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Abstract: Machining process data can be utilized to predict cutting force and optimize process
parameters. Cutting force is an essential parameter that has a significant impact on the metal
turning process. In this study, a cutting force prediction model for turning AISI 4340 alloy steel
was developed using Gaussian process regression (GPR), support vector machines (SVM), and
artificial neural network (ANN) methods. The GPR simulations demonstrated a reliable prediction of
surface roughness for the dry turning method with R2 = 0.9843, MAPE = 5.12%, and RMSE = 1.86%.
Performance comparisons between GPR, SVM, and ANN show that GPR is an effective method that
can ensure high predictive accuracy of the cutting force in the turning of AISI 4340.

Keywords: artificial intelligence; machine learning; cutting forces; Gaussian process regression

1. Introduction

Turning is one of the most commonly employed manufacturing methods. With the
growing number of applications for precision machining and machining of challenging
materials, the modeling process is extremely necessary for evaluating the cutting force and
the processing parameters to be optimized [1]. During the turning process, the surface
finish is highly affected by parameters such as feed rate, cutting depth, cutting speed,
and the radius of the tool nose [2]. For any machining operation, the selection of optimal
cutting parameters is an important factor in increasing the quality and efficiency of the
machined products, minimizing the costs of machining, and increasing production volume.
The optimization of cutting parameters is also required to reduce cutting force during
machining, since a high cutting force leads to several adverse effects, such as decreased tool
life, high energy usage, increased surface roughness, bad finishing surfaces, etc. The cutting
force plays a vital role in the metal cutting phase in the turning method, as it influences tool–
workpiece deflection, vibration of machine tools, and finally the quality of the pieces. An
accurate prediction of the cutting force during turning thus becomes an essential factor for
process optimization and process characterization, and above all for improving machining
efficiency [3]. However, defining the components of the cutting force is important for
reducing energy usage in the process of metal cutting. Minimization of the cutting force
directly controls the power consumption in the metal cutting industry, resulting in a greener,
more ecological manufacturing operation by optimizing cutting parameters including
cutting depth, feed rate, as well as cutting speed. The feed rate was identified as the
primary cutting force parameter, whereas cutting speed is the prime parameter in reducing
power consumption [4]. In addition, to acquire dimensional precision and machining
device stability, the cutting force is necessary. In the area of interaction between the tools
and the material, a cutting force occurs in all classic metal cutting processes, and it can be
disintegrated by three orthogonal components [5]. In addition, it is exceedingly difficult
to create an effective model because of the multiple interrelated parameters such as feed
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rate, cutting depth, cutting speed, nose radius, as well as cutting-edge angles, all of which
affect the cutting force [6]. The cutting method is carried out while the tool is displaced,
extracting a thin portion of the surface, which decreases the workpiece’s diameter. The
schematic in Figure 1 illustrates the normal turning mechanism forces; the parallel position
of the cutting tool and speed of the spindle are shown as well.

Figure 1. Turning process geometry.

Force equilibrium is identified as the connection between forces. The resultant cutting
force is shown by Altintas [7], and it is produced from the feed force (Ff ), the tangential
cutting force (Ft), and the radial force (Fr) [7,8].

Fc =
√

Ff + Ft + Fr (1)

Ff (feed force) is viewed in the direction of the thickness of the uncut chip and is
influenced mainly by the feed rate. However, the feed force increases as the feed rate
increases. Ft (tangential force) acts on the cutting speed (V) direction. Fr (feed force) is
a radial force that moves the tool away from the workpiece, and it acts along the radial
direction of the workpiece. According to the principle of equilibrium, the tool receives the
same force in the same amplitude but in the opposite direction. The predicted cutting force
Fc can then be defined as:

