

Mahdi S. Alajmi^{1,*} and Abdullah M. Almeshal²

- ¹ Department of Manufacturing Engineering Technology, College of Technological Studies, PAAET, P.O. Box 42325, Shuwaikh 70654, Kuwait
- ² Department of Electronic Engineering Technology, College of Technological Studies, PAAET, P.O. Box 42325, Shuwaikh 70654, Kuwait; am.almeshal@paaet.edu.kw
- * Correspondence: ms.alajmi@paaet.edu.kw

Abstract: Machining process data can be utilized to predict cutting force and optimize process parameters. Cutting force is an essential parameter that has a significant impact on the metal turning process. In this study, a cutting force prediction model for turning AISI 4340 alloy steel was developed using Gaussian process regression (GPR), support vector machines (SVM), and artificial neural network (ANN) methods. The GPR simulations demonstrated a reliable prediction of surface roughness for the dry turning method with $R^2 = 0.9843$, MAPE = 5.12%, and RMSE = 1.86%. Performance comparisons between GPR, SVM, and ANN show that GPR is an effective method that can ensure high predictive accuracy of the cutting force in the turning of AISI 4340.

Keywords: artificial intelligence; machine learning; cutting forces; Gaussian process regression

Citation: Alajmi, M.S.; Almeshal, A.M. Modeling of Cutting Force in the Turning of AISI 4340 Using Gaussian Process Regression Algorithm. *Appl. Sci.* 2021, *11*, 4055. https://doi.org/10.3390/app11094055

Academic Editors: Wilma Polini and José A. F. O. Correia

Received: 16 March 2021 Accepted: 27 April 2021 Published: 29 April 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

1. Introduction

Turning is one of the most commonly employed manufacturing methods. With the growing number of applications for precision machining and machining of challenging materials, the modeling process is extremely necessary for evaluating the cutting force and the processing parameters to be optimized [1]. During the turning process, the surface finish is highly affected by parameters such as feed rate, cutting depth, cutting speed, and the radius of the tool nose [2]. For any machining operation, the selection of optimal cutting parameters is an important factor in increasing the quality and efficiency of the machined products, minimizing the costs of machining, and increasing production volume. The optimization of cutting parameters is also required to reduce cutting force during machining, since a high cutting force leads to several adverse effects, such as decreased tool life, high energy usage, increased surface roughness, bad finishing surfaces, etc. The cutting force plays a vital role in the metal cutting phase in the turning method, as it influences toolworkpiece deflection, vibration of machine tools, and finally the quality of the pieces. An accurate prediction of the cutting force during turning thus becomes an essential factor for process optimization and process characterization, and above all for improving machining efficiency [3]. However, defining the components of the cutting force is important for reducing energy usage in the process of metal cutting. Minimization of the cutting force directly controls the power consumption in the metal cutting industry, resulting in a greener, more ecological manufacturing operation by optimizing cutting parameters including cutting depth, feed rate, as well as cutting speed. The feed rate was identified as the primary cutting force parameter, whereas cutting speed is the prime parameter in reducing power consumption [4]. In addition, to acquire dimensional precision and machining device stability, the cutting force is necessary. In the area of interaction between the tools and the material, a cutting force occurs in all classic metal cutting processes, and it can be disintegrated by three orthogonal components [5]. In addition, it is exceedingly difficult to create an effective model because of the multiple interrelated parameters such as feed

rate, cutting depth, cutting speed, nose radius, as well as cutting-edge angles, all of which affect the cutting force [6]. The cutting method is carried out while the tool is displaced, extracting a thin portion of the surface, which decreases the workpiece's diameter. The schematic in Figure 1 illustrates the normal turning mechanism forces; the parallel position of the cutting tool and speed of the spindle are shown as well.

Figure 1. Turning process geometry.

Force equilibrium is identified as the connection between forces. The resultant cutting force is shown by Altintas [7], and it is produced from the feed force (F_f), the tangential cutting force (F_t), and the radial force (F_r) [7,8].

$$F_c = \sqrt{F_f + F_t + F_r} \tag{1}$$

 F_f (feed force) is viewed in the direction of the thickness of the uncut chip and is influenced mainly by the feed rate. However, the feed force increases as the feed rate increases. F_t (tangential force) acts on the cutting speed (V) direction. F_r (feed force) is a radial force that moves the tool away from the workpiece, and it acts along the radial direction of the workpiece. According to the principle of equilibrium, the tool receives the same force in the same amplitude but in the opposite direction. The predicted cutting force F_c can then be defined as:

$$F_c = k v^{c_1} f^{c_2} d^{c_3} \tag{2}$$

where k, c_1 , c_2 , and c_3 are model parameters.

In the last few decades, there has been diverse modeling processes focused on artificial neural networks and fuzzy sets; most researchers use these tools to forecast various machining processing parameters including tool wear, cutting force, and machined-piece surface roughness. It is very important to model and forecast cutting force in the turning mechanism, since it is directly connected to the consistency of the processed surface, selfexcited vibrations, tool wear, etc. To estimate the strength needs for machinery tools, an understanding of cutting force is crucial. An awareness of cutting force is necessary for the appropriate selection of operative conditions and machine equipment because equipment and tools contribute to an effective machining operation. In addition, the monitoring of the cutting force is used for detecting breakage and tool wear. The cutting method is highly complex, and so it is difficult to precisely model the cutting force due to the many highly interconnected variables that influence those forces.

Several investigations to model the cutting force in the turning process exist in the literature. Hanief et al. [8] established a model to examine the impact of cutting parameters on cutting force using a high-speed steel (HSS) instrument during the red brass turning process (C23000). Multiple regression as well as artificial neural network (ANN) techniques were used. The ANN model was considered to be more precise compared to the regression model. For turning mechanisms, a mechanistic cutting force model was introduced by Zhang and Guo [9]. This model defines the cutting region distribution and measures

the immediate efficient tool angles, cutting force, cutting parameters, force intensity, and their distribution. The findings suggest that the force and the force intensity distributions on the instrument edge provide important information for the estimation of the turning force/power and a possible additional estimation of tool wear existence. Fodor et al. [10] demonstrated how Gaussian white noise stochastic processes could be used to characterize the cutting force in material-eliminating mechanisms. This method contributes to stochastic differential equations that are mathematically dynamic problems. The findings showed that the variability of the calculated force signal typically stands at about 4–9% of the average value, which is greater than the noise emerging from the measuring device. Zerti et al. [11] applied the ANN and response surface methodology (RSM) approach for modeling output parameters in the dry hard turning process of AISI 420 (martensitic stainless steel) processed at 59HRC. The findings showed that cutting depth has a strong effect on the cutting force, the removal capability, and the material removal rate (MRR). The association between the essential parameters (nose radius, feed rate, and cutting speed) and their effect on the turning force components was investigated by Tzotzis et al. [12]. The distinction between the resultant values of the cutting force factors and the simulations revealed an improvement in the association of over 89%. The values obtained from the mathematical model were also based on the confirmed appropriateness in line with the corresponding finite element model values. As an operation of cutting parameters, Patel and Gandhi [13] established an analytical trend for cutting forces. The force model is expanded with an empirical method focused on the Waldorf principle in ideal cutting conditions, taking into account the progression of flank wear. The findings demonstrated the efficiency of analytical models established for the estimation of cutting force. Sharma et al. [14] suggested a prediction model for the cutting force for hard turning operations. In this work, the ANOVA research showed how each machining parameter contributes to the estimation and analysis of the cutting force. The established fuzzy model was considered to be satisfactory and better than the regression model for estimation purposes. The association between the cutting force coefficients and the cutting power was analyzed by Qiu [15]. A linear relationship between the MRR and spindle strength was developed in the cutting power model. The findings demonstrate that the cutting force coefficients derived through the calculation of the cutting power are in agreement with that determined by the dynamometer.

Significant attention has recently been paid to the establishment of optimization as well as predictive models to understand the impact of machining parameters on cutting force, where artificial intelligence techniques are used as an alternative to standard approaches such as milling, drilling and grinding. A hybrid optimization algorithm based on ANN and a genetics algorithm (GA) was utilized to model the surface roughness and cutting force in a milling machine in [16]. Chen et al. presented a hybrid algorithm based on adaptive particle swarm optimization, a least squares algorithm, and a support vector machine (APSO-LS-SVM) to monitor and predict tool wear in the drilling process as reported in [17]. In addition, the monitoring of tool condition in the grinding process based on a support vector machine (SVM) and a genetics algorithm was reported in [18]. Furthermore, ANN was utilized for surface quality control in machining systems based on multisensor data fusion [19]. Similarly in [20], the ANN model was used to monitor surface quality in a taper turning CNC machine.

