Effectiveness of Silicon Platelet-Rich Fibrin and Autologous Bone on Bone Regeneration in Rabbit Calvarian Defects: A Radiological and Histological Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Animal Specimens
2.2. Surgical Procedure
2.3. Microcomputed Tomography (Micro-CT)
2.4. Histological Processing of the Sample
2.5. Statistical Analysis
3. Results
Results for Radiological Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
PRF | Platelet-Rich Fibrin |
PRP | Platelet-Rich Plasma |
TCP | TriCalcium Phosphate |
VK | Von Kossa |
BH | Bone Height |
BA | Bone Area |
%BA | Bone Area percentage |
BP | Bone Perimeter |
References
- Ferres, E. Estudio del Efecto de la Adición de Silicio al Beta-Fosfato Tricálcico e Hidroxiapatita en la Neoformación Ósea en Defectos Críticos en Calotas y Conejo. Ph.D. Thesis, Universidad de Murcia, Murcia, Spain, 2017. [Google Scholar]
- Morales, D. Ingeniería tisular como puntal de la medicina regenerativa en estomatología. Revista Cubana de Estomatología 2014, 51, 288–304. [Google Scholar]
- Oppenheimer, A.J.; Tong, L.; Buchman, S.R. Craniofacial Bone Grafting: Wolff’s Law Revisited. Craniomaxillofac. Trauma Reconstr. 2008, 1, 49–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henkel, J.; Woodruff, M.A.; Epari, D.R.; Steck, R.; Glatt, V.; Dickinson, I.C.; Choong, P.F.M.; Schuetz, M.A.; Hutmacher, D.W. Bone Regeneration Based on Tissue Engineering Conceptions—A 21st Century Perspective. Bone Res. 2013, 1, 216–248. [Google Scholar] [CrossRef] [Green Version]
- Mordenfeld, A.; Johansson, C.B.; Albrektsson, T.; Hallman, M. A randomized and controlled clinical trial of two different compositions of deproteinized bovine bone and autogenous bone used for lateral ridge augmentation. Clin. Oral Implant. Res. 2013, 25, 310–320. [Google Scholar] [CrossRef]
- Masoudi, E.A.; Ribas, J.; Kaushik, G.; Leijten, J.C.H.; Khademhosseini, A. Platelet-Rich Blood Derivatives for Stem Cell-Based Tissue Engineering and Regeneration. Curr. Stem Cell Rep. 2016, 2, 33–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anitua, E.; Sánchez, M.; Nurden, A.T.; Nurden, P.; Orive, G.; Andía, I. New insights into and novel applications for platelet-rich fibrin therapies. Trends Biotechnol. 2006, 24, 227–234. [Google Scholar] [CrossRef]
- Amaral Valladão, C.A., Jr.; Freitas Monteiro, M.; Joly, J.C. Guided bone regeneration in staged vertical and horizontal bone augmentation using platelet-rich fibrin associated with bone grafts: A retrospective clinical study. Int. J. Implant Dent. 2020, 6, 72. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.; Hwang, K.; Jun, S.H.; Tallarico, M.; Kwon, A.M.; Park, C. Radiologic comparative analysis between saline and platelet-rich fibrin filling after hydraulic transcrestal sinus lifting without adjunctive bone graft: A randomized controlled trial. Clin. Oral Implant. Res. 2020, 31, 1087–1093. [Google Scholar] [CrossRef] [PubMed]
- Areewong, K.; Chantaramungkorn, M.; Khongkhunthian, P. Platelet-rich fibrin to preserve alveolar bone sockets following tooth extraction: A randomized controlled trial. Clin. Implant. Dent. Relat. Res. 2019, 21, 1156–1163. [Google Scholar] [CrossRef]
- De Almeida Barros Mourão, C.F.; de Mello-Machado, R.C.; Javid, K.; Moraschini, V. The use of leukocyte- and platelet-rich fibrin in the management of soft tissue healing and pain in post-extraction sockets: A randomized clinical trial. J. Craniomaxillofac. Surg. 2020, 48, 452–457. [Google Scholar] [CrossRef]
