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Abstract: Stock performance prediction plays an important role in determining the appropriate
timing of buying or selling a stock in the development of a trading system. However, precise stock
price prediction is challenging because of the complexity of the internal structure of the stock price
system and the diversity of external factors. Although research on forecasting stock prices has been
conducted continuously, there are few examples of the successful use of stock price forecasting
models to develop effective trading systems. Inspired by the process of human stock traders looking
for trading opportunities, we propose a deep learning framework based on a hybrid convolutional
recurrent neural network (HCRNN) to predict the important trading points (IPs) that are more likely
to be followed by a significant stock price rise to capture potential high-margin opportunities. In the
HCRNN model, the convolutional neural network (CNN) performs convolution on the most recent
region to capture local fluctuation features, and the long short-term memory (LSTM) approach learns
the long-term temporal dependencies to improve stock performance prediction. Comprehensive
experiments on real stock market data prove the effectiveness of our proposed framework. Our
proposed method ITPP-HCRNN achieves an annualized return that is 278.46% more than that of
the market.

Keywords: stock performance prediction; deep learning; important trading points; convolutional
neural network; long short-term memory neural network

1. Introduction

The stock market has been regarded as an investment channel with great profit po-
tential and has been studied by many people for many decades [1–25]. Stock performance
prediction aims to predict the future price or trend of stocks in order to achieve the max-
imum profit from stock investment. Various models have been used to predict stock
performance by many economic analysts and stock traders, including quantile autoregres-
sion model (QAR) [1], hidden Markov model [2], deep neural network (DNN) [3], recurrent
neural network (RNN) [5,6] and Long short-term memory (LSTM) [7–9]. However, due
to the dynamic and complex nature of the stock market, as well as its many intertwined
factors, it is not easy to establish an effective forecasting model.

Experienced investors predict stock trends by analyzing the changes in stock prices
and volumes over time. Some theories have been developed to predict the trend of stock
prices, such as the Elliott Wave Theory [26], presented by Ralph Nelson Elliott. Elliott
proposed that trends in financial prices resulted from investors’ psychology; he found that
the fluctuations of mass psychology always appeared in the same repeated fractal pattern—
that is, the “volatility” of financial markets. In addition, the very famous Gann Theory [27],
golden ratio theory [28], and other theories have been presented. These theories, which are
widely recognized by stock investors, reveal the inherent law of fluctuations. Besides mass
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psychology, the stock price system is also influenced by many kinds of information such as
government policy, corporate performance, and breaking news.

Due to the remarkable result of deep learning in various domains such as computer
vision [29], natural language processing [30], and network security [31]. In recent years,
many methods based on deep learning have been proposed to forecast stock prices and
have drawn some essential conclusions [32]. Nevertheless, when applying these methods
to the development of trading systems, a common phenomenon occurs: the prediction
price turns out to be a very much delayed version of the price from a time step before, as
shown in Figure 1. It seems that the point-by-point prediction closely matches the real price
curve, but in fact, this is deceptive, and the prediction tends to simply repeat the trajectory
of historical prices with a delay. The delay occurs because the predicted price is close to the
last time step of the input stock price sequence. After training for many iterations with an
MSE loss function, the LSTM model tends to output a value close to the last time step of
the input sequence as the predicted stock price of the next time step in order to minimize
the MSE loss. From the figure, we can see that the prediction results in the gray dotted
boxes moving in the opposite direction to reality, which is the lagging phenomenon that
causes a poor prediction performance.

Figure 1. An example of the lagging phenomenon: prediction results for the S&P500 index from
August 2017 to September 2018 using a long short-term neural network.

This leads us to rethink the feasibility of pursuing a model that is capable of precisely
predicting the stock price or trend at any time. On the one hand, stock prices are influenced
not only by the inherent law of fluctuations but also many unpredictable external factors,
such as breaking news and national policy; i.e., stock price data are usually noisy. Even
if deep neural networks have demonstrated their capability in time-series data mining,
it is unrealistic to predict stock prices accurately. In contrast, feeding historical data into
the neural network indiscriminately may decrease the prediction performance because
too much noise will also be fed into the network. On the other hand, the primary goal of
developing a trading system is to ensure profitability, and there is no need to precisely
predict the price all the time. Catching potential high-margin trading opportunities is also
significant and valuable. Moreover, compared to the slight price fluctuations, which are
similar to a random walk process, the temporal pattern before important breakout points
is more likely to be caused by the real driving force itself. Consequently, we focus on
the construction of a deep learning model that is capable of predicting important trading
points. To address this challenge, we imitate the process of human stock traders looking
for trading opportunities, which can be summarized in three principles:
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• Focus on high-margin opportunities: Even experienced human investors do not
predict the stock price or trend at every time point; instead, they focus on the important
trading points that are more likely to represent high-margin opportunities. This is
not only because of the uncertainty and difficulty of the stock price forecasting task
but also because the considerable transaction costs make slight price fluctuations
meaningless.

• Keep track for some time: A signal at a single time point is very likely not to be
sufficiently informative. Furthermore, it may have different meanings in different
contexts. Human traders usually comprehensively consider a sequence of recent
data and consequently make a more reliable prediction of the subsequent stock trend.
Within a sequential context, human traders can give different levels of attention to
various parts according to their respective importance and influence.

• Diversify the investment portfolio: Diversification is a management strategy that
integrates different investments into a single portfolio. This is because diversified
investments produce higher returns and face lower risks [33,34]. To diversify port-
folios, human investors typically look for asset classes that are less relevant to each
other or negatively correlated so that if one asset class moves down, the other will
counteract it.

To capture the first and second principles of the human investment process, we define
the time points that are followed by a significant stock price rise as important trading
points (IPs) with a formula. In this way, the sequence of recent time points before an IP is
labeled as the signal of the IP. An effective method to improve prediction is model fusion,
where inherent characteristics of prediction models are exemplified to contribute towards
improved forecasting [35]. In this work, we design a deep learning framework based on a
hybrid convolutional recurrent neural network (HCRNN) to predict the IPs by analyzing
and mining historical data to identify potential high-margin opportunities. In fact, the time
points which are followed by a significant stock price drop form another kind of IP, and
predicting this kind of IP is a very similar task. However, backtesting large sets of previous
financial data requires an elaborate threshold search; thus, this study pays more attention
to demonstrating the effectiveness and robustness of the proposed method. Inspired by
existing research [36–46], the convolutional neural network (CNN), which has shown great
power in feature extraction, is used to perform convolution on the recent region to capture
local fluctuation features, and long short-term memory (LSTM), which works well on
sequence data, is utilized to learn the long-term temporal dependencies of both the raw
data and the local features obtained by the CNN.