In this work, we present the use of Gaussian process regression (GPR) in estimating the cutting force in the turning process. As far as we know, the literature has insufficient detail regarding the usage of GPR for estimating the cutting force in the turning process. Furthermore, the technique of GPR has not been examined before for modeling and predicting cutting force values in a turning process. The aim of the current study is to assess the precision of GPR in the modeling of experimental results for turning AISI 4340 alloy steel. The suggested GPR technique is discussed in the following section. The findings of the simulation provide the expected outcomes and demonstrate the predictive precision of GPR in contrast with SVM and ANN methods

2. Design of Experiment and Data

The data used in this research were retrieved from the experiment reported in [21]. We applied the machine learning algorithm to predict the data and compared the findings with the actual experimental results reported by the authors in [21]. The experiment was conducted using a Maxturn++ (MTAB, Tamilnadu, India) CNC lathe machine with a swing of 410 mm over the bed, a standard turning diameter of 200 mm, a weight of 2500 kg, and a maximum turning length of 360 mm. The rapid feed rate was 30 m/min, and the 7 KW spindle motor power has a speed range of 50–6000 rpm. The X-axis was 140 mm, and the Z-axis was 380 mm in length.

The cutting forces were measured using a Kistler dynamometer (Kistler Instrument Corporation, Novi, MI, USA), and the surface roughness tester SJ-201P by Mitutoyo (Mitutoyo, Aurora, IL, USA) was used to measure surface roughness. The range of input parameters is shown in Table 1, and the experimental data results are reported in Table 2. The experimental results in Table 2 were obtained from the conventional experimental procedure and are used in this research to train the GPR algorithm to predict the cutting force. In the next section, the methodology of the GPR, ANN, and SVM is presented to predict the cutting force of the turning process.

Table 1. Input parameters range values.

Parameter	Range
Cutting speed (m/min)	75, 90
Feed rate (mm/rev)	0.04, 0.06, 0.08, 0.1, 0.12
Depth of cut (mm)	0.5, 1, 1.5
Tool nose radius (mm)	0.4, 0.8
Air pressure (bar)	5
Fluid flow rate (mL/h)	140

No.	Cutting Speed (m/min)	Nose Radius (mm)	Feed Rate (mm/rev)	Depth of Cut (mm)	Surface Roughness (µm)	Average Cutting Force (N)
1	75	0.8	0.04	1.5	1.01	22.45
2	75	0.8	0.04	1	1.06	15.52
3	75	0.8	0.04	0.5	1.26	7.67
4	75	0.8	0.06	1.5	1.24	33.21
5	75	0.8	0.06	1	1.32	23.15
6	75	0.8	0.06	0.5	1.35	11.7
7	75	0.8	0.08	1.5	1.42	39.85
8	75	0.8	0.08	1	1.5	28.07
9	75	0.8	0.08	0.5	1.61	13.58
10	75	0.8	0.1	1.5	1.6	45.42
11	75	0.8	0.1	1	1.64	32.82
12	75	0.8	0.1	0.5	1.75	16.94
13	75	0.8	0.12	1.5	1.7	52.26
14	75	0.8	0.12	1	1.78	37.25
15	75	0.8	0.12	0.5	1.88	19.15
16	90	0.8	0.04	1.5	1.29	20.72
17	90	0.8	0.04	1	1.37	14.14
18	90	0.8	0.04	0.5	1.4	7.81
19	90	0.8	0.06	1.5	1.41	31.38
20	90	0.8	0.06	1	1.5	21.45
21	90	0.8	0.06	0.5	1.56	10.66
22	90	0.8	0.08	1.5	1.67	39.14
23	90	0.8	0.08	1	1.72	28.21

Table 2. Experimental results	21	1
-------------------------------	----	---

No.	Cutting Speed (m/min)	Nose Radius (mm)	Feed Rate (mm/rev)	Depth of Cut (mm)	Surface Roughness (µm)	Average Cutting Force (N)
24	90	0.8	0.08	0.5	1.8	14.74
25	90	0.8	0.1	1.5	1.78	44.22
26	90	0.8	0.1	1	1.82	31.56
27	90	0.8	0.1	0.5	1.93	16.52
28	90	0.8	0.12	1.5	1.93	50.61
29	90	0.8	0.12	1	2.02	36.72
30	90	0.8	0.12	0.5	2.16	19.46
31	75	0.4	0.04	1.5	1.09	22.56
32	75	0.4	0.04	1	1.21	15.16
33	75	0.4	0.04	0.5	1.5	6.62
34	75	0.4	0.06	1.5	1.12	31.44
35	75	0.4	0.06	1	1.32	21.19
36	75	0.4	0.06	0.5	1.64	9.71
37	75	0.4	0.08	1.5	1.15	38.82
38	75	0.4	0.08	1	1.4	27.5
39	75	0.4	0.08	0.5	1.93	12.64
40	75	0.4	0.1	1.5	1.28	45.55
41	75	0.4	0.1	1	1.56	31.73
42	75	0.4	0.1	0.5	2.08	15.48
43	75	0.4	0.12	1.5	1.47	52.8
44	75	0.4	0.12	1	1.82	37.14
45	75	0.4	0.12	0.5	2.32	17.57
46	90	0.4	0.04	1.5	2.07	22.78
47	90	0.4	0.04	1	1.42	14.56
48	90	0.4	0.04	0.5	1.75	6.87
49	90	0.4	0.06	1.5	2.22	30.81
50	90	0.4	0.06	1	1.5	20.5
51	90	0.4	0.06	0.5	1.88	10.2
52	90	0.4	0.08	1.5	2.31	39.8
53	90	0.4	0.08	1	1.67	27.48
54	90	0.4	0.08	0.5	2.15	13.44
55	90	0.4	0.1	1.5	2.52	46.15
56	90	0.4	0.1	1	1.82	31.88
57	90	0.4	0.1	0.5	2.28	16.25
58	90	0.4	0.12	1.5	2.9	51.12
59	90	0.4	0.12	1	2.07	36.57
60	90	0.4	0.12	0.5	2.52	18.7

Table 2. Cont.

3. Methodology

In this section, an overview of the GPR, ANN, and SVM algorithms is presented to predict the cutting force in a turning process using cutting speed, nose diameter, feed rate, surface roughness, and depth of cut parameters as inputs. This research presents the GPR as the main algorithm for predicting cutting force values, and the results are compared with ANN and SVM prediction performances to assess the GPR's performance.

3.1. Gaussian Process Regression (GPR)

Gaussian process regression is a machine learning method based on Bayesian theory [22]. GPR is feasible for small size datasets, nonlinear, complex, and high dimensional regression problems [23,24]. Unlike linear regression, GPR is a collection of random variables that have a joint Gaussian distribution with a mean and covariance function.

For a training dataset with *n* training data points with inputs and target variables $\{x_i, y_i\}$ and i = 1, 2, ..., n respectively, the model is defined as:

$$y_i = f(x_i) + \epsilon_i \tag{3}$$

where $f(x_i)$ is the learning function and ϵ_i is Gaussian noise with zero mean and variance σ_n^2 . The target variables y_i are described with Gaussian distribution as:

$$y \sim \mathcal{N}\left(0, K(X, X) + \sigma_n^2 I\right)$$
 (4)

with K(X, X) denoting the covariance matrix. In this research, a Gaussian kernel is used as the covariance function and is written as:

$$k(x_{p}, x_{q}) = \sigma_{s}^{2} e^{(-0.5(x_{p} - x_{q})^{T} W(x_{p} - x_{q}))}$$
(5)

where the signal variance corresponds to σ_s^2 and W is the width of the Gaussian kernel. For a point x^* , the joint Gaussian distribution of the observed target values and the predicted values is given by:

$$\begin{bmatrix} y \\ f(x^*) \end{bmatrix} \sim \mathcal{N}\left(0, \begin{bmatrix} K(X,X) + \sigma_n^2 I & k(X,x^*) \\ k(x^*,X) & k(x^*x^*) \end{bmatrix}\right)$$
(6)

and yields to the predicted mean value of the learning function $f(x^*)$ with the variance $V(x^*)$ are given as:

$$f(x^*) = k^{*T} \left(K + \sigma_n^2 I \right)^{-1} y = k^{*T} \alpha$$
(7)

$$V(x^*) = k(x^*, x^*) - k^{*T} \left(K + \sigma_n^2 I \right)^{-1} k^*$$
(8)

where α , $k^* = k(X, x^*)$ and K = K(X, X) present the prediction vector. The remaining parameters $\theta = \left[\sigma_n^2, \sigma_f^2, W\right]$ are the hyperparameters of the Gaussian process that can be optimized using standard optimization algorithms.

3.2. Artificial Neural Networks (ANN)

Artificial neural networks are inspired by the human brain's biological structure. A simple ANN consists of an input layer, a hidden layer, and an output layer [25]. It mimics the behavior of the human brain to solve complex data-driven problems. The neural units are fed with input data that are processed via hidden layers to produce the desired output. ANNs are utilized by various studies across many fields with proven results in both supervised learning and unsupervised learning problems such as classification and regression real-time problem. In a simple ANN model, some inputs with corresponding multiple weight values are added with bias values along with a threshold that is defined by the activation functions to predict the output.

Depending on the problem, whether a classification or a regression problem, the activation function for ANN that makes a decision is defined by the rectified linear unit (ReLu) function, the hyperbolic tangent (Tanh) function, or the Sigmoid function. The ReLu function ensures the output is not less than zero, $f(a) = \max(0, a)$, while the Tanh function finds the hyperbolic output. Here, $f(a) = \tanh(a)$, and the Sigmoid function is defined as $f(a) = \frac{1}{(1+e^{-1*2})}$.