Fc = kvc1 f c2 dc3 (2)

where k, c1, c2, and c3 are model parameters.
In the last few decades, there has been diverse modeling processes focused on artifi-

cial neural networks and fuzzy sets; most researchers use these tools to forecast various
machining processing parameters including tool wear, cutting force, and machined-piece
surface roughness. It is very important to model and forecast cutting force in the turning
mechanism, since it is directly connected to the consistency of the processed surface, self-
excited vibrations, tool wear, etc. To estimate the strength needs for machinery tools, an
understanding of cutting force is crucial. An awareness of cutting force is necessary for the
appropriate selection of operative conditions and machine equipment because equipment
and tools contribute to an effective machining operation. In addition, the monitoring of the
cutting force is used for detecting breakage and tool wear. The cutting method is highly
complex, and so it is difficult to precisely model the cutting force due to the many highly
interconnected variables that influence those forces.

Several investigations to model the cutting force in the turning process exist in the
literature. Hanief et al. [8] established a model to examine the impact of cutting parameters
on cutting force using a high-speed steel (HSS) instrument during the red brass turning
process (C23000). Multiple regression as well as artificial neural network (ANN) techniques
were used. The ANN model was considered to be more precise compared to the regression
model. For turning mechanisms, a mechanistic cutting force model was introduced by
Zhang and Guo [9]. This model defines the cutting region distribution and measures
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the immediate efficient tool angles, cutting force, cutting parameters, force intensity, and
their distribution. The findings suggest that the force and the force intensity distributions
on the instrument edge provide important information for the estimation of the turning
force/power and a possible additional estimation of tool wear existence. Fodor et al. [10]
demonstrated how Gaussian white noise stochastic processes could be used to characterize
the cutting force in material-eliminating mechanisms. This method contributes to stochastic
differential equations that are mathematically dynamic problems. The findings showed that
the variability of the calculated force signal typically stands at about 4–9% of the average
value, which is greater than the noise emerging from the measuring device. Zerti et al. [11]
applied the ANN and response surface methodology (RSM) approach for modeling output
parameters in the dry hard turning process of AISI 420 (martensitic stainless steel) processed
at 59HRC. The findings showed that cutting depth has a strong effect on the cutting force,
the removal capability, and the material removal rate (MRR). The association between
the essential parameters (nose radius, feed rate, and cutting speed) and their effect on
the turning force components was investigated by Tzotzis et al. [12]. The distinction
between the resultant values of the cutting force factors and the simulations revealed an
improvement in the association of over 89%. The values obtained from the mathematical
model were also based on the confirmed appropriateness in line with the corresponding
finite element model values. As an operation of cutting parameters, Patel and Gandhi [13]
established an analytical trend for cutting forces. The force model is expanded with an
empirical method focused on the Waldorf principle in ideal cutting conditions, taking
into account the progression of flank wear. The findings demonstrated the efficiency
of analytical models established for the estimation of cutting force. Sharma et al. [14]
suggested a prediction model for the cutting force for hard turning operations. In this
work, the ANOVA research showed how each machining parameter contributes to the
estimation and analysis of the cutting force. The established fuzzy model was considered
to be satisfactory and better than the regression model for estimation purposes. The
association between the cutting force coefficients and the cutting power was analyzed by
Qiu [15]. A linear relationship between the MRR and spindle strength was developed in the
cutting power model. The findings demonstrate that the cutting force coefficients derived
through the calculation of the cutting power are in agreement with that determined by the
dynamometer.

Significant attention has recently been paid to the establishment of optimization as well
as predictive models to understand the impact of machining parameters on cutting force,
where artificial intelligence techniques are used as an alternative to standard approaches
such as milling, drilling and grinding. A hybrid optimization algorithm based on ANN and
a genetics algorithm (GA) was utilized to model the surface roughness and cutting force
in a milling machine in [16]. Chen et al. presented a hybrid algorithm based on adaptive
particle swarm optimization, a least squares algorithm, and a support vector machine
(APSO-LS-SVM) to monitor and predict tool wear in the drilling process as reported in [17].
In addition, the monitoring of tool condition in the grinding process based on a support
vector machine (SVM) and a genetics algorithm was reported in [18]. Furthermore, ANN
was utilized for surface quality control in machining systems based on multisensor data
fusion [19]. Similarly in [20], the ANN model was used to monitor surface quality in a
taper turning CNC machine.