To capture the third principle of the human analysis process, we use a set of stocks
belonging to different sectors to build the dataset to achieve diversification. On the one
hand, historical data of one stock are insufficient for the training of the neural network,
and this may cause the model to overfit; on the other hand, due to the strict conditions of
IPs, the number of IPs of one stock may be too small to train the neural network, and the
dataset is unbalanced, training the model with more stocks is beneficial to reducing the
impact of data imbalance. In addition, training on a variety of stocks enables the neural
network to learn more regular laws of stock fluctuation.

To verify the effectiveness of our method, we perform comprehensive experiments on
real stock market data in this paper. The experimental results demonstrate the effectiveness
of the proposed framework compared to that of traditional methods. Furthermore, we
simulate stock investment using a simple trading strategy based on our framework, and the
results illustrate that the proposed method outperforms other baseline methods in terms of
both the annualized return and Sharpe ratio. Comparison results indicate that focusing on
the important trading points which are more likely to be a high-margin opportunity rather
than predicting the stock price or trend at every time point can result in more profits.

In summary, the contributions of our work are as follows:

• A summary of principles for imitating the process of human stock traders looking for
trading opportunities, which is of great help in developing better prediction models;
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• A deep learning framework based on a hybrid convolutional recurrent neural network
to predict the important trading points, which is driven by the principles of the human
investment process;

• Experimental studies on real-world data with simulated investment performance
based on real-world stock data.

The rest of this article is organized as follows: we introduce the related work in the
second section. We present an empirical analysis to reveal principles for designing an
important trading point prediction framework in the third section, based on which we pro-
pose a new deep learning framework with details in the fourth section. The experimental
setup and results are presented and discussed to prove the advantages of the proposed
framework in the fifth section. Finally, the sixth section summarizes the full text and points
out future development directions.

2. Related Works

Stock performance prediction has received much attention due to its decisive role in
stock investment. There are a wide variety of techniques for forecasting financial time
series such as fundamental and technical analysis. The fundamental analysis predicts
stock prices by using intrinsic values. When using this method, investors estimate the
profits of firms based on financial news, market sentiments, and economic factors and
evaluate whether they are suitable for investment. Technical analysis deals with historical
financial data, such as trading price and volume, to discover the trading patterns that
can be leveraged for future performance prediction. Compared to fundamental analysis,
which is time-consuming, one of the main advantages of technical analysis is the ability
to analyze stocks quickly. In addition, some tasks can be automated, which can save
time. That means technical analysts can cover more stocks and draw ideas from a larger
universe [47]. One of the most widely used approaches is forecasting stock prices, which
has been attempted by many people [1–16]. Most of the traditional efforts on stock price
prediction rely on time series analysis models, such as autoregressive (AR) models for
linear and stationary time series. For example, Li et al. [1] applied a quantile AR model
to analyze the dynamics of stock index returns in China. In addition, the hidden Markov
model (HMM) has been used to make nonlinear predictions of stock trends. Zhang et al. [2]
presented an approach to predict stock market price trends based on a high-order HMM
for the purpose of considering both short- and long-term time dependence. However, such
traditional solutions have apparent drawbacks, as they lack the capability of modeling the
nonstationary and nonlinear nature of stock prices.

Thus, with the rapid development of deep learning in recent years, more researchers
have attempted to apply nonlinear learning methods such as multilayer perceptions
(MLPs) [3] and recurrent neural networks (RNNs) [4–6] to capture the complex patterns
hidden in market trends. Although the traditional RNN is capable of processing nonlinear
data, it is not sufficient to model the long-term dependence on a time series. This moti-
vates the use of gated memory cells; thus, the famous long short-term memory (LSTM)
network was proposed to better model the long-term dependency on a time series and
mitigate the vanishing gradient problem [7]. LSTM keeps the error flow constant through
special units called gates that allow for weight adjustments as well as the truncation of
the gradient when its performance is not necessary. Additional gating units in the LSTM
give it the ability to maintain the long-term memory of trading patterns from historical
financial data. Accordingly, many studies employ the LSTM neural network in financial
prediction [8–16]. Bao et al. [11] used wavelet transforms and stacked autoencoders to
learn useful information in technical indicators and used LSTM to learn time dependencies
for the forecasting of stock prices. Zhang et al. [15] proposed a variant of LSTM, called
state frequency memory (SFM), which decomposes the hidden states of memory cells into
multiple frequency components to discover multi-frequency patterns for stock price pre-
diction. These works proved that LSTMs could successfully extract temporal dependencies
in financial time series. However, due to the uncertainty of stock price fluctuations, it is
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unrealistic to accurately predict the price at every time point. Moreover, as described in the
first section, the lagging phenomenon degrades the actual performance of such methods of
directly forecasting stock prices.

Another major aspect of technical analysis is forecasting future stock trends, such as
upward or downward trends [17,18]. Hao and Gao [17] presented an end-to-end hybrid
neural network to learn multiple time scale features to predict the trend of the stock
market index, and they concluded that combining multiple time scale features can promote
accurate prediction. Nelson et al. [18] utilized LSTM to predict future stock trends based
on technical analysis indicators and showed that LSTM was more accurate than other
conventional machine learning models, such as the MLP and Random Forest. Compared
to the method of directly forecasting future prices, forecasting future stock trends is a
relatively simple task for neural networks. However, this method still pursues a model
that is capable of predicting the future trend at every time point. Thus, historical data are
input into the neural network indiscriminately to train the neural network. In this situation,
too much noise is also fed into the neural network; thus, the models learn a great deal
about the noise and distortion in historical data, which degrades the process of mining
underlying stock patterns.