In this work, a fully connected ANN with two layers and 15 neurons at each layer is utilized to predict the cutting force value as an output.

3.3. Support Vector Machine

The SVM is one of the most popular supervised learning-based machine learning algorithms that solves classification as well as regression problems [25]. The main objective of the SVM is to find the best hyperplane for the given data points in an N-dimension space where N is the number of features. To draw a boundary between the data points of two classes, there are many possible hyperplanes that separate the two classes. The objective is to find a hyperplane that takes the maximum distance between the two classes and provides support so that the predated data points are classified with high accuracy.

In regression problems, the SVM fits the data points into a straight line with y = wx + b, which is referred to as a hyperplane, and the data points closest to either side of the hyperplane define the support vector's boundary line. However, the difference between the linear regression and the SVM is that the SVM fits the best line within the minimum distance between the hyperplane and the boundary line that can satisfy the condition—a < y - wx + b < a.

3.4. Performance Metrics

To assess the prediction performance of the methods, various statistical performance indicators are utilized such as the root mean square (*RMSE*), the standard deviation (STD), the mean absolute error (*MAE*), the coefficient of variation of root mean square error (*CVRMSE*), and the mean absolute percentage error (*MAPE*). In addition, the coefficient of determination R^2 provides a measure of how closely the prediction matches the actual values. These measures are defined as:

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$
(9)

$$MAPE = \frac{1}{n} \sum_{i=1}^{n} \left| \frac{\hat{y}_i - y_i}{y_i} \right| \times 100\%$$
(10)

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \breve{y})^{2}}$$
(11)

$$RMSE = \frac{\sqrt{\sum_{i=1}^{n} (\hat{y}_{i} - y_{i})^{2}}}{n}$$
(12)

$$CVRMSE = \frac{\sqrt{\sum_{i=1}^{n} (\hat{y}_i - y_i)^2}}{\breve{y}}$$
(13)

4. Results and Discussion

The GPR algorithm was executed in the MATLAB software (Mathworks, Natick, MA, USA) package to model the cutting force for turning AISI 4340 alloy steel with reference to experimental data reported in [21]. The actual data of the turning process of AISI 4340 compared to GPR, SVM, and ANN are presented in Table 3, showing 60 trials of each process to evaluate every combination of input parameters of depth of cut, cutting speed and feed rate, while the output response variable is the resultant force. The resultant forces changed within the individual trials due to the change of input parameters. Table 2 provides the statistical performance indicators of each method in terms of the MAPE, RMSE, *MAE*, and R^2 values. It is noted that GPR achieved the best accuracy in predicting the surface roughness values with RMSE of 1.86% and a high coefficient of determination value of $R^2 = 0.98$. The high value of R^2 clearly indicates that the predicted values closely match the actual experimental values of the surface cutting force, and the superior performance of the GPR is evident, due to the algorithm's superiority in exploring the search space and avoiding the local optima trap. The SVM provides the second-best prediction values with an *RMSE* of 3.07% and an R^2 of 0.97. This can be addressed to the gradient ensemble in combining different weak learners into a meta learner that provides the best prediction at each step. The ANN resulted in a relatively comparable performance with the SVM method in terms of the coefficient of determination with $R^2 = 0.947$. However, it has a slightly higher RMSE value of 3.46%, which is higher than the SVM algorithm by 0.27%.