In this work, we present the use of Gaussian process regression (GPR) in estimating
the cutting force in the turning process. As far as we know, the literature has insufficient
detail regarding the usage of GPR for estimating the cutting force in the turning process.
Furthermore, the technique of GPR has not been examined before for modeling and
predicting cutting force values in a turning process. The aim of the current study is to
assess the precision of GPR in the modeling of experimental results for turning AISI 4340
alloy steel. The suggested GPR technique is discussed in the following section. The findings
of the simulation provide the expected outcomes and demonstrate the predictive precision
of GPR in contrast with SVM and ANN methods
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2. Design of Experiment and Data

The data used in this research were retrieved from the experiment reported in [21].
We applied the machine learning algorithm to predict the data and compared the findings
with the actual experimental results reported by the authors in [21]. The experiment was
conducted using a Maxturn++ (MTAB, Tamilnadu, India) CNC lathe machine with a swing
of 410 mm over the bed, a standard turning diameter of 200 mm, a weight of 2500 kg, and
a maximum turning length of 360 mm. The rapid feed rate was 30 m/min, and the 7 KW
spindle motor power has a speed range of 50–6000 rpm. The X-axis was 140 mm, and the
Z-axis was 380 mm in length.

The cutting forces were measured using a Kistler dynamometer (Kistler Instrument
Corporation, Novi, MI, USA), and the surface roughness tester SJ-201P by Mitutoyo (Mi-
tutoyo, Aurora, IL, USA) was used to measure surface roughness. The range of input
parameters is shown in Table 1, and the experimental data results are reported in Table 2.
The experimental results in Table 2 were obtained from the conventional experimental
procedure and are used in this research to train the GPR algorithm to predict the cutting
force. In the next section, the methodology of the GPR, ANN, and SVM is presented to
predict the cutting force of the turning process.

Table 1. Input parameters range values.

Parameter Range

Cutting speed (m/min) 75, 90

Feed rate (mm/rev) 0.04, 0.06, 0.08, 0.1, 0.12

Depth of cut (mm) 0.5, 1, 1.5

Tool nose radius (mm) 0.4, 0.8

Air pressure (bar) 5

Fluid flow rate (mL/h) 140

Table 2. Experimental results [21].

No. Cutting Speed
(m/min)

Nose Radius
(mm)

Feed Rate
(mm/rev)

Depth of Cut
(mm)

Surface
Roughness (µm)

Average Cutting
Force (N)

1 75 0.8 0.04 1.5 1.01 22.45
2 75 0.8 0.04 1 1.06 15.52
3 75 0.8 0.04 0.5 1.26 7.67
4 75 0.8 0.06 1.5 1.24 33.21
5 75 0.8 0.06 1 1.32 23.15
6 75 0.8 0.06 0.5 1.35 11.7
7 75 0.8 0.08 1.5 1.42 39.85
8 75 0.8 0.08 1 1.5 28.07
9 75 0.8 0.08 0.5 1.61 13.58

10 75 0.8 0.1 1.5 1.6 45.42
11 75 0.8 0.1 1 1.64 32.82
12 75 0.8 0.1 0.5 1.75 16.94
13 75 0.8 0.12 1.5 1.7 52.26
14 75 0.8 0.12 1 1.78 37.25
15 75 0.8 0.12 0.5 1.88 19.15
16 90 0.8 0.04 1.5 1.29 20.72
17 90 0.8 0.04 1 1.37 14.14
18 90 0.8 0.04 0.5 1.4 7.81
19 90 0.8 0.06 1.5 1.41 31.38
20 90 0.8 0.06 1 1.5 21.45
21 90 0.8 0.06 0.5 1.56 10.66
22 90 0.8 0.08 1.5 1.67 39.14
23 90 0.8 0.08 1 1.72 28.21
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Table 2. Cont.

