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Abstract: Radio-frequency spectrum resources are finite and scarce, but their demand is increasing
exponentially every year. Therefore, wireless network resources are too expensive to be wasted.
To avoid waste, pricing techniques can efficiently control resource usage and manage user needs
in networks. This study focuses on QoS-aware pricing for usage-based mobile Internet access
charging. Specifically, I propose a heuristic algorithm for priority pricing with multiple service levels.
The proposed algorithm is built on top of the existing equilibrium analysis methods. While being
extensively studied for optimal price selection, the equilibrium methods make a few unrealistic
assumptions, and so my methods adjust the solutions of the equilibrium methods to account for
distortions that the real world creates. The evaluation results indicate that multiple equilibrium
prices may exist, and the proposed scheme produces a pricing plan that is substantially more effective
than existing equilibrium methods.

Keywords: QoS design; priority pricing; equilibrium analysis; mobile internet access; search pruning;
heuristic search

1. Introduction

Radio-frequency spectrum resources are finite and scarce, but their demand is in-
creasing exponentially every year [1]. Although today’s fast wireless communication
technologies enable us to enjoy various newly-devised services, these services are causing
more congestion in wireless networks. To resolve this problem, studies have been con-
ducted on the efficient use of wireless resources [2]. Pricing is one of the techniques used
to effectively control network resource usage and manage user demands [3].

Pricing network services has been an issue of continuous debate since the early stages
of Internet commercialization. Historically, the flat-fee scheme in which users are charged
a fixed monthly fee irrespective of usage has been the predominant pricing structure for
wired Internet access services, as both service providers and consumers prefer simple
pricing to usage-sensitive pricing [1,4].

However, pricing schemes other than the flat-fee scheme have begun to emerge in
some domains, such as with wireless Internet access. In wireless networks, the bandwidth
is too scarce and expensive to tolerate the potential waste of resources, which is typically
associated with flat-fee pricing [5]. The evolution of mobile devices (e.g., smartphones
and IoT devices) has caused traffic to explode, and the congestion of wireless networks
is becoming more serious, jeopardizing the provision of stable quality of service (QoS).
Wireless carriers have already dropped their unlimited flat-fee policy, and currently offer
various pricing policies that combine fixed charging up to a certain data cap, and usage-
based charging beyond that cap.

Internet applications have different levels of QoS requirements, such as delay, latency,
and goodput. The coexistence of applications with high QoS (such as automatic driving
or VR interaction) with those with low QoS (such as emails) requires wireless networks
to handle the corresponding traffic differently. The IETF differentiated service [6–8] is
the currently preferred Internet QoS architecture. Traffic is differentiated based on the
traffic class information in the IP packet headers and is served according to some form
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of priority-based scheduling. The architecture of current mobile network QoS is more
complicated. According to the characteristics of user equipment (UE) and its services,
various priority classes are necessary in the mobile network. For example, 5G mobile
networks specify three service types: guaranteed bit rate (GBR) service, non-GBR service,
and delay-critical GBR service, along with QoS classes defined by resource type, priority
level, packet delay budget, packet error rate, maximum data burst volume, and averaging
window [9]. Currently, many wireless providers have announced their plans to implement
a priority pricing policy (i.e., different pricing for different traffic classes). The single-price
scheme is the simplest form of priority pricing.

In usage-based charging, a certain price is charged for a certain amount of data (e.g.,
Mbytes). Under usage-based charging, either the single-price scheme or priority-pricing
scheme, determining the price(s) is a crucial issue. This study focuses on optimal price
selection for “priority pricing” [3,10,11]; that is, finding the prices that maximize a certain
system objective. Other pricing schemes have been studied: smart-market pricing [12,13],
Paris-metro pricing [14,15], responsive pricing [16], edge pricing [17,18], proportional
fairness pricing [19], and distributed majorization pricing [20]. Along with priority pricing,
all of these schemes assume that the users are inherently price-sensitive and that the
service provider can use prices to influence the behaviors of the users as a means of
congestion control.

Under priority pricing, the service provider offers a choice of {service level, price}
pairs, and the users, who know the values of their jobs, select the service levels that they
would like to use. A user chooses the service level depending on the QoS requirements
as well as the service price. For example, if a service level becomes bad, some users may
decide to pay more and use a higher-level service, and vice versa. If there is no level whose
service is worth the price, the user may decide not to send any traffic. The dynamics of a
priority pricing system have often been modeled using equilibrium analysis [11,21–28].

The proposed scheme is built on top of the existing equilibrium analysis methods. The
scheme adjusts the results of the equilibrium methods to account for the distortions created
by realistic mobile internet access environments. The existing equilibrium analysis methods
commonly assume that: (a) the individual user’s impact on the system is infinitesimal,
and (b) users have up-to-date global knowledge of the system status, such as the queue
length or the job arrival rate at each service level, which is crucial if users are to make
optimal decisions [29]. However, when a finite (potentially small) number of users makes
suboptimal decisions, as a result of inaccurate knowledge of the system status, a stable
equilibrium may not always exist. Such a scenario is very possible in the case of wireless
Internet access, as the number of users attached to a base station is typically small, and
up-to-date knowledge of the system status is not available to the users.

The impact of using outdated information to determine network service pricing has
been addressed in [11,30]. However, these studies deal with dynamic pricing, in which
the service provider dynamically updates prices at run time. My scheme considers a static
pricing system in which the prices do not change at run time, which is much more practical
than dynamic pricing. This work differs from the equilibrium analysis of unobservable
queues [27,28,31–33], in that it models explicit queues that are observable but have a delay
in feeding the queue information to users.

My analysis indicates that the system often fails to converge to a stationary equilibrium
in realistic environments. As a result, equilibrium methods may produce suboptimal prices.
The suggested scheme effectively adjusts the suboptimal price selection of the equilibrium
methods when the system does not converge to a stationary equilibrium. It uses a heuristic
search algorithm with pruning built on a sliding window transition model. Note that
Cao et al. [11] showed the existence of multiple equilibrium delays, whereas this work
deals with equilibrium prices.