1 22.45 25.0529771 22.91932087 24.21418804 3 7.67 8.5333862 9.021956651 11.80074896 4 33.21 31.2012166 29.84178436 0.80456182 5 23.15 22.089346 21.3083986 10.701101918 7 39.85 39.5438043 33.74027778 39.33554623 8 28.07 28.019717 26.5036015 28.7512913 9 13.58 14.5048494 11.75886611 44.25102381 10 45.42 46.6131982 43.006625841 43.06079817 12 16.94 17.020329 17.81597692 18.5027321 13 52.26 44.80807784 44.7024639 43.76071581 14 37.25 32.2672281 33.306117 15.0253631 14.99431965 14.4325075 14 37.25 32.264480243 3.26762928 10.5914906 15 19.15 22.0473817 19.52311889 22.06577118 16 20.7275231 19.80069433<	Data	Actual	GPR	SVM	ANN
2 15.52 15.828919 15.7029328 16.3654709 4 33.21 31.2012136 29.4178436 30.80456182 5 23.15 22.089346 21.307978 39.8355423 6 11.7 11.4624395 12.6659967 10.73101918 7 39.85 39.5438043 33.7402778 39.83554623 8 28.07 28.0919717 26.50360215 28.75123913 9 13.58 14.5048444 11.73856611 14.25102311 10 45.42 46.31982 43.07019445 48.0699993 11 32.82 32.780563 30.06623741 48.06979817 12 16.94 17.0203249 17.81597692 18.8077514 14 37.25 35.2788251 33.20672228 33.3668117 14 37.25 35.2788251 33.0572282 13.9470159 14 37.25 35.2788251 33.056728928 10.89771514 15 19.15 20.4285051 14.84822075 14.868833	1	22.45	25.0529771	22.91932087	24.21418804
3 7.67 8.5333862 9.02195651 11.80074896 4 33.21 31.201216 29.84174346 30.80456182 5 23.15 22.069346 21.303986 21.40719968 6 11.7 11.4624395 12.66599667 10.73101918 7 39.85 39.5438043 33.74027778 39.33554623 9 13.58 14.5048494 11.73586611 4.25102381 10 45.42 46.6131982 43.0701945 48.0699933 11 32.82 32.7805683 30.06625841 34.06079817 12 16.94 17.0203249 17.81597692 18.50273521 13 52.26 44.800774 44.9234056 21.45016 23.6251831 15 19.15 22.0473817 19.52311889 22.06577018 16 20.72 24.425024 23.10524016 23.625282 10.5914006 19 31.38 31.093137 30.76954699 29.57011778 20 21.45 21.4600877 <t< td=""><td>2</td><td>15.52</td><td>15.828919</td><td>15.70293258</td><td>16.36564709</td></t<>	2	15.52	15.828919	15.70293258	16.36564709
4 33.21 31.2012136 29.84178436 30.80456182 5 23.15 22.09336 21.0659967 10.73101918 6 11.7 11.462495 12.6659967 10.73101918 7 39.85 39.5438043 33.7407778 39.53554623 9 13.58 14.5044694 11.73556611 14.25102381 10 45.42 46.431982 43.07109445 48.09699993 11 32.82 32.7805683 30.0652541 30.0607981 12 16.94 17.020329 17.81597692 18.50273821 13 32.25 32.278251 33.20572228 33.266117 15 19.15 22.0473817 19.5311889 22.06577018 16 20.72 24.4285024 23.10524016 23.6216384 17 14.14 15.435581 1.948431965 14.43226075 18 7.81 7.64684233 8.267628928 10.5914006 19 31.38 31.091737 30.76954499 25.75171276 <td>3</td> <td>7.67</td> <td>8.53333862</td> <td>9.021956651</td> <td>11.80074896</td>	3	7.67	8.53333862	9.021956651	11.80074896
5 22.089346 21.3083986 21.40719968 6 11.7 11.4624395 12.6559567 12.73101918 7 39.85 39.5438043 33.74027778 39.53554623 9 13.58 14.5044944 11.7356611 14.25102381 10 45.42 46.31982 43.07109445 48.0695993 11 32.82 32.7805683 30.06625841 34.06079817 13 52.26 48.0807784 44.70294639 43.76071549 14 37.25 35.2788251 33.306117 19.52311889 22.06570118 16 20.72 24.42850241 23.10524016 23.62156834 17 14.14 15.435581 14.94431965 14.48329075 18 7.81 7.64684233 8.267629228 10.5914300 20 21.45 21.4600877 20.57752531 19.80906993 21 10.66 11.2556265 11.2786676 11.48329075 20.9845139 23 28.21 27.3538476 31.91733392	4	33.21	31.2012136	29.84178436	30.80456182
6 11.7 11.462495 12.6659967 10.73101918 7 39.85 39.5438043 33.7407778 39.53554623 8 28.07 28.0919717 25.50360215 28.75123913 9 13.58 14.504494 11.73586611 14.25102381 10 45.42 46.431982 43.07109445 48.09699933 11 32.52 32.780563 30.06625411 34.0607817 12 16.94 17.0203249 17.81597692 18.50273521 13 52.26 44.0007781 33.2057228 33.366117 14 37.25 32.278231 33.066114 22.06577018 16 20.72 24.488024 23.10524016 23.6215684 17 14.14 15.455581 14.99431965 14.48328075 18 7.81 7.66464233 32.076954699 29.57011778 20 21.45 21.4600877 20.5775331 19.89906493 21 10.66 11.255266 11.27866576 11.46938933 <	5	23.15	22.089346	21.3083986	21.40719968
7 39.85 39.5438043 33.74027778 39.53554623 8 28.07 28.0191717 25.03806115 12.7556641 9 13.58 14.5044904 11.73586611 14.25102811 10 45.42 46.311982 43.07109445 40.0699993 11 32.82 32.27805683 30.06625841 34.06079817 13 52.26 48.0807784 44.70294639 43.76071549 14 37.25 32.2788551 33.057228 33.3668117 15 19.15 22.0473817 19.52311869 22.06577018 16 20.02 24.45523 8.267639228 10.5914406 17 14.14 15.4355581 14.99431965 14.48329075 18 7.81 7.46684253 8.267639228 10.5914066 20 21.45 21.4600877 20.57752331 19.8096493 21 10.66 11.2556266 11.2786676 11.46983893 22 39.14 38.3636644 38.252223327 39.2291607 <td>6</td> <td>11.7</td> <td>11.4624395</td> <td>12.66595967</td> <td>10.73101918</td>	6	11.7	11.4624395	12.66595967	10.73101918
8 28.07 28.019717 26.50360215 28.7312913 9 13.58 14.504494 11.73586611 14.2510231 10 45.42 46.431992 43.07109445 44.06065993 11 32.82 33.27805683 30.06079817 11 12 16.94 17.020329 17.8159769 43.70071549 14 37.25 32.2780581 43.0527228 33.3667117 15 19.15 22.0473817 19.52311889 22.06577018 16 20.72 24.4285024 23.10524016 23.6216634 17 14.14 15.4355581 14.98431965 14.43525075 18 7.81 7.64664235 8.267628928 10.59143006 20 24.45 21.4600877 20.57752531 19.80906493 21 10.06 11.2552626 11.27866576 11.4983893 22 39.14 38.33644 38.2523323 39.22916097 23 28.21 27.3290981 26.573283079 28.15712769 </td <td>7</td> <td>39.85</td> <td>39.5438043</td> <td>33.74027778</td> <td>39.53554623</td>	7	39.85	39.5438043	33.74027778	39.53554623
9 13.58 14.504494 11.73586611 14.2510281 10 45.42 46.431982 43.07019445 48.09679933 11 32.82 32.7805683 30.06623841 30.0079817 12 16.94 17.020329 17.81597692 18.50273521 13 32.26 44.08077814 44.7024639 43.76071349 14 37.25 33.278251 33.20572228 33.3668117 15 19.15 22.06577018 22.06577018 22.06577018 16 20.72 24.4285024 23.10524016 23.62156834 17 14.14 15.4355581 14.998431965 14.48325075 18 7.81 7.64684233 82.26762892 10.59143006 19 31.38 31.093137 30.76954699 29.57011778 20 21.45 21.4600877 20.57752531 19.8906493 21 10.66 11.255262 11.2766576 11.46983893 22 39.14 23.363644 38.2522333079 28.157127	8	28.07	28.0919717	26.50360215	28.75123913
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9	13.58	14.5048494	11.73586611	14.25102381
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	45.42	46.431982	43.07109445	48.09695993
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	32.82	32.7805683	30.06625841	34.06079817
13 52.26 48.0807784 44.70294639 43.76071549 14 37.25 35.2788251 33.2057228 33.3668117 15 19.15 22.0473817 19.52311889 22.06577018 16 20.72 24.4285024 23.10524016 23.62156834 17 14.14 15.4355551 14.99431965 14.43525075 18 7.81 7.64684253 8.267628928 10.59143006 19 31.38 31.093137 30.76954699 29.57011778 20 21.45 21.4600877 20.57725231 19.80906493 21 10.66 11.2552626 11.27866576 11.4698393 22 39.14 38.3636644 38.2523323 39.22916097 23 28.21 27.329081 22.56687461 14.21767067 24 14.74 14.0246408 12.56687461 14.21767067 25 44.22 45.1105649 42.19021155 46.43959014 26 31.56 32.4718376 31.9173392 34.5871	12	16.94	17.0203249	17.81597692	18.50273521
14 37.25 33.207228 33.3668117 15 19.15 22.0473817 19.52311889 22.0677018 16 20.72 24.4285024 23.10524016 23.62156834 17 14.14 15.435581 14.94841965 14.48525075 18 7.81 7.64684253 8.267628928 10.591143006 20 21.45 21.400877 20.57752531 19.80904493 21 10.66 11.2552626 11.27866766 11.46983893 22 39.14 38.363644 38.25223323 39.2291097 23 28.21 27.3290981 26.73283079 28.15712769 24 14.74 14.0246408 12.5667641 14.21767067 25 44.22 45.1105649 42.19021155 46.43998911 26 31.56 32.4718376 14.97833952 29.4587137 27 16.52 19.1383276 16.9789595 29.95898138 28 50.61 47.6740405 42.54547675 43.7856325	13	52.26	48.0807784	44.70294639	43.76071549