Therefore, some researchers have gradually shifted their attention to utilizing neural
networks and other mathematical methods to predict important stock trading points, such
as turning points [19–22]. JuHyok et al. [19] suggested that stock traders should pay more
attention to the reversal points of stock price fluctuations than to the stock price itself.
They suggested that the sudden change after a sustained rise or fall over a period of time
has a very decisive effect on the forecast. The input features of the deep learning model
were designed by defining the trend reversal points. Chang et al. [20] applied a piecewise
linear representation (PLR) to decompose historical data into different segments. Then,
the temporary turning points of historical stock data are input into a backpropagation
neural network (BPN) and used for supervised training. If the BPN detects a buy or sell
point in the test data, the trading system is triggered. Compared to the methods of directly
forecasting future stock prices or trends, temporary turning point prediction is a more
simplified task that only focuses on important trading points in stock price fluctuations.
The reason for this is that the temporal pattern before such important trading points is
more likely to be caused by the inherent law itself, so these points are more predictable.
There are also some researches that analyze the movement of a stock based on selected
points from the time series by humans, such as Important Points (IPs) [48] and Perceptually
Important Points (PIPs) [49]. Pratt [48] regards local minimum and maximum points in
a time series as IPs and calculates the IPs after minor fluctuations are discarded with
a threshold ‘R’ that is determined by the compression rate. PIPs usually contain a few
noticeable points, and they are used in the identification of frequently appearing technical
analysis patterns in stock market applications [49]. However, there are few examples that
have given enough attention to the important breakout points suggested by experienced
human stock traders. Thus, different from [48], in this work, we regard the breakout
points as IPs. Furthermore, the above studies have generally neglected transaction costs
and taxes in the profit evaluation of the proposed methods when used in real-world
applications, whereas, in fact, transaction costs and taxes are crucial to the return of a
quantitative investment strategy. In this paper, we address this challenge by imitating the
analysis process of human investors, and with this inspiration, we propose a deep learning
framework to predict the IPs that are more likely to be followed by a significant stock
price rise.

Recently, several studies have introduced convolutional neural networks (CNNs)
into the stock performance prediction domain [23,36–46], inspired by their remarkable
achievements in other fields. A CNN is capable of directly extracting the features of the
input without sophisticated preprocessing and can efficiently process various complex
data [50,51]. Chen et al. [38] used a 1D-CNN with an agent-based reinforcement learning
algorithm to study Taiwan’s stock index futures. Long et al. [43] integrated both a CNN
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and RNN to build a multifilter structure so that information from different feature spaces
and market views could be obtained. In this study, we propose an HCRNN that combines
the advantages of both CNNs and LSTM. We use the CNN to perform convolution on the
recent region of historical time series for the purpose of capturing local fluctuation features,
and we use the stacked LSTM to learn the long-term temporal dependencies to facilitate
better prediction.

3. Empirical Analysis

In this section, through empirical analysis, we reveal three principles of the process
of human stock traders looking for trading opportunities. These principles can provide
essential guidelines for designing the proposed framework.

3.1. Focus on High-Margin Opportunities

It is obvious that high-margin trading points are more important to investment returns
than trivial trading points because of the considerable transaction costs. In fact, the trading
range breakout (TRB) trading rule that is widely used by active investors [52–55] is indeed
a trading strategy that focuses on high-margin opportunities. Based on the practical
experience of human investors, the breakout point is an important trading point that is
more likely to be a high-margin opportunity. As shown in Figure 2, a breakout occurs
when a stock price rises above a specified resistance level as the trading volume increases.
Human traders usually enter a long position after the stock price breaks above resistance.
Once a stock trade moves above a price barrier, volatility tends to increase, and prices
usually move in the direction of a breakout. Breakouts are important because they are the
starting points for large future price movements and, in many cases, major price trends.
Usually, the most explosive price fluctuations are the result of channel breakthroughs and
price breakthroughs, such as triangles, flags, and heads and shoulders. Volatility shrinks
within these time frames, and it usually expands after the price exceeds a certain range.
Compared to slight price fluctuations, which are similar to a random walk process, the
temporal pattern before such breakout points is more likely to be caused by the inherent
law of price and volume movements. Several studies have provided empirical evidence
for the trading range breakout (TRB) rule, showing that it has significant predictive power
and is able to generate profits in a manner superior to a simple buy-and-hold plan [52,53].
Consequently, this study labels breakout points as important trading points with a formula.
In this way, the RNN can be utilized to learn the underlying patterns of breakouts to
identify potential high-margin opportunities.

Figure 2. Example of a stock breakout.
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3.2. Keep Track for Some Time

Due to the limited—even vague—information of a single time point, human investors
usually prefer to rely on a sequence of recent data to predict a subsequent stock trend. In
this way, by broadly analyzing a sequence of historical data and combining them into a
unified context, the data of each time point can provide complementary information, and
thus a more reliable assessment of stock trends can be made.

For example, Figure 3 illustrates some common candlestick patterns that are used by
human investors to predict whether the future direction will be positive. From the figure,
we can see that the candlestick patterns in the dotted line circles consist of a sequence of
historical data rather than a single time point. In reality, human traders can synthesize
recent historical data as an overall signal in order to better assess the influence of these
data on future trends. Therefore, to imitate this human analysis process, the proposed
framework defines the signal before important trading points as a sequence of time steps
rather than a single time point, which helps in making more accurate predictions. More
details will be given in the next section.

Inverse hammer Bullish engulfing Morning star Three white soldiers

Figure 3. Four examples of bullish candlestick patterns.

3.3. Diversify the Investment Portfolio

When the market is booming, it seems almost impossible to sell a stock at any price
below the purchase price. However, since it is not certain what the market will do at
any moment, experienced human investors never “put all their eggs (investments) in one
basket (stock)” [29]. This is beneficial for tempering potential losses in a “bear” market.
Inspired by this, 50 American stocks in 10 different sectors from 2007 to 2019 were retrieved
from Yahoo! Finance for the experiments in this study. For each sector, corporations among
the top five in market capitalization were selected. Furthermore, conducting learning on a
variety of stocks enables the neural network to learn the universal laws of stock fluctuations
and improves generalization performance.

4. Deep Learning Framework for Important Trading Point Prediction

In this section, we first formalize the problem of important trading point prediction.
Then, we present our framework based on the three design principles discussed in the
empirical analysis (Section 3). We propose an HCRNN, which consists of both convolutional
networks and recurrent networks, for capturing local fluctuation features and long-term
temporal dependencies, respectively. Different from the previous works that use the
convolution layer to preprocess the input data then feed them to the subsequent recurrent
layer [17,42], we use the convolution layer as a feature extraction module, and the extracted
local features are concatenated with raw input data to improve the prediction performance.
Finally, we describe the overall framework, including a threshold search mechanism that
enables the model to adjust the threshold according to changing stock market conditions to
achieve better performance.