The remainder of this paper is organized as follows: Section 2 describes the general
system framework used in this study. Section 3 describes the model of system behavior.
Section 4 describes the analysis of the results of the existing equilibrium method using
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the model presented in Section 3. Section 5 describes how to adjust the results of the
equilibrium method. Finally, Section 6 concludes the paper by presenting an overview of
the paper and suggesting a future research.

2. System Framework

This study considers the price selection problem over a single-hop network link. The
network offers different service levels to the users. Without loss of generality, let us call
the highest priority level 1 and the lowest priority level I. For service level i, the service
provider charges Pi per data unit. The service provider determines the price vector of I
service levels, {Pi}, with a certain objective, such as maximizing system profit or net value
of the system. I assume that prices do not change once this vector is determined. However,
multiple pricing policies can be implemented according to the various user and traffic
scenarios using the suggested scheme, and wireless service providers may change the price
policy accordingly.

Let us call each user request to be transmitted a ‘job.’ The jobs are basically packets
with QoS information. A user should negotiate with a base station to submit a job. He/She
may decide not to submit the job if the cost is too expensive. When submitting a job, each
user would essentially be requesting that the job be processed for the transmission. The
submitted jobs are distributed to the priority queues by a classifier according to their types
categorized by their QoS requirements. Here, the framework assumes that there are j types
of QoS requirements, and each job is associated with QoS type j. The scheduler chooses
a job from the front of a non-empty priority queue according to its scheduling discipline
and thrusts the chosen job into the sending queue. For example, a scheduler using a
priority queuing (PQ) discipline serves the job with the highest priority first and uses all
the bandwidths to send the jobs in the sending queue. By contrast, a scheduler using a
weighted fair queuing (WFQ) discipline would allocate the bandwidths to each priority
queue according to its weight [34]. Subsequently, the base station and the corresponding
UE would prepare the radio resource to transmit the jobs. A scheduling model is shown in
Figure 1.
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Although each job has a different size, performance requirements, and error char-
acteristics, I consider that a job’s completion delay is the main performance metric that
determines its value. Thus, let us denote a job’s utility function by Uj(Tij), where Tij is the
expected time to complete a type-j job when assigned to level i. It is natural to assume that
Uj(Tij) is a non-increasing function with respect to Tij.

The proposed framework considers a non-preemptive strict priority scheduling (SPS)
discipline, although the basic concept of this study is not tied to a particular scheduling
discipline. Because no guarantee can be made on the exact completion time under SPS, this
framework uses the expected completion time. The computation of Tij depends on many
factors, such as the job arrival process, job service process, and job size. For example, under
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Poisson job arrival and exponential job length assumptions, Tij with SPS can be computed
using the M/M/1 priority queuing model, as shown in Equation (1):

Tij =
Cj

µ
+

C2 ∑I
k = 1 λk
µ2

(1− C ∑i−1
k = 1 λk

µ )(1− C ∑i
k = 1 λk

µ )
(1)

where µ is the job service rate, λk is the job arrival rate for level k, Cj is the average size of a

type-j job, and C is the average size of all jobs. The mathematical expression
Cj
µ represents

the job service time and C2/µ2·∑I
k = 1 λk

(1−C/µ·∑i−1
k = 1 λk)(1−C/µ·∑i

k = 1 λk)
represents the average waiting

time of the job. Note that C and Cj are calculated from the empirical observations, although
the job size has an exponential distribution. Readers may refer to [35] for the proof of
Equation (1).

The expected job completion time is computed assuming that the queues associated
with each service level are in a steady state. This assumption is appropriate for reasonably
long broadcast intervals. Broadcast intervals are discussed in the last paragraph of this
section, and update times longer than the time required to adjust to the new steady state
are often sensible. The user may adopt a formula that considers transient states.

A user selects the service level of his jobs based solely on self-interest, and they are
oblivious to the system objective. A user may decide not to submit a job, but he/she cannot
change his/her decision once the job has been submitted. I assume that job arrival at each
service level follows the Poisson process. The job arrival rate at service level i is denoted by
λi, and {λi} is the job arrival rate vector. For notational convenience, λ0 denotes the arrival
rate of jobs that were not submitted. When the total job arrival rate is λ, the sum of the job

arrival rates at all levels is equal to λ (i.e.,
I

∑
i = 0

λi = λ). The network serves jobs at a rate

of µ, which is essentially determined by the capacity of the wireless network. The capacity
of a wireless network is often variable, as the wireless channel condition fluctuates, and
the link throughput depends on the channel condition. In such cases, existing methods
for estimating wireless link capacity may be used [36,37]. To achieve system stability, the
effective job arrival rate (λ− λ0) must be smaller than µ.

I assume that the system status is periodically broadcast and that users make decisions
based on the latest broadcast {λi} instead of the actual (but unknown) job arrival rates
between the periodic updates. This assumption is reasonable for wireless networks, because
all existing wireless access technologies use some form of periodic system broadcast
channels (e.g., beacons). Keeping an accurate track of {λi} for each user by sniffing all
of the network traffic is usually infeasible in wireless networks, and for each user to
ask the network for the current {λi} whenever he has a job to send is undesirable for
efficiency reasons.