- Castro, A.B.; Herrero, E.R.; Slomka, V.; Pinto, N.; Teughels, W.; Quirynen, M. Antimicrobial capacity of Leucocyte-and Platelet Rich Fibrin against periodontal pathogens. Sci. Rep. 2019, 9, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Schuldt, L.; Bi, J.; Owen, G.; Shen, Y.; Haapasalo, M.; Häkkinen, L.; Larjava, H. Decontamination of rough implant surfaces colonized by multispecies oral biofilm by application of leukocyte-platelet rich fibrin. J. Periodontol. 2020. [Google Scholar] [CrossRef]
- Žofková, I.; Nemcikova, P.; Matucha, P. Trace elements and bone health. Clin. Chem. Lab. Med. 2013, 51, 1–7. [Google Scholar] [CrossRef]
- Zhang, D.; Wong, C.S.; Wen, C.; Li, Y. Cellular responses of osteoblast-like cells to 17 elemental metals. J. Biomed. Mater. Res. Part A 2017, 105, 148–158. [Google Scholar] [CrossRef]
- Arora, M.; Arora, E. The Promise of Silicon: Bone regeneration and increased bone density. J. Arthrosc. Jt. Surg. 2017, 4, 103–105. [Google Scholar] [CrossRef]
- Carlisle, E.M. Silicon. A possible factor in bone calcification. Science 1970, 167, 279–280. [Google Scholar] [CrossRef]
- Carlisle, E.M. Silicon as an Essential Trace Element in Animal Nutrition. Novartis Found. Symp. 2007, 121, 123–139. [Google Scholar] [CrossRef]
- Schwarz, K.; Milne, D.B. Growth-promoting Effects of Silicon in Rats. Nat. Cell Biol. 1972, 239, 333–334. [Google Scholar] [CrossRef]
- Dong, M.; Jiao, G.; Liu, H.; Wu, W.; Li, S.; Wang, Q.; Xu, D.; Li, X.; Liu, H.; Chen, Y. Biological Silicon Stimulates Collagen Type 1 and Osteocalcin Synthesis in Human Osteoblast-Like Cells Through the BMP-2/Smad/RUNX2 Signaling Pathway. Biol. Trace Elem. Res. 2016, 173, 306–315. [Google Scholar] [CrossRef]
- Price, C.T.; Koval, K.J.; Langford, J.R. Silicon: A Review of Its Potential Role in the Prevention and Treatment of Postmenopausal Osteoporosis. Int. J. Endocrinol. 2013, 2013, 316783. [Google Scholar] [CrossRef] [Green Version]
- Zou, S.; Ireland, D.; Brooks, R.A.; Rushton, N.; Best, S. The effects of silicate ions on human osteoblast adhesion, proliferation, and differentiation. J. Biomed. Mater. Res. Part B Appl. Biomater. 2008, 90, 123–130. [Google Scholar] [CrossRef]
- Uribe, P.; Johansson, A.; Jugdaohsingh, R.; Powell, J.J.; Magnusson, C.; Davila, M.; Westerlund, A.; Ransjö, M. Soluble silica stimulates osteogenic differentiation and gap junction communication in human dental follicle cells. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef]
- Kim, E.-J.; Bu, S.-Y.; Sung, M.-K.; Choi, M.-K. Effects of Silicon on Osteoblast Activity and Bone Mineralization of MC3T3-E1 Cells. Biol. Trace Elem. Res. 2013, 152, 105–112. [Google Scholar] [CrossRef]
- Hench, L.L.; Xynos, I.D.; Polak, J.M. Bioactive glasses for in situ tissue regeneration. J. Biomater. Sci. Polym. Ed. 2004, 15, 543–562. [Google Scholar] [CrossRef]
- Chowdhury, M.A. The Silica-based Formulations for Drug Delivery, Bone Treatment, and Bone Regeneration. ChemBioEng Rev. 2016, 3, 229–246. [Google Scholar] [CrossRef]
- Byun, I.-S.; Sarkar, S.K.; Jyoti, M.A.; Min, Y.-K.; Seo, H.-S.; Lee, B.-T.; Song, H.-Y. Initial biocompatibility and enhanced osteoblast response of Si doping in a porous BCP bone graft substitute. J. Mater. Sci. Mater. Electron. 2010, 21, 1937–1947. [Google Scholar] [CrossRef]