No. Cutting Speed
(m/min)

Nose Radius
(mm)

Feed Rate
(mm/rev)

Depth of Cut
(mm)

Surface
Roughness (µm)

Average Cutting
Force (N)

24 90 0.8 0.08 0.5 1.8 14.74
25 90 0.8 0.1 1.5 1.78 44.22
26 90 0.8 0.1 1 1.82 31.56
27 90 0.8 0.1 0.5 1.93 16.52
28 90 0.8 0.12 1.5 1.93 50.61
29 90 0.8 0.12 1 2.02 36.72
30 90 0.8 0.12 0.5 2.16 19.46
31 75 0.4 0.04 1.5 1.09 22.56
32 75 0.4 0.04 1 1.21 15.16
33 75 0.4 0.04 0.5 1.5 6.62
34 75 0.4 0.06 1.5 1.12 31.44
35 75 0.4 0.06 1 1.32 21.19
36 75 0.4 0.06 0.5 1.64 9.71
37 75 0.4 0.08 1.5 1.15 38.82
38 75 0.4 0.08 1 1.4 27.5
39 75 0.4 0.08 0.5 1.93 12.64
40 75 0.4 0.1 1.5 1.28 45.55
41 75 0.4 0.1 1 1.56 31.73
42 75 0.4 0.1 0.5 2.08 15.48
43 75 0.4 0.12 1.5 1.47 52.8
44 75 0.4 0.12 1 1.82 37.14
45 75 0.4 0.12 0.5 2.32 17.57
46 90 0.4 0.04 1.5 2.07 22.78
47 90 0.4 0.04 1 1.42 14.56
48 90 0.4 0.04 0.5 1.75 6.87
49 90 0.4 0.06 1.5 2.22 30.81
50 90 0.4 0.06 1 1.5 20.5
51 90 0.4 0.06 0.5 1.88 10.2
52 90 0.4 0.08 1.5 2.31 39.8
53 90 0.4 0.08 1 1.67 27.48
54 90 0.4 0.08 0.5 2.15 13.44
55 90 0.4 0.1 1.5 2.52 46.15
56 90 0.4 0.1 1 1.82 31.88
57 90 0.4 0.1 0.5 2.28 16.25
58 90 0.4 0.12 1.5 2.9 51.12
59 90 0.4 0.12 1 2.07 36.57
60 90 0.4 0.12 0.5 2.52 18.7

3. Methodology

In this section, an overview of the GPR, ANN, and SVM algorithms is presented to
predict the cutting force in a turning process using cutting speed, nose diameter, feed rate,
surface roughness, and depth of cut parameters as inputs. This research presents the GPR
as the main algorithm for predicting cutting force values, and the results are compared
with ANN and SVM prediction performances to assess the GPR’s performance.

3.1. Gaussian Process Regression (GPR)

Gaussian process regression is a machine learning method based on Bayesian the-
ory [22]. GPR is feasible for small size datasets, nonlinear, complex, and high dimensional
regression problems [23,24]. Unlike linear regression, GPR is a collection of random vari-
ables that have a joint Gaussian distribution with a mean and covariance function.

For a training dataset with n training data points with inputs and target variables
{xi, yi} and i = 1, 2, . . . , n respectively, the model is defined as:

yi = f (xi) + εi (3)
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where f (xi) is the learning function and εi is Gaussian noise with zero mean and variance
σ2

n . The target variables yi are described with Gaussian distribution as:

y ∼ N
(

0, K(X, X) + σ2
n I
)

(4)

with K(X, X) denoting the covariance matrix. In this research, a Gaussian kernel is used as
the covariance function and is written as:

k
(
xp, xq

)
= σ2

s e(−0.5(xp−xq)
TW(xp−xq)) (5)

where the signal variance corresponds to σ2
s and W is the width of the Gaussian kernel. For

a point x∗, the joint Gaussian distribution of the observed target values and the predicted
values is given by: [

y
f (x∗)