Because this study assumes that each user’s decision is based solely on self-interest, a
user with a type-j job is assumed to select the service level i that maximizes his utility value
minus the associated cost, regardless of the system objective. The following expression
captures the decision-making process of a user with a type-j job:

Argmaxi
[
Uj
(
Tij
)
− PiCj

]
. (2)

If the utility value minus the cost is negative for all levels, the user will not submit
the job. The user’s decision depends on Tij (in Equation (2)), and Tij depends on the job
arrival rates at higher levels (in Equation (1)). The job arrival rates, in turn, depend on the
decisions of other users. This interdependency raises the possibility of system oscillation.
Note that while pricing is static, the decisions made by users may be dynamic.
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3. System Behavior Analysis Model

The suggested model, system behavior analysis model (SAM), is a state transition
model that uses a price vector {Pi} as an input and produces a system state transition
graph by estimating the decisions of users. This graph, in which each state is identified
by the associated job arrival rate vector {λi}, depicts the evolution of the system behavior
over time. The state transition is discrete and occurs only when new values of {λi} are
broadcast, as shown in Figure 2. St denotes the system state at time t, and {λi}t denotes
the job arrival rate vector at St. The transition of the system state is derived by modeling
the decisions of individual users. Recall that users make decisions based on the knowledge
that is currently available, {λi}, which remains fixed between updates. The actual {λi}
may change as a result of the users’ decisions during the interval between broadcasts, but
this new {λi} is not available for users to base their decisions on.
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Depending on whether a given {Pi} guarantees that the system converges on a steady
state, SAM handles the two cases differently. When the system converges, the SAM
produces a single {λi} of the convergent system state. On the other hand, when the system
oscillates, the SAM computes a set of {λi}s. System divergence (i.e., oscillation among an
infinite number of states) is theoretically possible but does not occur because the resolution
of {λi} broadcast values is finite. The simulation indicates that this set contains a small
number of states in most cases. Each {λi} in this set represents a recurring system state in
the oscillation loop and is associated with a probability that indicates how long the system
will stay in that corresponding state.

The SAM first estimates the most preferred service level for each job type in a certain
system state. For all pairs of (i, j), it computes the Bernoulli variable, Xt

i,j, which takes ‘1′ if
the level i is the most profitable choice for a type-j job for the given price vector {Pi} when
the system is at St and takes ‘0’ otherwise. That is,

Xt
i,j =

{
1, i f Uj

(
Tt

ij

)
− PiCj ≥ 0, and Uj

(
Tt

ij

)
− PiCj ≥ Uj

(
Tt

kj

)
− PkCj for ∀k ∈ I, k 6= i

0, otherwise

where Tt
ij is the expected completion time of a type-j job at level i at state St. Note that the

user’s decision between time t and t + 1 is based on {λi}t.
Second, using Xt

ij, the SAM computes the probability that level i is selected at St,
Prob

(
i, St) by the following equation:

Prob
(
i, St) = ∑

j
Prob(j) · Xt

i,j (3)

where Prob(j) is the probability that a job is of type j.
Finally, using Prob

(
i, St), the SAM computes the job arrival rate vector at St−1, {λi}t+1,

as follows:
λt+1

i = λ · Prob
(
i, St) for ∀i ∈ I. (4)

In this way, the SAM constructs a state transition graph where a node corresponds to
a system state visited, and a directional arc indicates a transition from one system state to
another. The transition of {λi} may end up as a single state, as shown in Figure 3a, or may
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oscillate, as shown in Figure 3b. In the latter case, the stationary probability at each state S,
W(S), in the oscillation loop is computed by counting the visit frequency.
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So far, when computing {λi}t, only the jobs that have arrived over one broadcast
interval between (t−1) and t are considered. I implicitly assumed that the size of the {λi}
broadcast interval was equal to that of the interval over which the job arrival rate was
measured. If the {λi} broadcast interval is smaller than the interval for the job arrival rate
measurement, then {λi}t must be computed by considering the job arrivals over multiple
broadcast intervals. To this end, this study uses a sliding window with slots, ∆1–∆F, where
F is the number of {λi} broadcasts during which the job arrival rate is measured. For
instance, if the job arrival rate λ is measured by counting the job arrivals during the last
1 s period and the {λi} broadcast interval is 0.1 s, F equals 10. Each ∆ f slot contains the
job arrival rate for each service level during a broadcast interval. The ∆Fslot keeps the
information about the most recent broadcast interval, while ∆1 keeps that of F intervals
before. The procedure for computing the job arrival rate vector at time t is formulated
using the following equations:

∆ f−1 = ∆ f for ∀ f > 1, (5)

∆F = λ · Prob
(
i, St) / F for ∀i ∈ I, (6)

λt+1
i = ∑ ∆ f for f , ∀i ∈ I. (7)

Equation (5) shifts the value in the oldest slot ∆1 to automatically shift the sliding
window and keep track of the most recent F number of update information. Equation (6)
computes the job arrival rate for each service level for the newest slot, ∆F. The values of all
F slots are summed to obtain

{
λt+1

i

}
in Equation (7). Instead of Equation (7), exponential

averaging [38] can be used.

4. Convergence Analysis

Equilibrium methods assume the existence of equilibrium and compute an optimal
price vector to induce the system to converge on the equilibrium state. To analyze the
validity of the equilibrium existence assumption, this study uses the price vector obtained
from the equilibrium analysis to help compare the job arrival rate vector(s) computed from
the SAM with that computed from the equilibrium analysis. More specifically, this section
focuses on the question of whether a system with non-infinitesimal impact of users and
periodic updates converges to a steady equilibrium state. I chose the following three Nash
equilibrium models [22,23], which all use a framework similar to mine:

• Case 1: Profit maximization system with a single service level,
• Case 2: Net value maximization system with a single service level, and
• Case 3: Net value maximization system with two service levels.

In all three cases, the value of a type-j job is expressed by the utility function shown in
Equation (8).

Uj(T) = Vj
′
(

λ∗j

)
− vjT, (8)
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where Vj
′
(

λ∗j

)
is the marginal value function, vj is the delay cost, and T is the job com-

pletion delay. The value function Vj

(
λ∗j

)
represents the expected gross value per time

unit gained by all type-j jobs when the effective arrival rate of type-j jobs is λ∗j . Vj

(
λ∗j

)
is

assumed to be monotonically increasing, strictly concave, and twice-differentiable. The
value of a single type-j job is represented by a marginal value function, Vj

′
(

λ∗j

)
. A job’s

value is assumed to decrease proportionally to the job completion delay, and therefore the
delay cost, vj, is a constant.