- Mao, Z.; Gu, Y.; Zhang, J.; Shu, W.W.; Cui, Y.; Xu, T. Superior biological performance and osteoinductive activity of Si-containing bioactive bone regeneration particles for alveolar bone reconstruction. Ceram. Int. 2020, 46, 353–364. [Google Scholar] [CrossRef]
- Wang, X.; Ito, A.; Sogo, Y.; Li, X.; Oyane, A. Silicate-apatite composite layers on external fixation rods and in vitro evaluation using fibroblast and osteoblast. J. Biomed. Mater. Res. A 2010, 92, 1181–1189. [Google Scholar] [PubMed]
- Roh, J.; Kim, J.-Y.; Choi, Y.-M.; Ha, S.-M.; Kim, K.-N.; Kim, K.-M. Bone Regeneration Using a Mixture of Silicon-Substituted Coral HA and β-TCP in a Rat Calvarial Bone Defect Model. Materials 2016, 9, 97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toledano, M.; Toledano-Osorio, M.; Osorio, R.; Carrasco-Carmona, Á.; Gutiérrez-Pérez, J.-L.; Gutiérrez-Corrales, A.; Serrera-Figallo, M.-A.; Lynch, C.D.; Torres-Lagares, D. Doxycycline and Zinc Loaded Silica-Nanofibrous Polymers as Biomaterials for Bone Regeneration. Polymers 2020, 12, 1201. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, F.; Orero, A.; Soriano, A.; Correcher, C.; Conde, P.; González, A.; Hernández, L.; Moliner, L.; Rodriguez-Alvarez, M.J.; Vidal, L.F.; et al. ALBIRA: A small animal PET/SPECT/CT imaging system. Med. Phys. 2013, 40, 051906. [Google Scholar] [CrossRef]
- Donath, K.; Breuner, G. A method for the study of undecalcified bones and teeth with attached soft tissues*. The Sage-Schliff (sawing and grinding) Technique. J. Oral Pathol. Med. 1982, 11, 318–326. [Google Scholar] [CrossRef]
- Garbo, C.; Locs, J.; D’Este, M.; Demazeau, G.; Mocanu, A.; Roman, C.; Horovitz, O.; Tomoaia-Cotisel, M. Advanced Mg, Zn, Sr, Si Multi-Substituted Hydroxyapatites for Bone Regeneration. Int. J. Nanomed. 2020, 15, 1037–1058. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Yeung, K.W. Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact. Mater. 2017, 2, 224–247. [Google Scholar] [CrossRef]
- Götz, W.; Tobiasch, E.; Witzleben, S.; Schulze, M. Effects of Silicon Compounds on Biomineralization, Osteogenesis, and Hard Tissue Formation. Pharmaceutics 2019, 11, 117. [Google Scholar] [CrossRef] [Green Version]
- Gibson, I.R.; Best, S.M.; Bonfield, W. Effect of Silicon Substitution on the Sintering and Microstructure of Hydroxyapatite. J. Am. Ceram. Soc. 2004, 85, 2771–2777. [Google Scholar] [CrossRef]
- Porter, A.E.; Botelho, C.M.; Lopes, M.A.; Best, S.M.; Bonfield, W. Ultrastructural comparison of dissolution and apatite precipitation on hydroxyapatite and silicon-substituted hydroxyapatitein vitro andin vivo. J. Biomed. Mater. Res. 2004, 69, 670–679. [Google Scholar] [CrossRef]
- Li, H.; Chang, J. Bioactive silicate materials stimulate angiogenesis in fibroblast and endothelial cell co-culture system through paracrine effect. Acta Biomater. 2013, 9, 6981–6991. [Google Scholar] [CrossRef]
- Shie, M.-Y.; Ding, S.-J.; Chang, H.-C. The role of silicon in osteoblast-like cell proliferation and apoptosis. Acta Biomater. 2011, 7, 2604–2614. [Google Scholar] [CrossRef]
- Thian, E.S.; Huang, J.; Best, S.M.; Barber, Z.H.; Brooks, R.A.; Rushton, N.; Bonfield, W. The response of osteoblasts to nanocrystalline silicon-substituted hydroxyapatite thin film. Biomaterials 2006, 27, 2692–2698. [Google Scholar] [CrossRef]