15 19.15 22.0473817 19.5231889 22.06577018 16 20.72 24.4285024 23.10524016 23.656834 17 14.14 15.4355581 14.98431965 14.48325075 18 7.81 7.64644233 8.267628928 10.59143006 20 21.45 21.4600877 20.57752531 19.80906493 21 10.66 11.255262 11.27866576 11.4698393 22 39.14 38.3636644 38.2523233 39.22916097 23 28.21 27.3290981 26.73283079 28.15712769 24 14.74 14.024408 12.5667461 14.21767067 25 44.22 45.105649 42.19021155 46.3950914 26 31.56 32.4718376 31.9173392 34.5871173 27 16.52 19.3386401 22.4565325 29.936.72 35.8412734 32.3850878 36.04813972 28 50.61 47.6740405 42.54547675 43.78563235 30 19.3040484 3	14	37.25	35.2788251	33.20572228	33.3668117
16 20.72 24.4285024 23.0254016 23.62156834 1714.1415.43558114.9843196514.48325075187.817.646842538.26762892810.591430061931.3831.09313730.7695469929.57011782021.4521.460087720.5775253119.809064932110.6611.255262611.2766657611.469838932239.1438.363664438.2522332339.229160972328.2127.329098126.7668766114.2197670672414.7414.024640812.5668746114.217670672544.2245.110564942.1902115546.439509142631.5632.471837631.917339234.58711732716.5219.13837616.978959520.958981382850.6147.674040542.544767543.78562352936.7235.841273432.3855087836.048139723019.4620.200966919.0603156219.330640843122.5625.368501123.76891163826.401053043215.1616.321001715.4140676617.33112468336.627.189899118.1715871910.402359663431.4430.45222629.7663907729.875979853521.1921.182412321.30898621.01016136369.7110.062811811.667396899.4395591733738.8237.689205438.561750536.8477515	15	19.15	22.0473817	19.52311889	22.06577018
17 14.14 15.4355581 14.94852075 18 7.81 7.6464253 8.267029028 10.59143006 19 31.38 31.093137 30.76954699 29.57011778 20 21.45 21.4600877 20.57752531 19.80906493 21 10.66 11.2552626 11.27866576 11.46983893 22 39.14 38.3636644 38.2523233 39.22916097 23 28.21 27.3290981 26.73283079 28.15712760 24 14.74 14.0246408 12.56687461 14.21767067 25 44.22 45.1105649 42.19021155 46.43950914 26 31.56 32.4718376 31.91753592 34.5851173 27 16.52 19.1383276 16.9789595 20.95898138 28 50.61 47.6740405 42.54347675 43.78565235 29 36.72 35.8412734 32.38550878 36.04813972 30 19.46 20.209669 19.06031562 19.33064084 31 22.56 23.868501 23.76891638 26.40105304	16	20.72	24.4285024	23.10524016	23.62156834
18 7.81 7.6464233 8.26762828 10.59143006 19 31.38 31.093137 30.76954699 29.57011778 20 21.45 21.4600877 20.57752531 19.80906493 21 10.66 11.2552626 11.27866576 11.449983893 22 39.14 38.3636644 38.25223323 39.22916097 23 28.21 27.3290981 26.5687461 14.21767067 24 14.74 14.0246408 12.56687461 14.21767067 25 34.22 45.1105649 42.19021155 46.43950914 26 31.56 32.4718376 31.972579 20.95898138 28 50.61 47.6740405 42.5447675 43.78563235 29 36.72 35.8412734 32.38550878 36.04813972 30 19.46 20.2009669 19.06031562 19.33064084 31 22.56 23.3685012 23.76891638 26.40105304 33 6.62 7.18989911 8.17158719 10.40235	17	14.14	15.4355581	14.98431965	14.48325075
19 31.38 31.093137 30.70954699 29.57011778 20 21.45 21.4600877 20.57752531 19.80906493 21 10.66 11.2552626 11.2786576 11.46983893 22 39.14 38.3636644 38.25223323 39.22916097 23 28.21 27.3290981 26.73223079 28.15712769 24 14.74 14.0246408 12.56687461 14.21767067 25 44.22 45.1105649 42.19021155 46.43950914 26 31.56 32.4718376 31.91753592 34.5871173 27 16.52 19.1383276 16.9789595 20.95989138 28 50.61 47.6740405 42.54547675 43.78563235 29 36.72 35.8412734 32.35850878 36.04813972 30 19.46 20.2099669 19.06031562 19.33064084 31 22.56 25.3868501 23.76891638 26.40105304 32 15.16 16.3210017 15.41406766 17.	18	7.81	7.64684253	8.267628928	10.59143006
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	19	31.38	31.093137	30.76954699	29.57011778
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	21.45	21.4600877	20.57752531	19.80906493
2239.1438.363664438.2522332339.229160972328.2127.329098126.7328307928.157127692414.7414.024640812.5668746114.217670672544.2245.110564942.1902115546.439509142631.5652.471837631.9175359234.58711732716.5219.138327616.978959520.958981382850.6147.674040542.2454767543.788632352936.7235.841273432.3855087830.604139723019.4620.200966919.0603156219.330640843122.5625.366850123.7689163826.401053043215.1616.321001715.4140676617.33112468336.627.189899118.17115871910.402359663431.4430.452222629.7663907729.875979853521.1921.182412321.308398621.01016136369.7110.062811811.667396899.4395591733738.8237.689205438.56175053.644775153827.526.855795127.1883985127.050530723912.6412.907105812.7215806614.118211334045.5544.819226941.8770637143.774488734131.7333.251435731.362713934.57937364215.4815.654462316.7911957916.611670884352.848.283119842.25454767545.93563199<	21	10.66	11.2552626	11.27866576	11.46983893
23 28.21 27.3290981 26.73283079 28.15712769 24 14.74 14.0246408 12.56687461 14.21767067 25 44.22 45.1105649 42.19021155 46.43950914 26 31.56 32.4718376 31.91753592 34.5871173 27 16.52 19.1383276 16.9789595 20.95898138 28 50.61 47.6740405 42.54547675 43.78563235 29 36.72 35.8412734 32.38550878 36.04813972 30 19.46 20.209969 19.06031562 19.33064084 31 22.56 25.3868501 23.76891638 26.40105304 32 15.16 16.3210017 15.14406766 17.33112468 33 6.62 7.18989911 8.171158719 10.4023966 34 31.44 30.4522226 29.76639077 29.87597985 35 21.19 21.1824123 21.3083986 21.01016136 36 9.71 10.06237689 9.43955173 33.627	22	39.14	38.3636644	38.25223323	39.22916097
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	28.21	27.3290981	26.73283079	28.15712769
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24	14.74	14.0246408	12.56687461	14.21767067
26 31.56 32.4718376 31.91753592 34.5871173 27 16.52 19.1383276 16.9789595 20.95898138 28 50.61 47.6740405 42.54547675 43.78563235 29 36.72 35.8412734 32.38550878 36.04813972 30 19.46 20.2009669 19.06031562 19.33064084 31 22.56 25.3868501 23.76891638 26.40105304 32 15.16 16.3210017 15.41406766 17.33112468 33 6.62 7.18989911 8.171158719 10.40235966 34 31.44 30.452226 29.76639077 29.87597885 35 21.19 21.1824123 21.3083986 21.01016136 36 9.711 10.0628118 11.66739689 9.439559173 37 38.82 37.6892054 38.5617505 36.8477515 38 27.5 26.8557951 27.15839851 27.0503072 39 12.64 12.9071058 12.715839851 27.0503072 41 31.73 33.2514357 31.362713 43.577448873 41 31.73 33.2514357 31.362713 43.579837336 42 15.48 15.644623 16.79119579 16.61167088 43 52.8 48.283119 42.54547675 45.93563199 44 37.14 36.122241 33.14722804 35.70802991 45 17.57 20.5531402 19.5785604 19.7815983 <td>25</td> <td>44.22</td> <td>45.1105649</td> <td>42.19021155</td> <td>46.43950914</td>	25	44.22	45.1105649	42.19021155	46.43950914
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26	31.56	32.4718376	31.91753592	34.5871173
28 50.61 47.6740405 42.54547675 43.78563235 29 36.72 35.8412734 32.38550878 36.04813972 30 19.46 20.2009669 19.06031562 19.33064084 31 22.56 25.3868501 23.76891638 26.40105304 32 15.16 16.3210017 15.41406766 17.33112468 33 6.62 7.18989911 8.171158719 10.40235966 34 31.44 30.4522226 29.76639077 29.87597985 35 21.19 21.1824123 21.3083986 21.01016136 36 9.71 10.0628118 11.66739689 9.439559173 37 38.82 37.6892054 38.5617505 36.8477515 38 27.5 26.8557951 27.15839851 27.0503072 39 12.64 12.9071058 12.72158606 14.11821133 40 45.55 44.8192269 41.87706371 43.77448873 41 31.73 33.2514357 31.3627139 16.6116	27	16.52	19.1383276	16.9789595	20.95898138
2936.7235.841273432.3855087836.048139723019.4620.200966919.0603156219.330640843122.5625.386850123.7689163826.401053043215.1616.321001715.4140676617.33112468336.627.189899118.17115871910.402359663431.4430.45222629.7663907729.875979853521.1921.182412321.308398621.01016136369.7110.062811811.667396899.4395591733738.8237.689205438.561750536.84775153827.526.855795127.1583985127.05030723912.6412.907105812.7215806614.118211334045.5544.819226941.8770637143.774488734131.7333.251435731.362713934.579373364215.4815.654462316.7911957916.611670884352.848.283119842.5454767545.935631994437.1430.553140219.5678560419.78159834622.7825.640388330.104645126.203199354714.5615.012720214.9162295816.29281976486.877.226409588.58409126110.838960434930.8130.558704430.4290492429.278385995020.520.5536297120.4546809519.398782015110.210.257678311.6197335710.02748569 <t< td=""><td>28</td><td>50.61</td><td>47.6740405</td><td>42.54547675</td><td>43.78563235</td></t<>	28	50.61	47.6740405	42.54547675	43.78563235
