-the-matched-cards rule clears
the imaginal buffer to represent the completion of an ongoing subtask.

Both the continue-memory-game rule and the decision-to-switching rule are executed
when the imaginal buffer is empty; however, because the utility value of the decision-to-
switching rule is set to exceed the value of the continue-memory-game rule by 0.5, the
decision-to-switching rule is usually executed. Additionally, the interrupt-task, choose-
random-card, and choose-target-card rules are executed when the visual buffer is empty.
However, because the interrupt-task rule includes an additional condition for the level of
imbalance, the rule is more likely to be executed when the scaled LIT value is greater than
the sum of unity and the imbalance threshold value. The imbalance threshold value was
set to 0.3, as shown in Table 2. In addition, to represent variability, the scaled LIT value
is added to the value obtained from the noise generation function provided by ACT-R.
The ACT-R noise function generates a value from a logistic distribution with a mean of
0 and an s value of 0.1 (see Simbalance in Table 2). Moreover, the scaled LIT is obtained by
dividing MWstd, and MWstd in this model is obtained by using the pre-simulated result
of the memory game model including only nine procedural rules concerning the memory
game in the first level of difficulty. The decay parameter needed to obtain the value of the
accumulated mental workload was also set to 0.5, which is generally used in ACT-R.

Table 2. Parameter setting values of the model in the experiment.

Parameter Setting Value

Level of imbalance Estimated 0.3
Simbalance Estimated 0.1

MWstd Empirical (preset) 207.23
Decay Estimated 0.5

Latency factor Estimated 0.5
Visual-num-finst Estimated 9
Visual-finst-span Estimated 8

After the execution of the interrupt-task rule or the decision-to-switching rule, whether
or not task switching occurs is determined by comparing the subsymbolic utility value in
the do-task-switching rule with that in the do-not-task-switching rule. If the secondary task,
i.e., the subitizing task, begins with the do-task-switching rule, then the find-target-button,
attend-target-button, and encode-target-button rules are repeatedly executed until all
targets are visually attended to represent the search for all playing cards with one diamond.
Additionally, the encode-target-button rule records the number of targets detected in the
imaginal buffer each time it is executed. Therefore, if all targets are visually attended,
the next rules are fired in order, and subsequently, the primary task is resumed again
by the restart-memory-game rule. In this study, two parameters, visual-num-finst and
visual-finst-span, were adjusted as shown in Table 2, such that the model could find up
to nine visual targets. Finally, the latency factor determines the amount of time taken to
retrieve a chunk, and it is estimated to have a value of 0.5.
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3.5. Results and Discussion

Figure 6 and Table 3 demonstrate that most of the subjects and the model performed
task switching just after the completion of the ongoing task, when the alternative task still
remained. Additionally, the root mean square error (RMSE) value between the subjects
and model data was 6.791. Separate analyses of variance (ANOVAs) were performed to
examine the trends in the results of task switching percentage just after a subtask in each
of the subjects and the model data, and the statistical results included p-values of 0.058
and 0.062, respectively. The results demonstrate that most of the task switching in both the
subjects and model occurred just after the completion of the ongoing subtask, regardless of
the level of difficulty in the ongoing task, which confirms Hypothesis 1. However, Figure 6
demonstrates that the subject data are somewhat lower and more volatile than the model
data, which could be interpreted to indicate that humans are more conservative in task
switching than the model, and individual differences in human behavior have a somewhat
significant effect on task switching.
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Figure 6. Task switching percentage for subjects and model data just after the ongoing subtask, when
the alternative task still remained.

Table 3. Task switching percent (%) for subjects and model data just after the ongoing subtask, when
the alternative task still remained.