For each case, I analyze whether the system converges to the equilibrium state, as
assumed by the corresponding equilibrium model.

4.1. Case I

In the profit center pricing structure model [22], one type of job (J = 1) with a unit size
(C = 1) exists in a system with a single service level (I = 1). Thus, all jobs share the same
utility function and choose to join or not join the system. Because a single service level
exists, the effective job arrival rate λ∗ is equal to the job arrival rate at level 1, λ1.

The system objective function, which is the expected profit per time unit, is equal
to λ∗P1 − µPB, where PB is the base service price of the system. An iso-elastic marginal
value function, V′(λ∗) = K/

√
λ∗, was assumed, and that makes the utility function

Uj(T) = K√
λ∗j
− vjT. The equilibrium model simultaneously finds the optimal price (P1)

and optimal network capacity (µ) by computing the conditions for a Nash equilibrium. A
Nash equilibrium is satisfied when jobs are indifferent to joining or not joining the system.
That is, the condition of V′(λ∗)− v1T11 = P1 is satisfied at the equilibrium state. In the
equilibrium state, the system objective function becomes λ∗[V′(λ∗)− v1T11]− µPB. The
first-order conditions for maximizing the objective function are as follows.

V′(∗) + V ′′ (∗) = (v1/µ) f ′(λ∗/µ), (9)

PB = v1

(
λ∗/µ2

)
f ′(λ∗/µ), where f (ρ) = ρ/(1− ρ) and ρ = λ∗/µ, (10)

Two equations are generated when applying the assumed equation V′(λ∗) = K/
√

λ∗,
which are K2 = 4v1PB f ′(ρ) from Equation (9), and µ = K2ρ/

(
4PB

2) from Equation (10),
respectively. The optimal system utilization rate, ρ, was computed from the former and
the optimal µ from the latter. The optimal job arrival rate, λ∗, is derived from ρ and µ
(ρ = λ∗/µ in Equation (10)). The optimal P1 is derived from the equilibrium condition
by applying the T11 value computed from Equation (2). Readers may refer to [22] for
more details.

This case compares the job arrival rates from this equilibrium model with those
obtained from the SAM while varying the system settings. I tested two groups of sys-
tem settings: one with high-capacity networks (i.e., large µ) and frequent {λi} updates
(100 times per second, i.e., F = 100), and the other with low-capacity networks (i.e., small µ)
and infrequent {λi} updates (once or twice per second, i.e., F = 1 or F = 2).

The comparison results are summarized in Tables 1 and 2. The equilibrium model
takes PB, K, and v1 as input parameters and generates the optimal price, P1, the optimal
capacity, µ, and the optimal job arrival rate, λ1, at the equilibrium state. Using the same
PB, K, and v1, the SAM takes P1 and µ computed by the equilibrium model as inputs. The
total job arrival rate λ was set to 0.99µ. The key comparison target is the job arrival rate, λ1,
which is always a single value when computed by the equilibrium model and indicates
convergence in an equilibrium state. By contrast, the SAM may generate a set of λ1 values
in the potential oscillation loop. For example, λ1 = {73.8, 74.7} indicates that the system
oscillates between two states: one with λ1 = 73.8, and the other with λ1 = 74.7.
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Table 1. Large capacity networks with frequent arrival rate broadcast (Case I).

(PB, K, v1) Equilibrium Model SAM (F = 100)

(0.5, 10, 1) P1 = 1.08, µ = 85.9 λ1 = 73.7 λ1 = {73.8, 74.7}
(0.5, 10, 3) P1 = 1.16, µ = 75.5 λ1 = 57.0 λ1 = {56.6, 57.4}
(1.0, 20, 1) P1 = 2.11, µ = 90.0 λ1 = 81.0 λ1 = {81.0, 81.8}
(1.0, 20, 3) P1 = 2.21, µ = 82.7 λ1 = 68.4 λ1 = {67.8, 68.6}

Table 2. Small capacity networks with infrequent arrival rate broadcast (Case I).

(PB, K, v1) Equilibrium Model SAM (F = 2) SAM (F = 1)

(1.5, 10, 1) P1 = 3.49, µ = 8.4 λ1 = 6.3 λ1 = {8.3, 4.2} λ1 = {8.3, 0.0}
(1.5, 10, 3) P1 = 4.11, µ = 6.4 λ1 = 3.7 λ1 = {6.3, 3.2} λ1 = {6.3, 0.0}
(2.0, 20, 1) P1 = 4.33, µ = 21.5 λ1 = 18.4 λ1 = {21.3, 10.6} λ1 = {21.3, 0.0}
(2.0, 20, 3) P1 = 4.65, µ = 18.9 λ1 = 14.3 λ1 = {18.7, 9.4} λ1 = {18.7, 0.0}

As expected, Table 1 shows that the results of the equilibrium method match well
with those of the SAM in large-capacity networks that have frequent arrival rate updates.
Although the system does not converge to a single steady state, the degree of oscillation
is negligibly small, and the system states in the oscillation loop are very close to the
equilibrium state. Section 5 shows that, in this case, the price computed by the equilibrium
method and the corresponding objective function value match the solution found by my
price selection method.

By contrast, Table 2 shows that the results of the equilibrium method are far off the
mark in a small-capacity network with an infrequent arrival rate broadcast. Infrequent
{λi} updates cause severe oscillations. As the broadcast interval increases, the degree of
oscillation also increases, such that all the jobs join the system at one broadcast interval
and none of the jobs join the system at the next interval in extreme cases (in the sub-cases
with F = 1). These results indicate that when the assumptions of the system convergence
by the equilibrium model do not hold, the equilibrium method can fail to accurately model
the behavior of a real system. Section 5 shows that, in this case, the price computed by the
equilibrium method is suboptimal by comparing it to the solution derived by my price
selection method.