4.1. Problem Statement

First, we need to define the IPs with a formula so that we can label the historical data
before these points in the training sets. Then, we can employ the proposed HCRNN to
learn the internal laws of such important trading points from the labeled historical data
on the training sets. As described in Section 3.1, breakout points are important trading
points. A breakout occurs when a stock price moves outside a price barrier. To describe



Appl. Sci. 2021, 11, 3984 8 of 22

such a situation quantitatively, we simplify it as a situation in which the stock price is
significantly higher than the average price of the previous period; i.e., it is significantly
beyond the fluctuation range of the previous period. Considering a time series of trading
prices {pt | t = 1, 2, . . . , T} of a stock, inspired by the focus on high-margin opportunities
principle and the definition of trading breakout [54,55], we define the important trading
points as follows:

if (pt/ average (pt−1, pt−2, . . . , pt−L) ≥W) :
pt−1 is an IP

(1)

where the hyperparameter W denotes the threshold beyond which the stock price is
considered to show a significant rise. L is another hyperparameter that specifies the length
of the previous period. Conceptually, the model’s performance is influenced by these two
hyperparameters. In the experiments, this research represents an attempt to find the best
values of these hyperparameters to achieve good performance in the developed framework.
However, (1) cannot ensure that the stock price breakout takes place on date t rather than
on date t− 1; e.g., suppose that [pt−2, pt−3, . . . pt−L] are very low, but pt−1 is very high,
and pt is slightly lower than pt−1. In this situation, average (pt−1, pt−2, pt−3, . . . , pt−L) is
relatively low and (1) is satisfied, but in fact, the stock price breakout takes place on date
t− 1 rather than date t. To avoid this situation, we add the condition that pt increases
monotonically, and (1) is revised as follows:

if (pt/ average (pt−1, pt−2, . . . , pt−L) ≥W & pt > pt−1) :
pt−1 is an IP

(2)

Based on the keep track for some time principle, broadly analyzing a sequence of
historical data and combining them into a unified context is helpful for obtaining a more
reliable prediction; thus, we regard the sequence of recent historical data before an IP as
the signal of an important trading point (SIP), denoted as [pt−1, pt−2, pt−3, . . . pt−L], where
L is the length of the SIP. Then, we can label SIPs in training sets by the following rule:

y =

{
1, if x ∈ SIP
0, if x /∈ SIP

(3)

where x denotes the time point in input sequences, and y is a binary class that indicates
whether the time point x belongs to a SIP; the category “1” indicates belonging to a SIP,
and the category “0” indicates not belonging to a SIP. Therefore, the important trading
point prediction problem can be formulated as follows: given the historical time series of
a stock {xt | t = 1, 2, . . . , T}, the goal of this task is to classify each time point into one of
two categories, belonging to a SIP (“1”) and not belonging to a SIP (“0”), according to the
past stock data. If the model output is consecutive “1” values with a length of L, these time
points constitute a SIP, and the last time point of the detected SIP is an IP. Note that there
are only one compare operation and L assignment operations at each time point during
the labeling process. The time complexity of this label algorithm is O(n), thus, the labeling
process is very fast, and the algorithm could be used to handle a large amount of data.
Next, we propose a hybrid neural network to learn the function f (x) to predict the class of
each time point.

4.2. Hybrid Convolutional Recurrent Neural Network

The forecasting of stock performance is affected by both long-term temporal depen-
dencies and local fluctuation features. Due to its memory blocks, the LSTM network has a
strong capability of capturing the long-term memory of sequential data with a high predic-
tion capacity for chaotic time series. Thus, we adopt LSTM to learn long-term temporal
dependencies from stock data time series. The overall structure of our proposed model is
shown in Figure 4. Unlike the common methods that use a “many-to-one” model with a
sliding window of a fixed size of preceding data, this work adopts the “many-to-many”
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model; i.e., the overall historical time series is input into the model from the beginning
to time T {xt | t = 1, 2, . . . , T}, and the prediction value is the output at each time step
{yt | t = 1, 2, . . . , T}. The reason is that LSTM has the capacity to maintain long-term de-
pendencies between the input time steps because of the memory state; thus, there is no need
to preprocess the past data in a time window, as required with other classification models
such as the support vector machine (SVM) and MLP [15]. In fact, preprocessing the past
data in a time window with a fixed size damages the raw temporal sequence information
because the information before the time window is discarded, which could even decrease
the prediction accuracy. In addition, one-dimensional convolution (Conv 1D) is introduced
to extract local fluctuation features, which can help to enhance the prediction performance.
This particular neural network learns filters to study the mapping relationship between
any input and output from the training on known patterns. The formula for forward
propagation in the model is as follows:

Given a time series of historical data for a stock {xt | t = 1, 2, . . . , T}, for each input
time step xt, the proposed model performs convolution on the recent region from time
t−M to t− 1 (xt−M, . . . , xt−3, xt−2, xt−1) to capture local fluctuation features. The formula
is given in (4):

xl
j = f

 ∑
i∈Mj

xl−1
i ∗ kl

ij + bl
j

, (4)

where Mj denotes a selection of input maps; for easier description, it is defined as Convt.
The Conv 1D layer and LSTM layer are cascaded, the output of the Conv 1D layer Convt
and the raw input Xt are concatenated to form a vector, and this joint feature is fed to the
LSTM layer for learning long-term temporal dependencies. LSTM is a variant of an RNN
that uses a gating mechanism to control the flow of information into or out of memory.
Formally, the LSTM can be described as follows. Suppose the hidden state at the previous
time step t− 1 is ht−1:

The input gate it, which determines the allowed number of candidate hidden values
c̃t updated into the memory cell, is calculated by

it = sigmoid(Wi · [Convt, Xt, ht−1] + bi). (5)

The candidate hidden value c̃t is calculated by

c̃t = tanh(Wc · [Convt, Xt, ht−1] + bc). (6)

The forget gate ft, which controls how much previous information should be kept in
the new cell, is calculated by

ft = sigmoid
(

W f · [Convt, Xt, ht−1] + b f

)
. (7)

Suppose the old information is represented by ct−1; then, the information stored in
the memory unit is updated as follows:

ct = ft � ct−1 + it � c̃t. (8)

The output gate ot, which defines the proportion of information that can be output, is
calculated by

ot = sigmoid(Wo · [Convt, Xt, ht−1] + bo). (9)

Then the output of the LSTM cell ht is expressed as:

ht = ot � tanh(ct), (10)
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where � denotes the element-wise product; the three types of gating units use sigmoid(·)
as the activation function, and the hyperbolic tangent tanh(·) is adopted as the activation
function for input modulation and output.

Figure 4. Structure of the proposed hybrid convolutional recurrent neural network (HCRNN) model
for important trading point prediction, where detailed layer connections are indicated.