30 19.46 20.2009669 19.06031562 19.33064084 31 22.56 25.3868501 23.76891638 26.40105304 32 15.16 16.3210017 15.41406766 17.33112468 33 6.62 7.18989911 8.171158719 10.40235966 34 31.44 30.4522226 29.76639077 29.87597985 35 21.19 21.1824123 21.3083986 21.01016136 36 9.71 10.0628118 11.66739689 9.439559173 37 38.82 37.6892054 38.5617505 36.8477515 38 27.5 26.8557951 27.15839851 27.05053072 39 12.64 12.9071058 12.72158066 14.11821133 40 45.55 44.8192269 41.87706371 43.77448873 41 31.73 33.2514357 31.3627139 34.57937336 42 15.48 15.6544623 16.79119579 16.61167088 43 52.8 48.2831198 42.54547675 49.9356	29	36.72	35.8412734	32.38550878	36.04813972
3122.5625.386850123.7689163826.401053043215.1616.321001715.4140676617.33112468336.627.189899118.17115871910.402359663431.4430.452222629.7663907729.875979853521.1921.182412321.308398621.01016136369.7110.062811811.667396899.4395591733738.8237.689205438.561750536.84775153827.526.855795127.1583985127.05050723912.6412.907105812.7215860614.118211334045.5544.819226941.8770637143.774488734131.7333.251435731.362713934.579373364215.4815.654462316.7911957916.611670884352.848.283119842.5454767545.935631994437.1436.124224133.1472280435.708029914517.5720.553140219.5678560419.78159834622.7825.640388330.104645126.203199354714.5615.012720214.9162295816.29281976486.877.226409588.58409126110.83896434930.8130.558704430.4290492429.278385995020.520.556297120.454680519.398782015110.210.257678311.6197335710.027845695327.4825.999141626.994813525.16600996	30	19.46	20.2009669	19.06031562	19.33064084
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31	22.56	25.3868501	23.76891638	26.40105304
336.627.189899118.17115871910.402359663431.4430.452222629.7663907729.875979853521.1921.182412321.308398621.01016136369.7110.062811811.667396899.4395591733738.8237.689205438.561750536.84775153827.526.855795127.1583985127.050530723912.6412.907105812.7215860614.118211334045.5544.819226941.8770637143.774488734131.7333.251435731.362713934.579373364215.4815.654462316.7911957916.611670884352.848.283119842.5454767545.935631994437.1436.124224133.147280435.708029914517.5720.553140219.5678560419.78159834622.7825.640388330.104645126.203199354714.5615.012720214.916295816.29281976486.877.226409588.55409126110.838960434930.8130.558704430.4290492429.278385995020.520.536297120.4548609519.398782015110.210.257678311.6197335710.027845695327.4825.999141626.994813525.166909965413.4413.613812112.7215860614.097865335546.1544.02835941.4702917240.521173685	32	15.16	16.3210017	15.41406766	17.33112468
34 31.44 30.4522226 29.76639077 29.87597985 35 21.19 21.1824123 21.3083986 21.01016136 36 9.71 10.0628118 11.66739689 9.439559173 37 38.82 37.6892054 38.5617505 36.8477515 38 27.5 26.8557951 27.15839851 27.05053072 39 12.64 12.9071058 12.72158606 14.11821133 40 45.55 44.8192269 41.87706371 43.77448873 41 31.73 33.2514357 31.3627139 34.5793736 42 15.48 15.6544623 16.79119579 16.61167088 43 52.8 48.2831198 42.54547675 45.93563199 44 37.14 36.1242241 33.14722804 35.70802991 45 17.57 20.5531402 19.56785604 19.7815983 46 22.78 25.6403883 30.1046451 26.20319935 47 14.56 15.0127202 14.91622958 16.29281976 48 6.87 7.2264958 8.584091261 10.83896043 49 30.81 30.557644 30.42904924 29.27838599 50 20.5 20.5362971 20.45468095 19.39878201 51 10.2 10.2576783 11.61973357 10.02784569 52 39.8 37.5289976 38.23346895 35.38788695 53 27.48 25.9991416 26.9948135 25.16609966 <td>33</td> <td>6.62</td> <td>7.18989911</td> <td>8.171158719</td> <td>10.40235966</td>	33	6.62	7.18989911	8.171158719	10.40235966
35 21.19 21.1824123 21.3083986 21.01016136 36 9.71 10.0628118 11.66739689 9.439559173 37 38.82 37.6892054 38.5617505 36.8477515 38 27.5 26.8557951 27.15839851 27.05053072 39 12.64 12.9071058 12.72158606 14.11821133 40 45.55 44.8192269 41.87706371 43.77448873 41 31.73 33.2514357 31.3627139 34.57937336 42 15.48 15.6544623 16.79119579 16.61167088 43 52.8 48.2831198 42.54547675 45.93563199 44 37.14 36.1242241 33.14722804 35.70802991 45 17.57 20.5531402 19.56785604 19.7815983 46 22.78 25.6403883 30.1046451 26.20319935 47 14.56 15.0127202 14.91622958 16.29281976 48 6.87 7.22640958 8.584091261 10.83896043 49 30.81 30.5587044 30.42904924 29.27838599 50 20.5 20.5362971 20.4568095 19.39878201 51 10.2 10.2576783 11.61973357 10.02784569 53 27.48 25.9991416 26.9948135 25.16690996 54 13.44 13.6138121 12.72158066 14.09786533 55 46.15 44.0283559 41.47029172 40.52117368 <	34	31.44	30.4522226	29.76639077	29.87597985
36 9.71 10.0628118 11.66739689 9.439559173 37 38.82 37.6892054 38.5617505 36.8477515 38 27.5 26.8557951 27.15839851 27.05053072 39 12.64 12.9071058 12.72158606 14.11821133 40 45.55 44.8192269 41.87706371 43.77448873 41 31.73 33.2514357 31.3627139 34.57937336 42 15.48 15.6544623 16.79119579 16.61167088 43 52.8 48.2831198 42.54547675 45.93563199 44 37.14 36.1242241 33.14722804 35.70802991 45 17.57 20.5531402 19.56785604 19.7815983 46 22.78 25.6403883 30.1046451 26.20319935 47 14.56 15.0127202 14.91622958 16.29281976 48 6.87 7.22640958 8.584091261 10.83896043 49 30.81 30.5587044 30.42904924 29.27838599 50 20.5 20.5362971 20.45468095 19.39878201 51 10.2 10.2576783 11.61973357 10.02784569 52 39.8 37.25289976 38.23346895 35.38788695 53 27.48 25.9991416 26.9948135 25.16690996 54 13.44 13.6138121 12.72158066 14.09786533 56 31.88 31.4100057 30.422133004 31.3468270	35	21.19	21.1824123	21.3083986	21.01016136
37 38.82 37.6892054 38.5617505 36.8477515 38 27.5 26.8557951 27.15839851 27.05053072 39 12.64 12.9071058 12.72158606 14.11821133 40 45.55 44.8192269 41.87706371 43.77448873 41 31.73 33.2514357 31.3627139 34.57937336 42 15.48 15.6544623 16.79119579 16.61167088 43 52.8 48.2831198 42.54547675 45.93563199 44 37.14 36.1242241 33.14722804 35.70802991 45 17.57 20.5531402 19.56785604 19.7815983 46 22.78 25.6403883 30.1046451 26.20319355 47 14.56 15.0127202 14.91622958 16.29281976 48 6.87 7.22640958 8.84091261 10.83896043 49 30.81 30.5587044 30.42904924 29.27838599 50 20.5 20.5362971 20.45468095 19.39878201 51 10.2 10.2576783 11.61973357 10.02784569 52 39.8 37.5289976 38.23346895 35.3788695 53 27.48 25.9991416 26.9948135 25.16690996 54 13.44 13.6138121 12.72158606 14.09786533 55 46.15 44.0283559 41.47029172 40.52117368 56 31.88 31.4100057 30.42133004 31.34682703 <	36	9.71	10.0628118	11.66739689	9.439559173
38 27.5 26.8557951 27.15839851 27.0503072 39 12.64 12.9071058 12.72158606 14.11821133 40 45.55 44.8192269 41.87706371 43.77448873 41 31.73 33.2514357 31.3627139 34.5793736 42 15.48 15.6544623 16.79119579 16.61167088 43 52.8 48.2831198 42.54547675 45.93563199 44 37.14 36.1242241 33.14722804 35.70802991 45 17.57 20.5531402 19.56785604 19.7815983 46 22.78 25.6403883 30.1046451 26.20319935 47 14.56 15.0127202 14.91622958 16.29281976 48 6.87 7.22640958 8.584091261 10.83896043 49 30.81 30.5587044 30.4204924 29.27838599 50 20.5 20.5362971 20.45468095 19.39878201 51 10.2 0.2576783 11.61973357 10.02784569 52 39.8 37.5289976 38.23346895 35.38788695 53 27.48 25.9991416 26.9948135 25.16690996 54 13.44 13.6138121 12.72158606 14.09786533 55 46.15 44.0283559 41.47029172 40.52117368 56 31.88 31.140057 30.42133004 31.34682703 57 16.25 16.6632828 17.21730724 17.51374508 </td <td>37</td> <td>38.82</td> <td>37.6892054</td> <td>38.5617505</td> <td>36.8477515</td>	37	38.82	37.6892054	38.5617505	36.8477515
3912.6412.907105812.7215860614.11821133 40 45.55 44.8192269 41.87706371 43.77448873 41 31.73 33.2514357 31.3627139 34.5793736 42 15.48 15.6544623 16.79119579 16.61167088 43 52.8 48.2831198 42.54547675 45.93563199 44 37.14 36.1242241 33.14722804 35.70802991 45 17.57 20.5531402 19.56785604 19.7815983 46 22.78 25.6403883 30.1046451 26.20319935 47 14.56 15.1027202 14.91622958 16.29281976 48 6.87 7.22640958 8.584091261 10.83896043 49 30.81 30.5587044 30.4204924 29.27838599 50 20.5 20.5362971 20.45468095 19.39878201 51 10.2 10.2576783 11.61973357 10.02784569 52 39.8 37.2528976 38.23346895 35.38788695 53 27.48 25.9991416 26.9948135 25.1669096 54 13.44 13.6138121 12.72158066 14.09786533 56 31.88 31.4100057 30.42133004 31.34682703 57 16.25 16.6632828 17.21730724 17.51374508 58 51.12 43.820786 43.37659946 36.54195755	38	27.5	26.8557951	27.15839851	27.05053072