4.2. Case II

The “net-value maximization” model [22] has the same system setting as in Case
I, except for the objective function. That is, I = 1, J = 1, C = 1, V′(λ∗) = K/

√
λ∗, and

Uj(T) = K√
λ∗j
− vjT. Here, the system objective is to maximize the system net value, which

can be expressed as V(λ∗)− v1L− µPB, where L is the mean number of jobs in the system
in a steady state. In the M/M/1 model, L = f (ρ) = λ∗/(µ− λ∗). The procedure used to
compute the Nash equilibrium is identical to that of Case I. The first-order conditions for
maximizing the objective function are as follows.

V′(λ∗) = v1(∂L/∂λ), (11)

PB = −v1(∂L/∂µ). (12)

By applying the assumed V′(λ∗), we obtain two equations, K2 = v1PB f ′(ρ) from
Equation (11), and µ = K2ρ/PB

2 from Equation (12), respectively. As in Case I, µ and λ1
are computed from these equations, and the optimal P1 is determined by applying µ and
λ1 to the equilibrium condition.

The comparison results between the equilibrium method and the SAM are summa-
rized in Tables 3 and 4, which both show a similar trend to Case I. With frequent arrival
rate broadcasts in large-capacity networks, the system often converges to a steady state
close to the equilibrium state (see Table 3). By contrast, Table 4 shows that the equilibrium
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method is not accurate when applied to small-capacity networks with infrequent arrival
rate broadcasts.

Table 3. Large capacity networks with frequent arrival rate broadcast (Case II).

(PB , K , v1) Equilibrium Model SAM (F = 100)

(0.5, 10, 1) P1 = 0.5, µ = 371.7 λ1 = 345.4 λ1 = {345.3}
(0.5, 10, 3) P1 = 0.5, µ = 351.0 λ1 = 308.0 λ1 = {305.1, 308.6}
(1.0, 20, 1) P1 = 1.0, µ = 380.0 λ1 = 361.0 λ1 = {360.6}
(1.0, 20, 3) P1 = 1.0, µ = 365.4 λ1 = 333.7 λ1 = {332.2}

Table 4. Small capacity networks with infrequent arrival rate broadcast (Case II).

(PB, K, v1) Equilibrium Model SAM (F = 2) SAM (F = 1)

(1.5, 10, 1) P1 = 1.5, µ = 39.0 λ1 = 34.2 λ1 = {38.6, 19.3} λ1 = {38.6, 0.0}
(1.5, 10, 3) P1 = 1.5, µ = 35.0 λ1 = 27.6 λ1 = {34.7, 17.3} λ1 = {34.7, 0.0}
(2.0, 20, 1) P1 = 2.0, µ = 92.9 λ1 = 86.4 λ1 = {92.0, 46.0} λ1 = {92.0, 0.0}
(2.0, 20, 3) P1 = 2.0, µ = 87.8 λ1 = 77.0 λ1 = {86.9, 43.5} λ1 = {86.9, 0.0}

Note that the SAM results do not exactly match the equilibrium method results, even
when the system converges to a steady state. This is not only because of the differences in
the modeling assumptions (infinitesimal jobs and accurate knowledge of system status)
but also because of the numerical round-off effects. For instance, {λi} broadcast values are
truncated at five decimal places.

I conclude from Case I and Case II that whether the system converges to an equilibrium
state is independent of the system objective. In both cases, the users determine system
behavior by making decisions based on their self-interest, which is oblivious to the system
objective. If the conditions for equilibrium convergence are not met, the system can oscillate
regardless of the system objective. Section 5 shows the evaluation of the price optimality
computed using the equilibrium method for this case.

4.3. Case III

In Case III, the equilibrium model used in Case II was extended to deal with multilevel
systems with multiple job types [23]. In the extended model, the system objective is to
maximize the system net value for a given system capacity µ. The objective function
is expressed as ∑

j∈J
Vj

(
λ∗j

)
− ∑

j∈J
vjLj

({
λ∗j

})
, where λ∗j is the arrival rate of type-j jobs,

Vj

(
λ∗j

)
is the value function of type-j jobs, vj is the delay cost of type-j jobs,

{
λ∗j

}
denotes

a j-dimensional arrival rate vector of type-j jobs, and Lj

({
λ∗j

})
is the mean number of

type-j jobs within the system in a steady state. Note the difference between the arrival rate
of type-j jobs λ∗j and the job arrival rate at level i λi.

For example, in a system with two service levels (I = 2) with two job types (J = 2), the
first-order conditions for maximizing the system objective are as follows:

V1
′(λ∗1 ) = v1(∂L1/∂λ∗1) + v2(∂L2/∂λ∗1), (13)

V2
′(λ∗2 ) = v1(∂L1/∂λ∗2) + v2(∂L2/∂λ∗2). (14)

From these equations, we can compute the optimal job arrival rates of type-1 and
type-2 jobs, λ∗1 and λ∗2 , for the given value functions, V1

(
λ∗1
)

and V2(λ
∗
2 ). Once the

optimal
{

λ∗j

}
is obtained, the optimal prices, P1 and P2, can be computed from the equi-

librium conditions of V′1
(
λ∗1
)

= P1 + v1W1 and V′2(λ
∗
2) = P2 + v2W2, where Wj is the

expected completion delay for a type-j job. At this point, the utility function becomes
Uj(T) = Pj + vj

(
Wj − T

)
. I assume that v1 is greater than v2 and C1 = C2 = 1. Then,
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owing to the incentive–compatibility [23], type-1 jobs will always prefer level 1 over level
2, whereas type-2 jobs always prefer level 2 over level 1. In other words, λ∗1 = λ1 and
λ∗2 = λ2. As a result, W1 is the same as T11, and W2 is the same as T22 at the equilib-
rium state.