- Lee, S.-H.; Kim, S.-W.; Lee, J.-I.; Yoon, H.-J. The effect of platelet-rich fibrin on bone regeneration and angiogenesis in rabbit cranial defects. Tissue Eng. Regen. Med. 2015, 12, 362–370. [Google Scholar] [CrossRef]
- Jeon, Y.R.; Kim, M.J.; Kim, Y.O.; Roh, T.S.; Lee, W.J.; Kang, E.H.; Yun, I.S. Scaffold Free Bone Regeneration Using Platelet-Rich Fibrin in Calvarial Defect Model. J. Craniofac. Surg. 2018, 29, 251–254. [Google Scholar] [CrossRef]
- Sindel, A.; Dereci, Ö.; Toru, H.S.; Tozoğlu, S. Histomorphometric Comparison of Bone Regeneration in Critical-Sized Bone Defects Using Demineralized Bone Matrix, Platelet-Rich Fibrin, and Hyaluronic Acid as Bone Substitutes. J. Craniofac. Surg. 2017, 28, 1865–1868. [Google Scholar] [CrossRef]
- Findik, Y.; Kökdere, N.N.; Baykul, T. The use of platelet-rich fibrin (PRF) and PRF-mixed particulated autogenous bone graft in the treatment of bone defects: An experimental and histomorphometrical study. Dent. Res. J. 2015, 12, 418–424. [Google Scholar] [CrossRef]
- Karayürek, F.; Kadiroğlu, E.T.; Nergiz, Y.; Akçay, N.C.; Tunik, S.; Kanay, B.E.; Uysal, E.; Nergis, Y.; Karayürek, F. Combining platelet rich fibrin with different bone graft materials: An experimental study on the histopathological and immunohistochemical aspects of bone healing. J. Cranio Maxillofac. Surg. 2019, 47, 815–825. [Google Scholar] [CrossRef]
- Knapen, M.; Gheldof, D.; Drion, P.; Layrolle, P.; Rompen, E.; Lambert, F. Effect of Leukocyte- and Platelet-Rich Fibrin (L-PRF) on Bone Regeneration: A Study in Rabbits. Clin. Implant. Dent. Relat. Res. 2013, 17, e143–e152. [Google Scholar] [CrossRef]
- Sani, F.; Mehdipour, F.; Talaei-Khozani, T.; Sani, M.; Razban, V. Fabrication of platelet-rich plasma/silica scaffolds for bone tissue engineering. Bioinspired Biomim. Nanobiomater. 2018, 7, 74–81. [Google Scholar] [CrossRef]
- Bonazza, V.; Borsani, E.; Buffoli, B.; Parolini, S.; Inchingolo, F.; Rezzani, R.; Rodella, L.F. In Vitro treatment with concentrated growth factors (CGF) and sodium orthosilicate positively affects cell renewal in three different human cell lines. Cell Biol. Int. 2018, 42, 353–364. [Google Scholar] [CrossRef] [PubMed]
- Faot, F.; Deprez, S.; Vandamme, K.; Camargos, G.V.; Pinto, N.; Wouters, J.; Oord, J.V.D.; Quirynen, M.; Duyck, J. The effect of L-PRF membranes on bone healing in rabbit tibiae bone defects: Micro-CT and biomarker results. Sci. Rep. 2017, 7, 46452. [Google Scholar] [CrossRef] [Green Version]
- Fielding, G.A.; Smoot, W.; Bose, S. Effects of SiO2, SrO, MgO, and ZnO dopants in tricalcium phosphates on osteoblastic Runx2 expression. J. Biomed. Mater. Res. Part A 2013, 102, 2417–2426. [Google Scholar] [CrossRef] [Green Version]
- Kamitakahara, M.; Tatsukawa, E.; Shibata, Y.; Umemoto, S.; Yokoi, T.; Ioku, K.; Ikeda, T. Effect of silicate incorporation on in vivo responses of α-tricalcium phosphate ceramics. J. Mater. Sci. Mater. Electron. 2016, 27, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Chappell, H.F.; Jugdaohsingh, R.; Powell, J.J. Physiological silicon incorporation into bone mineral requires orthosilicic acid metabolism to SiO44−. J. R. Soc. Interface 2020, 17, 20200145. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Prieto, S.J.; Fonseca, L.F.; Sequeda-Castañeda, L.G.; Díaz, K.J.; Castañeda, L.Y.; Leyva-Rojas, J.A.; Salcedo-Reyes, J.C.; Acosta, A.P. Elaboration and Biocompatibility of an Eggshell-Derived Hydroxyapatite Material Modified with Si/PLGA for Bone Regeneration in Dentistry. Int. J. Dent. 2019, 2019, 5949232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szurkowska, K.; Szeleszczuk, Ł.; Kolmas, J. Effects of Synthesis Conditions on the Formation of Si-Substituted Alpha Tricalcium Phosphates. Int. J. Mol. Sci. 2020, 21, 9164. [Google Scholar] [CrossRef]