For convenience, in this study, we use the function LSTM(·,·,·) as shorthand for the
LSTM model in (11):

(ht, ct) = LSTM(Convt, xt, ht−1, ct−1, W, b), (11)

where W and b include all of the weight matrices and bias vectors mentioned in (5)–(9),
which are determined in the training process. As illustrated in Figure 4, we adopt stacked
LSTM with two layers. The advantages of stacked LSTM are obvious: (1) stacking LSTM
layers enables the characteristics of raw temporal data to be learned from different aspects
at each time step; (2) the model parameters are distributed over the whole space of the
model without increasing the memory capacity, which enables the model to refine the
nonlinear operations of raw signals and accelerate convergence. The improved performance
is shown in the experiments. For the purpose of avoiding overfitting and achieving better
generalization, we apply layers of dropout and batch normalization after each LSTM. The
stacked LSTM model can be described as follows:(

h1
t , c1

t

)
= LSTM 1

(
Convt, xt, h1

t−1, c1
t−1, W1, b1

)
(12)(

h2
t , c2

t

)
= LSTM 2

(
h1

t , h2
t−1, c2

t−1, W2, b2
)

. (13)

Then, the output of the second LSTM layer h2
t is fed to the fully connected layer for

prediction, and the overall output of the HCRNN model is expressed as

yt = W2h2
t + b2, (14)

where W2 is a weight matrix, b2 is the bias vector, and yt is a prediction value between
0 and 1, which indicates the probability of belonging to a SIP. Considering that the goal
of this task is to classify each time point into one of two categories—belonging to a SIP
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(“1”) and not belonging to a SIP (“0”)—we set a threshold θ to classify the output, which is
expressed in (15):

st = yt ≥ θ, (15)

where st is the prediction type of time point t. This means that if yt is above the threshold
θ, the prediction type will be defined as a time point belonging to a SIP (“1”); otherwise,
the prediction type will be defined as not belonging to a SIP (“0”). If the model output
is consecutive “1” values with a length of L (Section 4.1), these time points constitute a
SIP, and the last time point of the detected SIP is an IP. It is obvious that the threshold θ
plays an important role in the prediction performance. However, because the stock market
situation varies in different periods, there is not a constant threshold suitable for all kinds of
situations. Thus, we propose a threshold search mechanism to find an optimal threshold by
backtesting on the most recent period, which is presented in detail in the next subsection.

4.3. Threshold Search Mechanism

With the proposed HCRNN model, the prediction of important trading points is
straightforward. Figure 5 depicts the flow chart of the proposed framework, which consists
of three parts:

Figure 5. The flow chart of the proposed important trading point prediction framework based on a
hybrid convolutional recurrent neural network (HCRNN).

(1) Model training: The first 80% of the whole dataset is used as the training set for
feature learning, and the HCRNN model is trained by the RMSprop optimizer with a
fixed learning rate of 0.01. At each iteration, all training sequences are input to update the
weights and biases. In this way, the weights of the model are shared among all the stocks.
The model parameters are stored every 20 iterations until a maximum of MaxIter iterations
is reached.

(2) Threshold search: The next 10% of the dataset is the validation set for choosing
the best epoch that has the smallest validation loss J and searching for the threshold λ that
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achieves the highest profit on the validation set; the reason is that the market situation in
this period is most similar to the test set that is the last 10% of the dataset. Both the model
parameters and the threshold λ that show the best performance on the validation set are
used for the final test to simulate the real trading environment.

As discussed in Section 4.2, the threshold θ plays an important role in the prediction
performance. The lower the threshold, the more time points will be predicted as belonging
to a SIP (“1”); stock trading will increase, and the profit per transaction will decrease in the
fund simulation because more trading points will be mistakenly detected as IPs. A feasible
method of setting an appropriate threshold is to estimate the threshold by backtesting on
the most recent historical data, and the procedures are as follows:

1. Obtain the output yt of the validation set, where yt = [y1, y2, y3, . . . , yt], and then sort
yt from largest to smallest as rt = [r1, r2, r3, . . . , rt](r1 > r2 · · · > rt), where rt denotes
the reordered output.

2. Count the number of “1” values (belonging to a SIP) on the training set Nt; then,
calculate the estimated number of “1” values (belonging to a SIP) on the validation
set Nv in proportion to the lengths of these two sets. Formally,

Nv = Nt
length of the validation set
length of the training set

. (16)

3. According to the experience of professional human investors, the actual number of “1”
values (belonging to a SIP) in the validation set Na is approximately Nv. Considering
the situation of stock market changes over time, we multiply Nv by a coefficient ε
ranging from 1/2 to 2 (based on the statistical results shown in Section 5.1.2) as an
estimate of Na, denoted by

Na = εNv ε ∈
[

1
2

, 2
]

. (17)

4. Set the threshold θ as the Nath value of rt = [r1, r2, r3, . . . , rt], expressed as

θ = rNa . (18)

Then, this threshold is used to classify the output yt of the validation set into two
types, and the number of time points classified as “1” (belonging to a SIP) will be Na.
We can obtain a trading module based on this classification and calculate the profit on
the validation set with this threshold.

5. Increase ε by a step size of 0.1 and calculate the profit of each threshold. Finally,
output the threshold λ that achieves the highest profit on the validation set as the
threshold used for the model test.

(3) Evaluation with the test set: With the model and threshold λ that show the best
performance on the validation set, a test set is utilized to test the effectiveness of the
proposed framework. Based on the model output and threshold λ, we can classify each
time point into one of two types: belonging to a SIP (“1”) and not belonging to a SIP
(“0”). If the model output shows consecutive “1” values with a length of L (Section 4.1),
these time points constitute a SIP, and the last time point of the detected SIP is an IP. The
purchase operation will be performed at this time point. In accordance with the diversify
the investment portfolio principle, we use a set of stocks belonging to different sectors to
build the dataset to achieve diversification. If SIPs are detected by the model on several
different stocks at the same time, the trading strategy divides all the funds equally among
all stocks with an IP.

All the steps above constitute the deep learning framework for important trading
point prediction. A series of experiments are performed and discussed in the next section
to demonstrate the effectiveness of the proposed framework.
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5. Evaluation

In this section, we first present the experimental setup. Then, we conduct extensive
experiments to evaluate the performance of the proposed deep learning framework by com-
paring it to a variety of baselines, followed by giving the simulation results to demonstrate
the effectiveness of the proposed framework on a real-world dataset. Finally, we assess the
impact of the transaction costs and various hyperparameter settings on the performance of
the proposed framework.