To evaluate this equilibrium model, I use the example from [23]. In this example,
V′1
(
λ∗1
)
= 9− 20λ∗1 when λ∗1 < 0.45, and V′2(λ

∗
2) = 12− 30λ∗2 when λ∗2 < 0.4. V′1

(
λ∗1
)
= 0

if λ∗1 > 0.45, and V′2(λ
∗
2) = 0 if λ∗2 > 0.4. The µ is fixed to 1.0. v1 is 2, and v2 is 1. As in

Case II, this case first computes the optimal price vector via the equilibrium model and
then apply that price vector to the SAM to examine the system behavior (i.e., transition
of {λi}). The results are presented in Table 5. When the {λi} broadcast interval is small,
the system behavior is very close to the result of the equilibrium model. That is, when
F is 100, the system state {λi} obtained from the SAM nearly matches the optimal

{
λ∗j

}
from the equilibrium model, although the SAM does not converge on a single steady state.
However, when the {λi} broadcast interval is large, the system oscillates wildly.

Table 5. Case III comparison results.

{λ1, λ2} when {P1, P2} = {2.21, 1.61}

Equilibrium model Converges on {0.183, 0.278}.

SAM (F = 100) Oscillates among {0.183, 0.282}, {0.183, 0.277}, {0.188, 0.277},
{0.178, 0.277}, and {0.183, 0.272}.

SAM (F = 2) Oscillates among {0.0, 0.495}, {0.0, 0.742}, {0.0, 0.247},
{0.247, 0.247}, {0.247, 0.495}, {0.247, 0.742}, and {0.0, 0.0}.

SAM (F = 1) Oscillates among {0.0, 0.0}, {0.495, 0.0} and {0.0, 0.99}.

5. Pricing Optimality Analysis

In the previous section, I showed that the system does not always converge on the
equilibrium state. To deal with such cases, I developed a new price selection algorithm
that does not assume the existence of system equilibrium. The basic idea is to explore the
solution space for the price vector that achieves the highest system objective value. The
algorithm operates in two phases. The first phase prunes the search space. The algorithm
prunes a solution space that does not contain the target price vector. During the second
phase, the algorithm uses the SAM to estimate the system behavior of the price vectors that
belong to the remaining unpruned region.

5.1. Search Space Pruning

The algorithm used two rules for the search space pruning. Among all possible prices
for service level i, Pi, the algorithm prunes out the price vectors that will result in no jobs
selecting level i and the price vectors that will make all of the jobs select level i. In Figure 4,
Πi represents the range of Pi under which no job will select level i, and Φi represents the
range of Pi under which all jobs will choose level i. Note that Πi is always located above
Φi. The shaded region between Πi and Φi is subjected to analysis when using the SAM.
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Suppose P∗i is the smallest Pi value in Πi. Because no job chooses level i with P∗i , all of
the prices that are higher than P∗i will end up with the same result, that is, there are no jobs
that will choose level i. Therefore, we only need to consider P∗i and prune Πi. Similarly, we
only need to consider the largest Pi value in Φi and can, therefore, prune Φi.The key issue
is how to find the boundary of these regions (i.e., the smallest Pi of Πi and the largest Pi
of Φi).
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This section explains the pruning rules for a two-service-level system as an example,
and presents general cases later. For a system with two levels, this section suggests the
following four pruning rules in Figure 5, which have two rules for each service level.

Appl. Sci. 2021, 11, 4083 11 of 19 
 

The key issue is how to find the boundary of these regions (i.e., the smallest 𝑃 of Πi and 
the largest 𝑃 of Φi). 

This section explains the pruning rules for a two-service-level system as an example, 
and presents general cases later. For a system with two levels, this section suggests the 
following four pruning rules in Figure 5, which have two rules for each service level. 

 
Figure 5. Pruning rules for a system with two service levels. 

Rules 1 and 2 have the following meanings: if there is no queuing delay, the 
minimum expected completion time is 𝐶/, and the maximum utility of a type-j job is 𝑈(𝐶/). Thus, if 𝑃ଵ is greater than the maximum utility value for all jobs (i.e., if 𝑃ଵ𝐶 >𝑈(𝐶/) for all 𝑗 ∈ 𝐽), then level 1 will not be selected. By contrast, if 𝑃ଶ is greater than 𝑃ଵ, level 2 will not be selected, because jobs in level 1 have priority over jobs in level 2 
under SPS and thus no one will pay more for level 2. 

Rule 3 prunes all 𝑃ଵ’s, which guarantees that all jobs will choose level 1. The highest 
price of the level 1 to guarantee that all of the jobs select level 1 is min[𝑈(𝑇ଵ∗ )/𝐶] (i.e., 𝑃ଵ𝐶 < 𝑈(𝑇ଵ∗ ) for all 𝑗 ∈ 𝐽), where 𝑇ଵ  is the expected completion time of a type-j job at 
level 1 when the job arrival rate vector is {0, λ, 0}. 𝑇ଵ  can be computed using Equation 
(1).  

Rule 4 prunes all 𝑃ଶ ’s, which guarantees that all jobs choose level 2. The first 
condition for this scenario is 𝑃ଶ𝐶 < 𝑈(𝑇ଶ∗ )  for all 𝑗 ∈ 𝐽 , where 𝑇ଶ∗  is the expected 
completion time of a type-j job at level 2, when the job arrival rate vector is {0, 0, λ}. 
Another condition is 𝑃ଶ𝐶 < 𝑈൫𝑇ଶ൯ − 𝑈൫𝑇ଵ൯ + 𝑃ଵ𝐶 for all j. Here, 𝑇ଵ for the first user 
choosing level 1 is 𝐶/ (i.e., zero queuing delay). Therefore, the largest 𝑃ଶ should be 
min[𝑈(𝑇ଶ∗ )/𝐶, 𝑈(𝑇ଶ∗ )/𝐶 − 𝑈(𝐶/)/𝐶 + 𝑃ଵ] for all j. 

The pruning rules for a system with I service levels are generalized as shown in 
Figure 6. 

 
Figure 6. Pruning rules for a system with I service levels. 

5.2. Heuristic Search 
After pruning has been performed, the algorithm explores the remaining search 

space using the heuristic search method. The algorithm adopted the “iterative-deepening” 
search [39], which combines the benefits of performing both a depth-first search and 

Figure 5. Pruning rules for a system with two service levels.