]
∼ N

(
0,
[

K(X, X) + σ2
n I k(X, x∗)

k(x∗, X) k(x∗x∗)

])
(6)

and yields to the predicted mean value of the learning function f (x∗) with the variance
V(x∗) are given as:

f (x∗) = k∗T
(

K + σ2
n I
)−1

y = k∗Tα (7)

V(x∗) = k(x∗, x∗)− k∗T
(

K + σ2
n I
)−1

k∗ (8)

where α, k∗ = k(X, x∗) and K = K(X, X) present the prediction vector. The remaining
parameters θ =

[
σ2

n , σ2
f , W

]
are the hyperparameters of the Gaussian process that can be

optimized using standard optimization algorithms.

3.2. Artificial Neural Networks (ANN)

Artificial neural networks are inspired by the human brain’s biological structure. A
simple ANN consists of an input layer, a hidden layer, and an output layer [25]. It mimics
the behavior of the human brain to solve complex data-driven problems. The neural
units are fed with input data that are processed via hidden layers to produce the desired
output. ANNs are utilized by various studies across many fields with proven results in
both supervised learning and unsupervised learning problems such as classification and
regression real-time problem. In a simple ANN model, some inputs with corresponding
multiple weight values are added with bias values along with a threshold that is defined
by the activation functions to predict the output.

Depending on the problem, whether a classification or a regression problem, the
activation function for ANN that makes a decision is defined by the rectified linear unit
(ReLu) function, the hyperbolic tangent (Tanh) function, or the Sigmoid function. The ReLu
function ensures the output is not less than zero, f (a) = max(0, a), while the Tanh function
finds the hyperbolic output. Here, f (a) =tanh(a), and the Sigmoid function is defined as
f (a) = 1

(1+e−1∗z)
.

In this work, a fully connected ANN with two layers and 15 neurons at each layer is
utilized to predict the cutting force value as an output.

3.3. Support Vector Machine

The SVM is one of the most popular supervised learning-based machine learning
algorithms that solves classification as well as regression problems [25]. The main objective
of the SVM is to find the best hyperplane for the given data points in an N-dimension
space where N is the number of features. To draw a boundary between the data points
of two classes, there are many possible hyperplanes that separate the two classes. The
objective is to find a hyperplane that takes the maximum distance between the two classes
and provides support so that the predated data points are classified with high accuracy.
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In regression problems, the SVM fits the data points into a straight line with y = wx + b,
which is referred to as a hyperplane, and the data points closest to either side of the
hyperplane define the support vector’s boundary line. However, the difference between
the linear regression and the SVM is that the SVM fits the best line within the minimum
distance between the hyperplane and the boundary line that can satisfy the condition—a <
y − wx + b < a.

3.4. Performance Metrics

To assess the prediction performance of the methods, various statistical performance
indicators are utilized such as the root mean square (RMSE), the standard deviation (STD),
the mean absolute error (MAE), the coefficient of variation of root mean square error
(CVRMSE), and the mean absolute percentage error (MAPE). In addition, the coefficient
of determination R2 provides a measure of how closely the prediction matches the actual
values. These measures are defined as:

MAE =
1
n

n

∑
i=1
|yi − ŷi| (9)

MAPE =
1
n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣× 100% (10)

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y̆)2 (11)

RMSE =

√
∑n

i=1(ŷi − yi)
2

n
(12)

CVRMSE =

√
∑n

i=1(ŷi − yi)
2

y̆
(13)