5.1. Experimental Setup
5.1.1. Data Collection

We collected real-world historical data from the Yahoo! Finance Website, which traded
from 1 January 2007 to 31 December 2019, for a total of 13 years, to test the effectiveness of
the proposed framework. Fifty American stocks in 10 sectors were retrieved, including time
series in terms of the closing price and trading volume at a daily frequency. These sectors
included basic materials, cyclical, energy, financials, industrials, healthcare, technology,
noncyclical, telecommunications, and utilities. For each sector, the corporations among the
top five in market capitalization were selected. This dataset was also used in [15].

Then, to verify the repeatability of the proposed method, we set the data of every ten
years as a subdataset and divided each subdataset into ratios of 8:1:1 in the time dimension
as the training set, validation set, and test set, as shown in Table 1. The datasets in each
row were considered to be one set without overlap among the training, validation, and
test sets. On average, the numbers of samples in each training, validation and test set
were approximately 2014, 251, and 251, respectively. The basic process of evaluation for
each subdataset was to use the training set to train the model and obtain a classifier every
20 iterations. Then, the best classifier and threshold λ were selected based on the validation
set and were finally evaluated on the test set. In the description below, we denote each
subdataset by the year of the test set. For example, “2016” denotes the subdataset in the
first row of Table 1.

Table 1. Training set, validation set, and test set for the repeatability evaluation.

Training Set Validation Set Test Set

1 January 2007–31 December 2014 1 January 2015–31 December 2015 1 January 2016–31 December 2016
1 January 2008–31 December 2015 1 January 2016–31 December 2016 1 January 2017–31 December 2017
1 January 2009–31 December 2016 1 January 2017–31 December 2017 1 January 2018–31 December 2018
1 January 2010–31 December 2017 1 January 2018–31 December 2018 1 January 2019–31 December 2019

5.1.2. Learning Settings

As the scale of raw data varies for different stocks, to reduce the impact of different
magnitudes and dimensions and improve the convergence rate, data normalization is re-
quired to convert raw data to an acceptable form before feeding them into neural networks.
In the experiments, without loss of generality, we performed feature scaling to transform
the raw closing price and trading volume series to the interval [−1,1] according to the
following formula:

Xnorm =
2X− (Xmax + Xmin)

Xmax − Xmin
, (19)

where X is the raw data, Xmax and Xmin are the maximum value and the minimum value
before normalization, respectively, and Xnorm is the set of data after normalization. After
this process, the raw data were converted to the same level without changing the inner
variations.

Then, we specified the labels of the classification problem as described in Section 4.1.
In the experiments, the hyperparameters L and W were set as 4 and 1.05, respectively,
which was the near-optimal configuration found in Section 5.4. The ground-truth label of
each historical data point was a binary class: belonging to a SIP (“1”) or not (“0”).
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To set an appropriate search range of coefficient ε in (17), we calculated the real ratio
of Na to Nv on all four subdatasets (“2016”, “2017”, “2018”, “2019”) by counting the actual
number of “1” values (belonging to a SIP) in the validation set (Na) and training set (Nt).
The statistical results are shown in Table 2. Nv is calculated in proportion to the lengths of
the validation set and training set. From Table 2, we can see that the real ratio of Na to Nv
approximately ranges from 1/2 to 2. Besides, setting a moderate range helps to prevent
overfitting on the validation set; as the situation of the stock market changes over time, it
may be rather different in the test set. Thus, setting a moderate search range is more likely
to achieve better performance and offer limited risks on the test set. For these two reasons,
we set the search range of coefficient epsilon to 1/2 to 2.

Table 2. The statistical results for each subdataset.

2016 2017 2018 2019

Nt 6462 3388 3438 3671
Nv 808 424 430 459
Na 461 568 616 836

Na/Nv 0.57 1.34 1.43 1.82

As described in Section 4.2, this work adopts the “many-to-many” model; i.e., the
overall historical time series from the beginning to time T was input into the model, and a
prediction value was output at each time step. Therefore, the number of input time steps
was equal to the length of the training set. Specifically, the number was 2014 for datasets
“2016” and “2017” and 2012 for datasets “2018” and “2019”. For the validation set and test
set, padding was performed before the start of the sequences with the previous historical
data to reach a length consistent with their corresponding training set.

We implemented the proposed deep learning framework using TensorFlow and Keras,
and the experiments were run on a computer with an Intel Core i7-7820X, 48 GB memory,
and an NVIDIA GeForce GTX 2080Ti GPU. The parameters of our HCRNN model are
shown in Table 3.

Table 3. Parameter setting. LSTM: long short-term memory; CNN: convolutional neural network.

Parameter Parameter Description Value

lr Learning rate 0.01
optimizer Optimization method RMSprop
Iteration Training rounds 10,000

batch_size Batch size 50
lstm_unit Neuron number in LSTM 50

cnn_kernel_size Length of filters in CNN 100
cnn_filters Number of filters in CNN 1
padding Padding mode of Conv1D causal

lstm_activation Activation function of LSTM Tanh
cnn_activation Activation function of CNN Relu

dense_activation Activation function of Dense Linear
kernel_initializer Method of weight initialization Uniform

5.1.3. Evaluation Metric

Due to the strict conditions on IPs, the number of IPs is small, and the positive and
negative sample distributions are unbalanced. Supposing that every time step is classified
as negative, the classifier can still obtain an accuracy above 95%. It is obvious that this high
accuracy value is actually meaningless; no important trading points can be recognized
by this classifier, and there will be no return. As the quality of the predictions cannot be
measured appropriately in terms of accuracy, we choose the F1 score as the evaluation
metric in this study, which is a harmonic mean between precision and recall and has been
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used as a balanced measurement. The higher the F1 score, the better the predictive ability
of the model. The F1 score is calculated as follows:

P =
tp

tp + f p
(20)

R =
tp

tp + f n
(21)

F1 = 2
P ∗ R
P + R

(22)

where P represents precision, R represents recall, tp (true positive) is the number of
predictions correctly made for the positive class, and f p (false positive) and f n (false
negative) are the numbers of predictions made inaccurately for each class.