Level of Difficulty
Mean (Standard Deviation)

Subjects Model

Level 1 95.29 (5.91) 95.74 (6.78)
Level 2 91.30 (12.40) 99.17 (2.89)
Level 3 96.88 (5.65) 100 (0)
Level 4 88.36 (6.68) 99.07 (3.20)

In the context of Hypothesis 2, Figure 7 and Table 4 present the results of the subject
and model data. Separate nonparametric ANOVAs were performed to examine the trends
in the results of the average number of task switching occurrences during the execution
of the ongoing subtask of each subject and the model. In addition, the statistical results
include p-values of 0.049 (subjects) and 0.005 (model), which implies that the number of task
switching occurrences during the execution of a subtask in the ongoing task significantly
increased for both the subjects and the model, in accordance with the increased difficulty
level of the ongoing task. However, Figure 5 also illustrates that the subject data were
somewhat lower than the model data (RMSE = 1.09). The results could also be interpreted
to indicate that humans are more conservative in task switching than the model.
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Figure 7. Average number of task switching occurrences during the execution of a subtask in the
memory game for the subject and model data.

Table 4. Mean of task switching during the execution of a subtask for subjects and model data.

Level of Difficulty
Mean (Standard Deviation)

Subjects Model

Level 1 0.417 (0.67) 0.75 (0.86)
Level 2 1.08 (0.99) 1.25 (1.42)
Level 3 1.17 (0.94) 1.33 (0.98)
Level 4 2.0 (1.13) 2.33 (1.55)

The results related to Hypothesis 3, which indicate that there exists a significant
difference in the performance time of a small unit of a task for selecting and clicking
a card in a subtask in the memory game, depending on whether or not task switching
occurs while performing the subtask, are shown in Figure 8 and Table 5. We performed
a three-way ANOVA to examine whether Hypothesis 3 is statistically correct, and the
results illustrate that the difficulty level of the memory game (p < 0.0001) and whether or
not task switching occurred during the subtask (p < 0.0001) had a significant effect on the
performance time in a small unit of the task of selecting and clicking a card. However, the
condition of the subject or model (p = 0.085) had no significant effect on the performance
time in the task of selecting and clicking a card. Therefore, we can infer that the model
appropriately represents the phenomenon in which the performance time increases in
the subtask where task switching occurred, which can be observed in the subject data.
However, as shown in Figure 8, there is a difference between subject data and model data,
whereby the performance time of the subjects was longer than that of the model at difficulty
level 1. According to Adler and Benbunan-Fich [16], task switching can occur not only
when the task is too difficult but also when the task is perceived to be too easy. Thus, the
difference in results at difficulty level 1 could be attributed to the self-interruption caused
by perceiving the ongoing task as being too easy.

Finally, Figure 9 and Table 6 present the total performance time for the subject data
and model data. According to a goodness-of-fit analysis [45], the correlation coefficient
and RMSE were calculated as r = 0.97 and RMSE = 18.83 for the total performance time.
The results indicate that our task-switching model can predict the total performance
time at different levels of difficulty and provide a representation of task switching in
discretionary multitasking.
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Table 5. Performance time (s) in a small unit task for selecting and clicking a card according to the
presence or absence of task switching in the memory game for subject and model data.

Level of
Difficulty

Mean (Standard Deviation)

without Task Switching with Task Switching

Subjects Model Subjects Model

Level 1 1.2 (0.28) 1.04 (0.27) 1.95 (0.23) 1.25 (0.27)
Level 2 1.24 (0.37) 1.37 (0.30) 1.86 (0.62) 1.79 (0.32)
Level 3 1.36 (0.62) 1.34 (0.32) 1.93 (0.66) 1.76 (0.24)
Level 4 1.99 (0.68) 2.20 (0.70) 3.00 (1.08) 2.75 (0.46)

In summary, the results in the experiment demonstrate that the cognitive model in
this study can provide a relatively accurate representation, in terms of task-switching
percent just after the completion of the ongoing subtask, the amount of task-switching
during the execution of the ongoing subtask, and performance time depending on the
task difficulty level. It exhibits enhanced performance in predicting human behavior in
discretionary multitasking environments and demonstrates how ACT-R facilitates accounts
of voluntary task switching. However, since the experiment in this study was conducted
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with a somewhat small number of subjects and the conclusions should not be interpreted
to statistically represent the general population.
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Figure 9. Total performance time of the illustrated dual task, including the memory game and the
subitizing task, for the subjects and model.