4. Results and Discussion

The GPR algorithm was executed in the MATLAB software (Mathworks, Natick, MA,
USA) package to model the cutting force for turning AISI 4340 alloy steel with reference
to experimental data reported in [21]. The actual data of the turning process of AISI 4340
compared to GPR, SVM, and ANN are presented in Table 3, showing 60 trials of each
process to evaluate every combination of input parameters of depth of cut, cutting speed
and feed rate, while the output response variable is the resultant force. The resultant
forces changed within the individual trials due to the change of input parameters. Table 2
provides the statistical performance indicators of each method in terms of the MAPE, RMSE,
MAE, and R2 values. It is noted that GPR achieved the best accuracy in predicting the
surface roughness values with RMSE of 1.86% and a high coefficient of determination value
of R2 = 0.98. The high value of R2 clearly indicates that the predicted values closely match
the actual experimental values of the surface cutting force, and the superior performance
of the GPR is evident, due to the algorithm’s superiority in exploring the search space and
avoiding the local optima trap. The SVM provides the second-best prediction values with
an RMSE of 3.07% and an R2 of 0.97. This can be addressed to the gradient ensemble in
combining different weak learners into a meta learner that provides the best prediction
at each step. The ANN resulted in a relatively comparable performance with the SVM
method in terms of the coefficient of determination with R2 = 0.947. However, it has a
slightly higher RMSE value of 3.46%, which is higher than the SVM algorithm by 0.27%.
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Table 3. Comparison results of Fc(N) for actual cutting forces, GPR, SVM, and ANN measured in
kgf.

Data Actual GPR SVM ANN

1 22.45 25.0529771 22.91932087 24.21418804
2 15.52 15.828919 15.70293258 16.36564709
3 7.67 8.53333862 9.021956651 11.80074896
4 33.21 31.2012136 29.84178436 30.80456182
5 23.15 22.089346 21.3083986 21.40719968
6 11.7 11.4624395 12.66595967 10.73101918
7 39.85 39.5438043 33.74027778 39.53554623
8 28.07 28.0919717 26.50360215 28.75123913
9 13.58 14.5048494 11.73586611 14.25102381
10 45.42 46.431982 43.07109445 48.09695993
11 32.82 32.7805683 30.06625841 34.06079817
12 16.94 17.0203249 17.81597692 18.50273521
13 52.26 48.0807784 44.70294639 43.76071549
14 37.25 35.2788251 33.20572228 33.3668117
15 19.15 22.0473817 19.52311889 22.06577018
16 20.72 24.4285024 23.10524016 23.62156834
17 14.14 15.4355581 14.98431965 14.48325075
18 7.81 7.64684253 8.267628928 10.59143006
19 31.38 31.093137 30.76954699 29.57011778
20 21.45 21.4600877 20.57752531 19.80906493
21 10.66 11.2552626 11.27866576 11.46983893
22 39.14 38.3636644 38.25223323 39.22916097
23 28.21 27.3290981 26.73283079 28.15712769
24 14.74 14.0246408 12.56687461 14.21767067
25 44.22 45.1105649 42.19021155 46.43950914
26 31.56 32.4718376 31.91753592 34.5871173
27 16.52 19.1383276 16.9789595 20.95898138
28 50.61 47.6740405 42.54547675 43.78563235
29 36.72 35.8412734 32.38550878 36.04813972
30 19.46 20.2009669 19.06031562 19.33064084
31 22.56 25.3868501 23.76891638 26.40105304
32 15.16 16.3210017 15.41406766 17.33112468
33 6.62 7.18989911 8.171158719 10.40235966
34 31.44 30.4522226 29.76639077 29.87597985
35 21.19 21.1824123 21.3083986 21.01016136
36 9.71 10.0628118 11.66739689 9.439559173
37 38.82 37.6892054 38.5617505 36.8477515
38 27.5 26.8557951 27.15839851 27.05053072
39 12.64 12.9071058 12.72158606 14.11821133
40 45.55 44.8192269 41.87706371 43.77448873
41 31.73 33.2514357 31.3627139 34.57937336
42 15.48 15.6544623 16.79119579 16.61167088
43 52.8 48.2831198 42.54547675 45.93563199
44 37.14 36.1242241 33.14722804 35.70802991
45 17.57 20.5531402 19.56785604 19.7815983
46 22.78 25.6403883 30.1046451 26.20319935
47 14.56 15.0127202 14.91622958 16.29281976
48 6.87 7.22640958 8.584091261 10.83896043
49 30.81 30.5587044 30.42904924 29.27838599
50 20.5 20.5362971 20.45468095 19.39878201
51 10.2 10.2576783 11.61973357 10.02784569
52 39.8 37.5289976 38.23346895 35.38788695
53 27.48 25.9991416 26.9948135 25.16690996
54 13.44 13.6138121 12.72158606 14.09786533
55 46.15 44.0283559 41.47029172 40.52117368
56 31.88 31.4100057 30.42133004 31.34682703
57 16.25 16.6632828 17.21730724 17.51374508
58 51.12 43.8205786 43.37659946 36.54195755
59 36.57 35.3314071 32.69978926 33.66115622
60 18.7 21.1436962 18.82467991 21.13694601