Rules 1 and 2 have the following meanings: if there is no queuing delay, the minimum
expected completion time is Cj/µ, and the maximum utility of a type-j job is Uj

(
Cj/µ

)
.

Thus, if P1 is greater than the maximum utility value for all jobs (i.e., if P1Cj > Uj
(
Cj/µ

)
for all j ∈ J), then level 1 will not be selected. By contrast, if P2 is greater than P1, level 2
will not be selected, because jobs in level 1 have priority over jobs in level 2 under SPS and
thus no one will pay more for level 2.

Rule 3 prunes all P1’s, which guarantees that all jobs will choose level 1. The highest
price of the level 1 to guarantee that all of the jobs select level 1 is min

[
Uj

(
T∗1j

)
/Cj

]
(i.e.,

P1Cj < Uj

(
T∗1j

)
for all j ∈ J), where T1j is the expected completion time of a type-j job at

level 1 when the job arrival rate vector is {0, λ, 0}. T1j can be computed using Equation (1).
Rule 4 prunes all P2’s, which guarantees that all jobs choose level 2. The first con-

dition for this scenario is P2Cj < Uj

(
T∗2j

)
for all j ∈ J, where T∗2j is the expected com-

pletion time of a type-j job at level 2, when the job arrival rate vector is {0, 0, λ}. An-
other condition is P2Cj < Uj

(
T2j
)
−Uj

(
T1j
)
+ P1Cj for all j. Here, T1j for the first user

choosing level 1 is Cj/µ (i.e., zero queuing delay). Therefore, the largest P2 should be

min
[
Uj

(
T∗2j

)
/Cj, Uj

(
T∗2j

)
/Cj −Uj

(
Cj/

)
/Cj + P1

]
for all j.

The pruning rules for a system with I service levels are generalized as shown in
Figure 6.
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5.2. Heuristic Search

After pruning has been performed, the algorithm explores the remaining search
space using the heuristic search method. The algorithm adopted the “iterative-deepening”
search [39], which combines the benefits of performing both a depth-first search and
breadth-first search. The process begins by coarsely selecting the price vectors from the
search space and then gradually tries out the other price vectors, while increasing the
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granularity of prices until either the computational time limit has been exhausted or the
pre-set search depth limit has been reached. The algorithm also stops if the improvements
between the results are negligibly small. The pseudocode for the search algorithm is shown
in Figure 7.

Appl. Sci. 2021, 11, 4083 12 of 19 
 

breadth-first search. The process begins by coarsely selecting the price vectors from the 
search space and then gradually tries out the other price vectors, while increasing the 
granularity of prices until either the computational time limit has been exhausted or the 
pre-set search depth limit has been reached. The algorithm also stops if the improvements 
between the results are negligibly small. The pseudocode for the search algorithm is 
shown in Figure 7. 

 
Figure 7. Iterative deepening search algorithm. 

Let us compute the system objective value for a given price vector {𝑃} as follows: 
First, SAM produces a state-transition graph. If the system converges to a steady state, 
then we need to account for only that state when computing the system objective value. If 
the system oscillates, the system objective value can be obtained by computing the 
weighted average of the system objective values of all states in the oscillation loop. 

Another heuristic is the hill-climbing search. In general, the hill-climbing search can 
find the optimal solution if the objective function is unimodal (i.e., when a proper 
maximum is in a given region). Owing to the risk of oscillation, unimodality with respect 
to the price vector is not guaranteed, and the existence of local optima is possible. 
Techniques such as simulated annealing and multi-criteria decision analysis may be used 
to avoid settling into a local optimum or evaluate conflicting criteria of price and QoS, but 
this study does not deal with them. 

Figure 7. Iterative deepening search algorithm.

Let us compute the system objective value for a given price vector {Pi} as follows:
First, SAM produces a state-transition graph. If the system converges to a steady state, then
we need to account for only that state when computing the system objective value. If the
system oscillates, the system objective value can be obtained by computing the weighted
average of the system objective values of all states in the oscillation loop.

Another heuristic is the hill-climbing search. In general, the hill-climbing search
can find the optimal solution if the objective function is unimodal (i.e., when a proper
maximum is in a given region). Owing to the risk of oscillation, unimodality with respect to
the price vector is not guaranteed, and the existence of local optima is possible. Techniques
such as simulated annealing and multi-criteria decision analysis may be used to avoid
settling into a local optimum or evaluate conflicting criteria of price and QoS, but this study
does not deal with them.

Let us compute the system objective value for a given price vector {Pi} by utilizing the
SAM result as follows: SAM produces a state-transition graph. If the system converges to a
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steady state, we need to account for only that state when computing the system objective
value. If the system oscillates, the system objective value can be obtained by computing
the weighted average of the system objective values of all states in the oscillation loop. For
instance, in a profit-maximization system, when the system converges to a steady state of
the job arrival rate vector {λi}, the system objective function (i.e., the total system profit) is
the sum of revenues collected at all service levels minus the fee that the service provider
pays to his upper-level service provider:

∑
i∈I

(Pi λiC)− µPBC (15)

where C is the average job size (i.e., C = ∑
j∈J

Cj · Prob(j)), where Prob(j) is the probability

that a job is of type j. Note that the use of C may be approximate when some jobs are not
sent. However, when the jobs not sent have an average size similar to the jobs sent, it is
a good approximation. The system objective function in the case of system oscillation is
calculated as follows:

∑
{S}

(W(S)∑
i

Piλi(S)C))− µPBC (16)

where {S} denotes the set of recurring states in the oscillation loop, W(S) is the stationary
probability of state S, and λi(S) is the job arrival rate at level i in state S.