5.1.4. Compared Methods

To evaluate the effectiveness of the proposed deep learning framework, we conduct
experiments to compare our results with those of the following methods:

ITPP-LSTM: We use a long short-term memory neural network to construct the proposed
important trading point prediction framework (ITPP-LSTM) to evaluate the effectiveness
of this method. The LSTM model takes training sequences with the length of the training
set and corresponding targets as input.
FSPD-LSTM: Forecasting stock prices directly is a common method in stock performance
prediction, and we use an LSTM model that is the same as ITPP-LSTM to carry out this
method (FSPD-LSTM). When the ratio of the forecasting price to the current price is above
a certain threshold, the fund simulation performs a purchase operation. The optimal
threshold is also obtained by backtesting on the validation set.
FSPD-SFM: Zhang et al. proposed the state frequency memory (SFM) and applied it to
the stock prediction task [15]. Compared to LSTM, SFM decomposes the hidden states
of memory cells into multiple frequency components, each of which models a particular
frequency of latent trading patterns underlying the fluctuation of the stock price. This
method is based on the same dataset as ours and can also be viewed as a specification of
the method of forecasting stock prices directly.
FSPD-HCRNN: This method uses our proposed HCRNN model to forecast stock price
directly. We use FSPD-HCRNN to compare with ITPP-HCRNN to evaluate the effectiveness
of the proposed method of important trading point prediction. This method can also be
viewed as a specification of the method of forecasting stock prices directly.
FSTD-LSTM: Nelson et al. proposed the usage of an LSTM network for predicting future
trends of stock prices, i.e., predicting if the price of a particular stock is going to increase or
not in the near future [18]. When the predicted class is “1”—in other words, in the case that
the network predicts that the stock price will go up—a “buy” operation will be triggered;
then, the trading strategy is to open a “buy” position on the current day and close it on the
next day. This method can be viewed as a specification of the method of forecasting stock
trends directly.
Random Forest: The Random Forest (RF) is a fundamental and commonly used machine
learning classification approach, and we use an RF classifier with the number of trees in
the forest set as 200 to construct the proposed framework.
RNN: We use a standard RNN as a comparison with ITPP-LSTM to evaluate the effective-
ness of the LSTM setting. This method has the same structure as ITPP-LSTM except that
the LSTM is replaced with the RNN.
Stacked LSTM: We use a double-layer LSTM to evaluate the effectiveness of the stacked
LSTM setting. The other parameter settings are the same as for ITPP-LSTM.
ITPP-HCRNN: This is the important trading point prediction framework based on our
proposed hybrid convolutional RNN.
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Simplistic: This method directly takes the previous day’s trend in the historical stock price
series as the future trend.
Random: This method determines whether to perform a purchase operation based on the
hypothesis that the probabilities of prices increasing or decreasing are both 50%.

5.2. Overall Performance Experiments
5.2.1. Classification Results

To provide an insight into the prediction performance of different models, the clas-
sification results of all the models are shown in Figure 6, in which each bar indicates the
average F1 score of the testing datasets. It can be seen that the proposed HCRNN model
is able to achieve the best classification result among all the baseline models because the
HCRNN takes both long-term temporal dependencies and local fluctuation features into
consideration, which enhances the prediction ability of the model.

RF RNN ITPP-LSTM Stacked LSTM ITPP-HCRNN
0.00

0.05

0.10

0.15

0.20

0.25

0.30

F1
 S
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re

Figure 6. The F1 score results for different models. RF: random forest; RNN: recurrent neural
network; ITPP: important trading point prediction; LSTM: long short-term memory; HCRNN: hybrid
convolutional recurrent neural network.

5.2.2. Market Trading Simulation

To further evaluate the effectiveness of the proposed important trading point predic-
tion framework, backtesting is conducted to calculate the cumulative profit of each method
by simulating stock trading for all of the test sets from January 2016 to December 2019.
When the fund simulation is conducted, all of the methods trade at a daily frequency. If
the methods provide a purchase signal, the trading system purchases the recommended
stock at the closing price of the current date and holds it for one day. If the trading system
no longer provides a purchase signal on the next trading day, it automatically sells the
stock at the closing price of the second day; otherwise, it continues to hold the stock. Based
on these signals, a straightforward portfolio construction strategy is to invest in all of the
recommended stocks evenly. To approximate a real trading environment, the transaction
costs per operation are roughly assumed to be 0.2%. In addition, to assess the performance
of these methods, we calculate the average earning rate of the stock market by evenly
holding every stock belonging to the dataset to indicate the overall market trend.

To comprehensively measure the performance of each method, we use two widely
accepted criteria in the evaluation. The first is the annualized return, which is the ratio of
the cumulative profit that can be obtained per year; the second is the Sharpe ratio, which is
an important indicator that is widely used in measuring the risk-adjusted performance of
investment portfolios and is calculated by the following formula:

Sharpe ratio =
RP − R f

σP
, (23)
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where RP represents the return of the portfolio, R f is the risk-free rate—we use 3% as the
estimate of R f —and σP denotes the standard deviation of the portfolio’s excess return.
The comparison results of each method are listed in Table 4. In addition, the cumulative
profit curves of the different methods are plotted over four years, as shown in Figure 7. It
is shown that the proposed important trading point prediction framework based on our
HCRNN model is able to obtain the highest profit with relatively low risk. The detailed
comparison and analysis of each method are presented in the next subsection.
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Figure 7. The cumulative profit curve for each method over four years.

Table 4. Comparison results for each method. The best results are in bold. FSPD: forecasting stock
prices directly; FSTD: forecasting stock trends directly; SFM: state frequency memory; RNN: recurrent
neural network; ITPP: important trading point prediction; LSTM: long short-term memory; HCRNN:
hybrid convolutional recurrent neural network.

Methods Annualized Return Sharpe Ratio

Random −12.89% −1.63
Simplistic −12.65% −1.44

FSPD-SFM [15] −11.92% −0.64
FSPD-LSTM 0.51% 0.01

FSPD-HCRNN 5.54% 0.17
FSTD-LSTM [18] 7.46% 0.31
Random Forest 8.17% 0.25

RNN 21.82% 0.44
ITPP-LSTM 28.51% 0.52

Stacked LSTM 47.82% 0.58
ITPP-HCRNN 72.87% 0.78

5.2.3. Performance Discussion

As shown in Table 4 and Figure 7, our proposed important trading point prediction
framework based on the HCRNN model can provide the best performance among all the
baseline methods. Furthermore, as shown in Figure 6 and Table 4, the tendency of the
F1 score results is consistent with the simulation results among the different models. We
further analyze the results of different methods to explore the reasons why the proposed
method outperforms other methods, and the discussion is presented below.