The computational cost of the methods was measured in terms of the time to train the
algorithm to predict the data. The GPR was trained on the input dataset within 0.3507 s,
while the ANN and SVM were trained within 1.3395 s and 0.88296 s, respectively. GPR is
superior in terms of the amount of training time, and it produces the highest prediction
accuracy in terms of the performance metrics in Table 4.
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Table 4. Performance measure for the GPR, SVM, and ANN for turning process for AISI 4340.

Indicator GPR SVM ANN

STD 11.8659845 10.8311621 10.9700107
MAPE 5.12881818 7.91289907 10.8512889
MAE 1.2790129 2.05869621 2.3533598
MSE 3.46918946 9.43121873 11.1943294

RMSE 1.86257603 3.07102894 3.34579279
CVRMSE 15.6967677 28.353642 30.4994487

R2 0.9843 0.9711 0.9475

Figure 2 illustrates a graphical comparison between the actual cutting force values
and the values predicted by the GPR, SVM and ANN methods. The superior prediction
performance of the GPR can be clearly noted by the close match of each data point on
the graph with the actual value of the surface roughness. Figure 3 shows the trend line
between the actual versus the predicted values of each prediction algorithm in order to
provide the coefficient of determination values R2.

Figure 2. Actual cutting force values in comparison with predictions by GPR, SVM, and ANN
methods.

Figure 3. Actual values of the cutting force in comparison with values predicted by GPR, SVM, and
ANN and coefficient of determination trend lines.
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With the results obtained in this section, it is evident that GPR yields promising
results in the field of predicting and modeling the cutting forces in a turning process. One
limitation of the GPR algorithm is that it is only feasible for datasets of a few thousands [26]
due to the computation of matrix inversions, which is highly computation-intensive for
large datasets. However, this limitation may not be a barrier in applying the GPR to predict
the parameters of a turning process due to the fact that most of the literature experiments
are generally less than a hundred trials.

The advantages of artificial intelligence and machine learning algorithms in manu-
facturing are vast [27] for researchers and practitioners. The adoption of these advanced
technologies would enable fulfilling the demand of high-quality products in an efficient ap-
proach with reduced cost. Moreover, it would enable sustainable manufacturing such that
the process can be simulated and the product quality can be predicted prior to conducting
the manufacturing process, hence saving the material resources and time [27].

5. Conclusions

The prediction and modeling processes of machining parameters positively impact
production in terms of saving time and resources. In this research, the Gaussian process
regression (GPR) approach was utilized to model and predict cutting force in the turning
process of AISI 4340 alloy steel. The accuracy of the model was evaluated against other
benchmark methods such as SVM and ANN. The GPR outperformed these methods with
a high degree of accuracy. The MAPE between experimental and predicted cutting force
values was found to be 5.12%, and a superior coefficient of determination of R2 = 0.9843
was also found. In addition, the GPR has the lowest computation time in terms of the
training on the input dataset, where it was executed within 0.35087 s. The results suggest
that the GPR could be utilized by process operators to predict cutting force parameters
prior to the production process in order to save resources, and to design the experiment to
yield the required production quality.
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Nomenclature

Fc Resultant force (N)
Ff Feed force (N)
Ft Tangential force (N)
V Cutting speed (m/min)
Vf Feed rate (mm/rev)
d Depth of cut (mm)
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