PSB | PS | SB | CONTROL | |
---|---|---|---|---|
Total [SUM] | 624,660.31 ± 2,250,130.64 ** | −1,639,444.22 ± 2,777,161.44 * ** | 133,306.39 ± 3,121,502.01 * | −75,755.14 ± 2,975,902.80 |
Averaged [HU] | 105.17 ± 378.54 ** | −276.21 ± 467.589 * ** | 22.33 ± 524.53 * | −12.58 ± 501.389 |
% Healthy Bone | 68.44 ± 25.11 * | 44.65 ± 29.38 * ** | 61.15 ± 31.60 | 61.98 ± 33.69 ** |
BONE | AIR | |
---|---|---|
Total [SUM] | 3,760,926.76 ± 858,429.84 | −5,942,171.43 ± 15,026.42 |
Averaged [HU] | 632.91 ± 144.35 | −1000 ± 0.00 |
% Healthy Bone | 100 ± 6.34 | 0.00 ± 0.00 |
PSB | PS | SB | CONTROL | ||
---|---|---|---|---|---|
BH [mm] | 0.55 ± 0.68 | 0.45 ± 0.39 | 0.32 ± 0.53 | 0.36 ± 0.70 | |
Von Kossa | BA [μm2] | 6,282,673.45 ± 8,253,714.11 * ** *** | 5,062,533.54 ± 3,969,879.62 ** | 1,692,143.97 ± 1,984,710.21 * | 3,221,432.66 ± 3,969,747.89 *** |
%BA | 16.04 ± 8.45 * ** *** | 16.08 ± 5.53 ** | 13.05 ± 11.63 * | 16.55 ± 8.245 *** | |
BP [μm] | 510,190.71 ± 424,927.16 * ** *** | 184,974.83 ± 164,277.64 ** | 153,907.889 ± 194,164.45 * | 208,103.83 ± 191,808.85 *** | |
BA [μm] | 50,955.48 ± 17,668.89 | 31,502.58 ± 971.37 | 85,634.73 ± 105,370.49 | 43,814.77 ± 5869.72 | |
Fluorescence | %BA | 8.62 ± 3.39 | 8.58 ± 2.33 | 9.04 ± 8.36 | 8.1 ± 1.44 |
BP [μm] | 0.09 ± 0.04 * $ $$ | 0.17 ± 0.06 ** $ | 0.55 ± 0.54 * ** *** | 0.21 ± 0.03 *** $$ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Suarez, A.; Rizo-Gorrita, M.; Suárez-Vega, D.; Velazco, G.; Rodriguez Gelfenstein, I.; Vázquez-Pachón, C.; Serrera-Figallo, M.-Á.; Torres-Lagares, D. Effectiveness of Silicon Platelet-Rich Fibrin and Autologous Bone on Bone Regeneration in Rabbit Calvarian Defects: A Radiological and Histological Study. Appl. Sci. 2021, 11, 4074. https://doi.org/10.3390/app11094074
Hernández-Suarez A, Rizo-Gorrita M, Suárez-Vega D, Velazco G, Rodriguez Gelfenstein I, Vázquez-Pachón C, Serrera-Figallo M-Á, Torres-Lagares D. Effectiveness of Silicon Platelet-Rich Fibrin and Autologous Bone on Bone Regeneration in Rabbit Calvarian Defects: A Radiological and Histological Study. Applied Sciences. 2021; 11(9):4074. https://doi.org/10.3390/app11094074
Chicago/Turabian StyleHernández-Suarez, Argimiro, María Rizo-Gorrita, Dubraska Suárez-Vega, Gladys Velazco, Ivan Rodriguez Gelfenstein, Celia Vázquez-Pachón, María-Ángeles Serrera-Figallo, and Daniel Torres-Lagares. 2021. "Effectiveness of Silicon Platelet-Rich Fibrin and Autologous Bone on Bone Regeneration in Rabbit Calvarian Defects: A Radiological and Histological Study" Applied Sciences 11, no. 9: 4074. https://doi.org/10.3390/app11094074
APA StyleHernández-Suarez, A., Rizo-Gorrita, M., Suárez-Vega, D., Velazco, G., Rodriguez Gelfenstein, I., Vázquez-Pachón, C., Serrera-Figallo, M. -Á., & Torres-Lagares, D. (2021). Effectiveness of Silicon Platelet-Rich Fibrin and Autologous Bone on Bone Regeneration in Rabbit Calvarian Defects: A Radiological and Histological Study. Applied Sciences, 11(9), 4074. https://doi.org/10.3390/app11094074