Discussion of effectiveness: Compared to the performance of simplistic and random
methods, all of the other methods show an improvement, suggesting that these methods
have a certain predictive ability and are capable of extracting profitable information.
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Although the performances of FSPD-SFM, FSPD-LSTM, FSPD-HCRNN, FSTD-LSTM, and
Random Forest are worse than that of the market (18.99%), an important factor is that the
transaction cost offsets the profits. The other four methods earn more profit than the market,
and they are all based on our proposed important trading point prediction framework. In
terms of the comparison of FSPD-LSTM, FSTD-LSTM, and ITPP-LSTM, the improvement
of ITPP-LSTM is indicated by both the annualized return and the Sharpe ratio. It can
be concluded that the proposed important trading point prediction framework is indeed
effective in stock performance prediction tasks; moreover, it has great advantages over the
traditional method of forecasting stock prices directly and forecasting stock trends directly.
Discussion of the RNN setting: Although Random Forest could obtain some profit, the
performance of Random Forest is clearly worse than that of the other RNN-based methods,
which is probably because the RNN networks can extract temporal information effectively,
but Random Forest does not have this ability. This result indicates the significance of using
RNNs for sequential modeling in the context of our research.
Discussion of the stacked LSTM setting: In contrast to the RNN, LSTM has the ability
to maintain the long-term memory of the trading patterns from the historical sequence
data; thus, IPTT-LSTM outperforms the RNN. In addition, as stacking LSTM layers can
enable the characteristics of raw temporal data to be learned from diverse perspectives
at each time step, we can see that stacked LSTM shows certain improvements in the
experimental results.
Discussion of our proposed HCRNN model: Unlike the traditional method, which only
utilizes RNNs to learn sequential information, the hybrid neural network we propose
combines an RNN and CNN to capture both long-term temporal dependencies and local
fluctuation features simultaneously during the training process, as they can complement
each other. As we can see from Figure 7, our ITPP-HCRNN significantly outperforms all
the above-mentioned models for all the test times. Therefore, we can conclude that such a
hybrid neural network can indeed enhance the prediction capability of the method, and
utilizing a CNN to extract implicit local fluctuation features can promote accurate predic-
tion.

5.3. Impact of Transaction Costs

In reality, transaction costs play a crucial role in the return of an investment strategy.
To explore the reasons why the proposed important trading point prediction framework
can achieve better performance, we compare the simulation results when considering
transaction costs and not considering transaction costs. Figure 8 shows the cumulative
profit curves under these two conditions, and the following observations can be found.
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Figure 8. Impact of transaction costs. Transaction costs are not considered in (a). Transaction costs
are considered in (b).

If the transaction costs are not considered, all six methods are profitable. Although
they are inferior to the proposed method, the other five methods can also earn profits close
to the performance of the market. In particular, FSPD-LSTM and FSTD-LSTM are able to
earn significantly more profit than the other three methods. Nevertheless, if we consider
the transaction costs, the performances of FSPD-LSTM and FSTD-LSTM are not much



Appl. Sci. 2021, 11, 3984 19 of 22

better than the performance of the market. In addition, simplistic and random methods
even obtain negative returns. The reason for this is that these methods make trades too
frequently, and the profits are offset by a high number of transaction costs. In contrast,
the proposed method focuses only on the important trading points, thus reducing the
transaction frequency. As a result, the proposed method is little affected by transaction
costs, which has an influential impact on the actual returns.

5.4. Impact of Hyperparameters

Considering that the hyperparameters L and W are important influencing factors
(Section 4.1), in this subsection, the effects of different values of L and W are tested to
determine the appropriate hyperparameters. The results generated using several repre-
sentative values are listed in Table 5. It can be concluded that the proposed framework
shows promising performance with different configurations, and the values (4, 1.05) are
better than other values. The reason is as follows: if the length of the signal of IPs L is
too long, it is inevitable that the learning process of the underlying patterns of important
trading points will be disturbed by more noise. On the other hand, if the length L is too
short, it will not be sufficiently long to identify the internal laws of price fluctuation, which
will make it difficult for the neural network to make accurate predictions. In terms of
the threshold W of IPs, if W is very low, the distinction between important and normal
points will not be sufficiently obvious; thus, the neural network will not be able to learn
the underlying patterns of important trading points. However, if we set a threshold W that
is too high, it will cause the number of detected IPs to be very small and lead to missing
some profitable opportunities. As a result, even if the profit of each transaction increases,
the total profit may decrease. Therefore, setting a moderate value is more likely to achieve
the best performance.

Table 5. Comparison results of different hyperparameters based on the 2016 dataset, where L in
(L, W) is the length of the signal of IPs and W in (L, W) is the threshold of IPs.

(L, W) (3, 1.05) (4, 1.05) (5, 1.05) (6, 1.05) (7, 1.05)
Profit ratio 94.30% 105.00% 72.90% 80.90% 92.10%

(L, W) (4, 1.03) (4, 1.04) (4, 1.05) (4, 1.06) (4, 1.07)
Profit ratio 44.30% 86.20% 105.00% 104.00% 48.80%

6. Conclusions and Future Work

In this paper, we note three principles in seeking trading opportunities—focusing on
high-margin opportunities, keeping track for some time, and diversifying the investment
portfolio—by imitating the learning process of human investors. Based on these principles,
this study proposes a new deep learning framework—a hybrid convolutional recurrent
neural network (HCRNN)—for important trading point prediction in the stock market. In
contrast to previous studies, the proposed framework regards trading signals as previous
time step sequences instead of a single time step. Then, the signals of important trading
points are used to train the HCRNN model to learn the underlying patterns of important
trading points. The HCRNN model applies LSTM to capture long-term temporary depen-
dencies from historical stock data time series and utilizes a CNN to extract implicit local
fluctuation features to enhance the prediction ability. Extensive experiments on real stock
market data demonstrate the superior performance of the proposed model. Specifically, we
perform additional fund simulations, and our proposed framework can produce apprecia-
ble profits with significantly increased annualized excess returns, which is a remarkable
improvement compared to the market performance. Besides, comparison results indicate
that focusing on the important trading points which are more likely to be a high-margin
opportunity rather than predicting the stock price or trend at every time point can result in
more profits due to the uncertainty and difficulty of the stock price forecasting task as well
as the considerable transaction costs that make slight price fluctuations meaningless. In
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summary, this work provides new insights into stock performance prediction research and
can help investors to develop better trading systems.

At present, to verify the effectiveness of our approach, we apply only a basic trading
strategy, as described in Section 5.2, which does not include a stop-loss strategy (cut losses
and let winnings continue). In the future, we plan to leverage more advanced trading
strategies. The empirical results reported here are based on the American stock market,
we will further verify the effectiveness of the proposed approach in other countries’ stock
markets. Furthermore, we will investigate whether retraining the model more frequently,
such as by updating the model each month, can result in more accurate predictions to boost
profits. In addition, it is also promising to apply the proposed method to more granular
trading data, such as hourly or per-minute transaction data.
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