Table 6. Total performance time (s) of the illustrated dual task for subjects and model.

Level of Difficulty
Mean (Standard Deviation)

Subjects Model

Level 1 107.65 (14.80) 115.31 (5.94)
Level 2 126.97 (26.68) 130.19 (8.93)
Level 3 142.77 (14.02) 129.25 (6.09)
Level 4 189.91 (25.57) 162.02 (12.27)

4. General Discussion

The objective of this study was to develop an ACT-R model that could provide
a quantitative representation of task switching in discretionary multitasking. For this
purpose, we extended ACT-R by adding several subsymbolic equations and proposed four
procedural rules related to task switching. Additionally, the proposed model was validated
through an experimental study, confirming that the model can provide a relatively accurate
representation of when and how task switching is performed. However, the model is yet to
provide a complete representation of task switching in humans.

According to the results of the experiment performed in this study, the model has
limitations in terms of representing the individual differences and conservative aspects of
human task switching. Therefore, in future works, relevant parameters of this model must
be appropriately readjusted based on human data. For example, by slightly increasing
the value of the noise parameter in ACT-R, individual differences can be described. If the
weights of the utility value of task end-expectancy were appropriately specified based on
human data, the conservative tendency of a person could be represented. Additionally, it is
suggested that additional task attributes such as priority, interest, and salience be included
based on the STOM model [32], in order to determine the utility value, through which the
model can more accurately predict the decision processes involved in task switching.

In conclusion, this study developed an ACT-R model for integrated accounts of task
switching in discretionary multitasking. The model can represent cognitive processes
of task switching by using several features in ACT-R, including a symbolic structure
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associated with interrupting ongoing tasks and the decision to switch between tasks,
subsymbolic equations concerning mental workload and ability, and a refined utility
system. Additionally, the model was validated through an experiment, and the results
suggested directions in which the model can be further improved to obtain a more robust
model of task switching. Therefore, future studies can investigate accounts of individual
differences and additional task attributes related to task switching, and build an integrated
ACT-R model based on these accounts.

Practical and Theoretical Implications

The ACT-R-based task-switching model used in this study has several practical and
theoretical implications. First of all, one possible application of our model is as a practical
tool for evaluating aid systems in discretionary multitasking environments. Several studies
on practical applications related to multitasking [46,47] have developed systems that
support multitasking performance for optimally managing the mental workload involved
in task switching through an approach to aid in memory retrieval or decision making. In
the task switching model, task switching occurs at two points: when the ongoing task is
too difficult relative to the performer’s ability and when a subtask in the ongoing task is
completed. Task switching at the former point occurs during the execution of a subtask,
which can have a negative impact on the management of mental workload. Therefore,
the proposed model can be used as a tool to evaluate the degree to which the frequency
of task switching at the appropriate time improves when using the abovementioned aid
systems. Moreover, because the proposed model includes additional decision-making
processes associated with voluntary task switching, it can also assess the manner in which
aid systems manage the additional demand from these decision processes.

Second, in terms of the ACT-R theory, a general ACT-R model continues to maintain
the goal related to the task, and task switching in multitasking environments is represented
through a pre-scheduled goal change. However, most task switching phenomena are
difficult to predict and occur dynamically in accordance with the manner in which the task
is processed. Therefore, Salvucci et al. [14] proposed a modeling approach that can describe
adaptive task switching in concurrent multitasking environments. Furthermore, in our
study, we proposed a task-switching model that can represent adaptive task switching in
sequential multitasking environments.

This implies that the proposed model could apply ACT-R to expanded domains of
more complex multiple tasks in discretionary multitasking, in terms of theoretical impli-
cations. For instance, in discretionary multitasking, autonomous driving is a domain in
which multiple tasks exist, including a primary task associated with vigilance of the driving
situation to prepare for a take-over and a secondary task such as reading a book, using a
smart phone, or conversing with another person. Task switching is usually performed vol-
untarily in the autonomous driving domain. Therefore, in the proposed model, integrated
accounts of task switching can be of significant assistance in developing the ACT-R model
in complex multitasking domains such as autonomous driving.
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