40 45.55 44.8192269 41.87706371 43.77448873 41 31.73 33.2514357 31.3627139 34.57937336 42 15.48 15.6544623 16.79119579 16.61167088 43 52.8 48.2831198 42.54547675 45.93563199 44 37.14 36.1242241 33.14722804 35.708029911 45 17.57 20.5531402 19.56785604 19.7815983 46 22.78 25.6403883 30.1046451 26.20319935 47 14.56 15.0127202 14.91622958 16.29218176 48 6.87 7.22640958 8.584091261 10.83896043 49 30.81 30.5587044 30.42904924 29.27838599 50 20.5 20.5362971 20.4568095 19.39878201 51 10.2 10.2576783 11.61973357 10.02784569 52 39.8 37.2589976 38.23346895 35.38786895 53 27.48 25.9991416 26.9948135 25.16690996 54 13.44 13.6138121 12.72158066 14.09786533 56 31.88 31.4100057 30.42133004 31.34682703 57 16.25 16.6632828 17.21730724 17.51374508 58 51.12 43.820786 43.37659946 36.54195755	39	12.64	12.9071058	12.72158606	14.11821133
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	40	45.55	44.8192269	41.87706371	43.77448873
42 15.48 15.6544623 16.79119579 16.61167088 43 52.8 48.2831198 42.54547675 45.93563199 44 37.14 36.1242241 33.14722804 35.70802991 45 17.57 20.5531402 19.56785604 19.7815983 46 22.78 25.6403883 30.1046451 26.20319935 47 14.56 15.0127202 14.91622958 16.29281976 48 6.87 7.22640958 8.584091261 10.83896043 49 30.81 30.5587044 30.42904924 29.27838599 50 20.5 20.5362971 20.45468095 19.39878201 51 10.2 10.2576783 11.61973357 10.02784569 52 39.8 37.5289976 38.23346895 35.38788695 53 27.48 25.9991416 26.9948135 25.16690996 54 13.44 13.6138121 12.72158606 14.09786533 55 46.15 44.0283559 41.47029172 40.52117368 56 31.88 31.4100057 30.42133004 31.34682703 57 16.25 16.6632828 17.21730724 17.51374508 58 51.12 43.8205786 43.37659946 36.54195755	41	31.73	33.2514357	31.3627139	34.57937336
4352.848.283119842.5454767545.9356319944 37.14 36.1242241 33.14722804 35.70802991 45 17.57 20.5531402 19.56785604 19.7815983 46 22.78 25.6403883 30.1046451 26.20319935 47 14.56 15.0127202 14.91622958 16.29281976 48 6.87 7.22640958 8.584091261 10.83896043 49 30.81 30.5587044 30.4204924 29.27838599 50 20.5 20.5362971 20.45468095 19.39878201 51 10.2 10.2576783 11.61973357 10.02784569 52 39.8 37.5289976 38.23346895 35.38788695 53 27.48 25.9991416 26.9948135 25.16690996 54 13.44 13.6138121 12.72158606 14.09786533 55 46.15 44.0283559 41.47029172 40.52117368 56 31.88 31.4100057 30.42133004 31.34682703 57 16.25 16.6632828 17.21730724 17.51374508 58 51.12 43.8205786 43.37659946 36.54195755	42	15.48	15.6544623	16.79119579	16.61167088
44 37.14 36.1242241 33.14722804 35.70802991 45 17.57 20.5531402 19.56785604 19.7815983 46 22.78 25.6403883 30.1046451 26.20319935 47 14.56 15.1027202 14.91622958 16.29281976 48 6.87 7.22640958 8.584091261 10.83896043 49 30.81 30.5587044 30.42904924 29.27838599 50 20.5 20.5362971 20.45468095 19.39878201 51 10.2 10.2576783 11.61973357 10.02784569 52 39.8 37.5289976 38.23346895 35.38788695 53 27.48 25.9991416 26.9948135 25.16690996 54 13.44 13.6138121 12.72158606 14.09786533 55 46.15 44.0283559 41.47029172 40.52117368 56 31.88 31.4100057 30.42133004 31.34682703 57 16.25 16.6632828 17.21730724 17.51374508 58 51.12 43.8205786 43.37659946 36.54195755	43	52.8	48.2831198	42.54547675	45.93563199
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44	37.14	36.1242241	33.14722804	35.70802991
4622.7825.6403883 30.1046451 26.203199354714.5615.012720214.9162295816.29281976486.877.226409588.58409126110.838960434930.8130.558704430.4290492429.278385995020.520.536297120.4546809519.398782015110.210.257678311.6197335710.027845695239.837.528997638.2334689535.387886955327.4825.999141626.994813525.166909965413.4413.613812112.7215860614.097865335546.1544.028355941.4702917240.521173685631.8831.410005730.4213300431.346827035716.2516.663282817.2173072417.513745085851.1243.820578643.3765994636.54195755	45	17.57	20.5531402	19.56785604	19.7815983
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	46	22.78	25.6403883	30.1046451	26.20319935
48 6.87 7.22640958 8.584091261 10.83896043 49 30.81 30.5587044 30.42904924 29.27838599 50 20.5 20.5362971 20.45468095 19.39878201 51 10.2 10.2576783 11.61973357 10.02784569 52 39.8 37.5289976 38.23346895 35.38788695 53 27.48 25.9991416 26.9948135 25.16690996 54 13.44 13.6138121 12.72158606 14.09786533 55 46.15 44.0283559 41.47029172 40.52117368 56 31.88 31.4100057 30.42133004 31.34682703 57 16.25 16.6632828 17.21730724 17.51374508 58 51.12 43.8205786 43.37659946 36.54195755	47	14.56	15.0127202	14.91622958	16.29281976
49 30.81 30.5587044 30.42904924 29.27838599 50 20.5 20.5362971 20.45468095 19.39878201 51 10.2 10.2576783 11.61973357 10.02784569 52 39.8 37.5289976 38.23346895 35.38788695 53 27.48 25.9991416 26.9948135 25.16690996 54 13.44 13.6138121 12.72158606 14.09786533 55 46.15 44.0283559 41.47029172 40.52117368 56 31.88 31.4100057 30.42133004 31.34682703 57 16.25 16.6632828 17.21730724 17.51374508 58 51.12 43.8205786 43.37659946 36.54195755	48	6.87	7.22640958	8.584091261	10.83896043
50 20.5 20.5362971 20.45468095 19.39878201 51 10.2 10.2576783 11.61973357 10.02784569 52 39.8 37.5289976 38.23346895 35.3788695 53 27.48 25.9991416 26.9948135 25.16690996 54 13.44 13.6138121 12.72158606 14.09786533 55 46.15 44.0283559 41.47029172 40.52117368 56 31.88 31.4100057 30.42133004 31.34682703 57 16.25 16.6632828 17.21730724 17.51374508 58 51.12 43.8205786 43.37659946 36.54195755	49	30.81	30.5587044	30.42904924	29.27838599
51 10.2 10.2576783 11.61973357 10.02784569 52 39.8 37.5289976 38.23346895 35.38788695 53 27.48 25.9991416 26.9948135 25.16690996 54 13.44 13.6138121 12.72158606 14.09786533 55 46.15 44.0283559 41.47029172 40.52117368 56 31.88 31.4100577 30.42133004 31.34682703 57 16.25 16.6632828 17.21730724 17.51374508 58 51.12 43.8205786 43.37659946 36.54195755	50	20.5	20.5362971	20.45468095	19.39878201
52 39.8 37.5289976 38.23346895 35.38788695 53 27.48 25.9991416 26.9948135 25.16690996 54 13.44 13.6138121 12.72158606 14.09786533 55 46.15 44.0283559 41.47029172 40.52117368 56 31.88 31.4100057 30.42133004 31.34682703 57 16.25 16.6632828 17.21730724 17.51374508 58 51.12 43.8205786 43.37659946 36.54195755	51	10.2	10.2576783	11.61973357	10.02784569
53 27.48 25.9991416 26.9948135 25.16690996 54 13.44 13.6138121 12.72158606 14.09786533 55 46.15 44.0283559 41.47029172 40.52117368 56 31.88 31.4100057 30.42133004 31.34682703 57 16.25 16.6632828 17.21730724 17.51374508 58 51.12 43.8205786 43.37659946 36.54195755	52	39.8	37.5289976	38.23346895	35.38788695
54 13.44 13.6138121 12.72158606 14.09786533 55 46.15 44.0283559 41.47029172 40.52117368 56 31.88 31.4100057 30.42133004 31.34682703 57 16.25 16.6632828 17.21730724 17.51374508 58 51.12 43.8205786 43.37659946 36.54195755	53	27.48	25.9991416	26.9948135	25.16690996
55 46.15 44.0283559 41.47029172 40.52117368 56 31.88 31.4100057 30.42133004 31.34682703 57 16.25 16.6632828 17.21730724 17.51374508 58 51.12 43.8205786 43.37659946 36.54195755	54	13.44	13.6138121	12.72158606	14.09786533
56 31.88 31.4100057 30.42133004 31.34682703 57 16.25 16.6632828 17.21730724 17.51374508 58 51.12 43.8205786 43.37659946 36.54195755	55	46.15	44.0283559	41.47029172	40.52117368
57 16.25 16.6632828 17.21730724 17.51374508 58 51.12 43.8205786 43.37659946 36.54195755	56	31.88	31.4100057	30.42133004	31.34682703
58 51.12 43.8205786 43.37659946 36.54195755	57	16.25	16.6632828	17.21730724	17.51374508
	58	51.12	43.8205786	43.37659946	36.54195755
59 36.57 35.3314071 32.69978926 33.66115622	59	36.57	35.3314071	32.69978926	33.66115622
6018.721.143696218.8246799121.13694601	60	18.7	21.1436962	18.82467991	21.13694601

Table 3. Comparison results of $F_c(N)$ for actual cutting forces, GPR, SVM, and ANN measured in kgf.

The computational cost of the methods was measured in terms of the time to train the algorithm to predict the data. The GPR was trained on the input dataset within 0.3507 s, while the ANN and SVM were trained within 1.3395 s and 0.88296 s, respectively. GPR is superior in terms of the amount of training time, and it produces the highest prediction accuracy in terms of the performance metrics in Table 4.

_

Indicator	GPR	SVM	ANN
STD	11.8659845	10.8311621	10.9700107
MAPE	5.12881818	7.91289907	10.8512889
MAE	1.2790129	2.05869621	2.3533598
MSE	3.46918946	9.43121873	11.1943294
RMSE	1.86257603	3.07102894	3.34579279
CVRMSE	15.6967677	28.353642	30.4994487
R^2	0.9843	0.9711	0.9475

Table 4. Performance measure for the GPR, SVM, and ANN for turning process for AISI 4340.

Figure 2 illustrates a graphical comparison between the actual cutting force values and the values predicted by the GPR, SVM and ANN methods. The superior prediction performance of the GPR can be clearly noted by the close match of each data point on the graph with the actual value of the surface roughness. Figure 3 shows the trend line between the actual versus the predicted values of each prediction algorithm in order to provide the coefficient of determination values R^2 .

Figure 2. Actual cutting force values in comparison with predictions by GPR, SVM, and ANN methods.

Figure 3. Actual values of the cutting force in comparison with values predicted by GPR, SVM, and ANN and coefficient of determination trend lines.

With the results obtained in this section, it is evident that GPR yields promising results in the field of predicting and modeling the cutting forces in a turning process. One limitation of the GPR algorithm is that it is only feasible for datasets of a few thousands [26] due to the computation of matrix inversions, which is highly computation-intensive for large datasets. However, this limitation may not be a barrier in applying the GPR to predict the parameters of a turning process due to the fact that most of the literature experiments are generally less than a hundred trials.

The advantages of artificial intelligence and machine learning algorithms in manufacturing are vast [27] for researchers and practitioners. The adoption of these advanced technologies would enable fulfilling the demand of high-quality products in an efficient approach with reduced cost. Moreover, it would enable sustainable manufacturing such that the process can be simulated and the product quality can be predicted prior to conducting the manufacturing process, hence saving the material resources and time [27].

5. Conclusions

The prediction and modeling processes of machining parameters positively impact production in terms of saving time and resources. In this research, the Gaussian process regression (GPR) approach was utilized to model and predict cutting force in the turning process of AISI 4340 alloy steel. The accuracy of the model was evaluated against other benchmark methods such as SVM and ANN. The GPR outperformed these methods with a high degree of accuracy. The MAPE between experimental and predicted cutting force values was found to be 5.12%, and a superior coefficient of determination of $R^2 = 0.9843$ was also found. In addition, the GPR has the lowest computation time in terms of the training on the input dataset, where it was executed within 0.35087 s. The results suggest that the GPR could be utilized by process operators to predict cutting force parameters prior to the production process in order to save resources, and to design the experiment to yield the required production quality.

Author Contributions: Conceptualization, M.S.A. and A.M.A.; methodology, M.S.A. and A.M.A.; software, M.S.A. and A.M.A.; validation, M.S.A. and A.M.A.; formal analysis, M.S.A. and A.M.A.; investigation, M.S.A. and A.M.A.; resources, M.S.A. and A.M.A.; data curation, M.S.A. and A.M.A.; writing—original draft preparation, M.S.A. and A.M.A.; writing—review and editing, M.S.A. and A.M.A.; visualization, M.S.A. and A.M.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

- F_c Resultant force (N)
- F_f Feed force (N)
- F_t Tangential force (N)
- V Cutting speed (m/min)
- V_f Feed rate (mm/rev)
- d Depth of cut (mm)

References

- 1. Zhang, G.; Guo, C. Modeling flank wear progression based on cutting force and energy prediction in turning process. *Procedia Manufact.* **2016**, *5*, 536–545. [CrossRef]
- Suhil, H.; Ismail, N. Optimization of Cutting Parameters of Turning Operations by using Geometric Programming. Am. J. Eng. Appl. Sci. 2010, 3, 102–108.
- Bera, T.C.; Manikandan, H.; Bansal, A.; Nema, D. A Method to Determine Cutting Force Coefficients in Turning Using Mechanistic Approach. Int. J. Mater. Mech. Manuf. 2018, 6, 99–103.
- Korkmaz, M.E.; Günay, M. Finite Element Modelling of Cutting Forces and Power Consumption in Turning of AISI 420 Martensitic Stainless Steel. Arab. J. Sci. Eng. 2018, 43, 4863–4870. [CrossRef]
- 5. Thangarasu, S.K.; Shankar, S.; Tony Thomas, A.; Sridhar, G. Prediction of Cutting Force in Turning Process-an Ex-perimental Approach. *IOP Conf. Ser. Mater. Sci. Eng.* **2018**, *310*, 012119. [CrossRef]
- Cica, D.; Sredanovic, B.; Lakic-Globocki, G.; Kramar, D. Modeling of the Cutting Forces in Turning Process Using Various Methods of Cooling and Lubricating: An Artificial Intelligence Approach. *Adv. Mech. Eng.* 2013, *13*, 1–8. [CrossRef]
- 7. Altintas, Y. Manufacturing Automation, 2nd ed.; Cambridge University Press: Cambridge, UK, 2012.
- 8. Hanief, M.; Wani, M.; Charoo, M. Modeling and prediction of cutting forces during the turning of red brass (C23000) using ANN and regression analysis. *Eng. Sci. Technol. Int. J.* **2017**, *20*, 1220–1226. [CrossRef]
- 9. Zhang, G.; Guo, C. Modeling of Cutting Force Distribution on Tool Edge in Turning Process. *Procedia Manuf.* 2015, *1*, 454–465. [CrossRef]
- Fodor, G.; Sykora, H.T.; Bachrathy, D. Stochastic modeling of the cutting force in turning processes. *Int. J. Adv. Manuf. Technol.* 2020, 111, 213–226. [CrossRef]
- Zerti, A.; Yallese, M.A.; Meddour, I.; Belhadi, S.; Haddad, A.; Mabrouki, T. Modeling and multi-objective optimization for minimizing surface roughness, cutting force, and power, and maximizing productivity for tempered stainless steel AISI 420 in turning operations. *Int. J. Adv. Manuf. Technol.* 2018, 102, 135–157. [CrossRef]
- 12. Tzotzis, A.; García-Hernández, C.; Huertas-Talón, J.-L.; Kyratsis, P. Influence of the Nose Radius on the Machining Forces Induced during AISI-4140 Hard Turning: A CAD-Based and 3D FEM Approach. *Micromachines* **2020**, *11*, 798. [CrossRef]
- 13. Patel, V.D.; Gandhi, A.H. Modeling of cutting forces considering progressive flank wear in finish turning of hardened AISI D2 steel with CBN tool. *Int. J. Adv. Manuf. Technol.* **2019**, *104*, 503–516. [CrossRef]
- 14. Sharma, V.; Kumar, P.; Misra, J.P. Cutting force predictive modelling of hard turning operation using fuzzy logic. *Mater. Today Proc.* **2020**, *26*, 740–744. [CrossRef]
- 15. Qiu, J. Modeling of cutting force coefficients in cylindrical turning process based on power measurement. *Int. J. Adv. Manuf. Technol.* **2018**, *99*, 1–11. [CrossRef]
- Imani, L.; Henzaki, A.R.; Hamzeloo, R.; Davoodi, B. Modeling and optimizing of cutting force and surface roughness in milling process of Inconel 738 using hybrid ANN and GA. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2020, 234, 920–932. [CrossRef]
- 17. Chen, N.; Hao, B.; Guo, Y.; Li, L.; Khan, M.A.; He, N. Research on tool wear monitoring in drilling process based on APSO-LS-SVM approach. *Int. J. Adv. Manuf. Technol.* **2020**, *108*, 2091–2101. [CrossRef]
- 18. Pandiyan, V.; Caesarendra, W.; Tjahjowidodo, T.; Tan, H.H. In-process tool condition monitoring in compliant abrasive belt grinding process using support vector machine and genetic algorithm. *J. Manuf. Process.* **2018**, *31*, 199–213. [CrossRef]
- Plaza, E.G.; López, P.J.N.; González, E.M.B. Multi-Sensor Data Fusion for Real-Time Surface Quality Control in Automated Machining Systems. *Sensors* 2018, 18, 4381. [CrossRef]
- Garciaplaza, E.; Núñez, P.; Salgado, D.; Cambero, I.; Olivenza, J.H.; Sanz-Calcedo, J.G. Surface Finish Monitoring in Taper Turning CNC Using Artificial Neural Network and Multiple Regression Methods. *Procedia Eng.* 2013, 63, 599–607. [CrossRef]
- 21. Patole, P.; Kulkarni, V. Optimization of Process Parameters based on Surface Roughness and Cutting Force in MQL Turning of AISI 4340 using Nano Fluid. *Mater. Today Proc.* 2018, *5*, 104–112. [CrossRef]
- 22. Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; The MIT Press: New York, NY, USA, 2006.
- 23. Nguyen-Tuong, D.; Seeger, M.; Peters, J. Model Learning with Local Gaussian Process Regression. *Adv. Robot.* 2009, 23, 2015–2034. [CrossRef]
- Grbić, R.; Kurtagić, D.; Slišković, D. Stream water temperature prediction based on Gaussian process regression. *Expert Syst. Appl.* 2013, 40, 7407–7414. [CrossRef]
- 25. Gopal, M. Applied Machine Learning; McGraw-Hill Education: New York, NY, USA, 2019.
- Rasmussen, C.E. Gaussian processes in machine learning. In Summer School on Machine Learning; Springer: Berlin/Heidelberg, Germany, 2003; pp. 63–71.
- 27. Wuest, T.; Weimer, D.; Irgens, C.; Thoben, K.-D. Machine learning in manufacturing: Advantages, challenges, and applications. *Prod. Manuf. Res.* **2016**, *4*, 23–45. [CrossRef]