5.3. Example 1

This example considers a network with two service levels (I = 2). There are 10 types of
jobs (J = 10), all of which have linear utility functions with a common maximum value β
and a different delay cost αj for each job type (i.e., Uj(T) = β− αjT). β is 10, and α1 = 1.0,
α2 = 1.2, . . . , α10 = 3.0. The total job arrival rate λ was set to 5.0, and the job service rate µ
was set to 6.0. The size of the job is set to 1.0, for all job types (Cj = 1.0), and the base service
price PB is set to 1.0. These parameters are designed to roughly mimic 5G mobile Internet
access when users concurrently download big files from a server at maximum speed. In
this setting, each job is accessing a server, and users are charged by the number of jobs
they submit. According to empirical measurements in Korea [40], the average download
speed of 5G mobile networks is approximately 700 Mbps and the average capacity of a
base station is approximately 4.5 Gbps. Therefore, setting µ to 6.0 corresponds to the total
capacity of 4.2 Gbps, which is about the capacity of a base station.

Figure 8 illustrates the results of search space pruning in this setting. The dotted
area indicates the remaining search space after pruning, and the four lines indicate the
boundary of each region defined by the four pruning rules. Rule 1 prunes out P1 larger
than min

[
Uj
(
Cj/µ

)
/Cj

]
, which is U10(1/6) = 10− 3/6. As a result, the P1 upper bound

defined by Rule 1 is 9.5. Rule 2 ensures that the pruning of P2 is larger than P1. Rule
3 prunes P1 up to min

[
Uj

(
T∗1j

)
/Cj

]
. The utility function Uj

(
T∗1j

)
is the smallest when

j = 10. As a result, the lower bound of P1 defined by Rule 3 is 7.0. Rule 4 computes the
lower bound of P2 for a given P1. For example, when P1 is 9.0, min

[
Uj

(
T∗2j

)
/Cj

]
is 7.0 and

min
[
Uj

(
T∗2j

)
/Cj −Uj

(
Cj/µ

)
/Cj + P1

]
is (7.0 − 9.5 + 9.0). Therefore, the corresponding

lower bound of P2 is 6.5, when P1 is 9.0.
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Figure 8. Search space pruning in example 1.

The effectiveness of pruning is determined by the diversity of the utility functions. In
general, the wider the distribution of utility functions, the larger the remaining region after
pruning. Figure 9 compares the size of the remaining search space after pruning for two
different αj ranges. Except the αj range, the setting is the same as that in Figure 8.
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Figure 9. The impact of utility functions on pruning efficiency

Now, let us examine how the system behaves in the pruned zone and in the remaining
zone. Assume that the system objective is maximizing the system profit, so that the system
objective function is (P1λ1 + P2λ2 − PBµ). SAM is used to obtain the job arrival rate vector
for a given price vector. Let us set the frequency of {λi} updates to 10 times per second.
According to Rule 3, all P1′s smaller than 7.0 belong to the pruned zone and those larger
than 7.0 belong to the remaining zone. Figure 10 illustrates the system behavior of the
former case, and Figure 11 illustrates that of the latter case.

Figure 10 illustrates that for the price vectors belonging to the pruned zone, the system
always converges on either a scenario that all jobs choose level 1 or a scenario that all jobs
choose level 2. For instance, in the case of P1 = 7.0, if P2 is smaller than 5.0, all jobs choose
level 2. If P2 is larger than 5.0, all jobs choose level 1. The system objective value (i.e.,
the system profit) in the case that all jobs choose level 1 is (P1λ1 − PBµ). The profit in the
case that all jobs choose level 2 is (P2λ2 − PBµ). The highest system objective value for the
pruned zone was (7.0 × 5.0 − 1.0 × 6.0) = 29.0.
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Figure 11 illustrates that the system does not necessarily converge to a stable state if the
price vector belongs to the unpruned zone. Rule 4 determines the range of P2 for a given P1.
In the case of P1 = 9.0, P2 below 6.5 always converges on a scenario that all jobs choose level
2 so that it can be pruned (see the straight line in Figure 11). However, the system oscillates
for P2 above 6.5, and the system objective cannot be trivially computed (see the rugged
line in Figure 11). My scheme applies the iterative-deepening search on the unpruned
region and obtains the best price vector of {P1= 8.90, P2= 8.00}. The corresponding expected
profit is 35.04. The parameters for the iterative-deepening search were set as G = 10, D = 5,
∆max = ∞, and Ω = 0. The equilibrium methods utilized about 83% of the network capacity
because of the oscillation, but the proposed method let users fully utilize the capacity in
this example.

5.4. Example 2

This example compares the algorithm with an equilibrium method (Case I in Section 4).
Recall that Case I uses the profit maximization scheme with a single service level. The
main comparison targets are the price vector and the expected system objective value.
The comparison results are summarized in Tables 6 and 7. Three system objective values,
namelyRtheory,R of the equilibrium method, andR of the heuristic search, are compared.
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Rtheory is the system objective value (i.e., the system profit) achievable at the optimal
equilibrium state as follows (assuming the system converges on the equilibrium state):

Rtheory = λ∗P1 − µPB,

where λ∗ is the job arrival rate at the equilibrium. R is the system objective value computed
from the SAM result using Equation (16), without assuming equilibrium.

Table 6. Large capacity networks with frequent arrival rate broadcast (F = 100).

(PB, K, v1, µ) Equilibrium Method Heuristic Search

(0.5, 10, 1, 85.9) P1 = 1.08,R = 36. 9,Rtheory = 36.9 P1 = 1.10,R = 37.1
(0.5, 10, 3, 75.5) P1 = 1.16,R = 28.1,Rtheory = 28.5 P1 = 1.15,R = 29.0
(1.0, 20, 1, 90.0) P1 = 2.11,R = 81.0,Rtheory = 81.0 P1 = 2.15,R = 81.8
(1.0, 20, 3, 82.7) P1 = 2.21,R = 67.4,Rtheory = 68.4 P1 = 2.25,R = 68.9

Table 7. Small capacity networks with infrequent arrival rate broadcast (F = 5).

(PB, K,v1, µ) Equilibrium Method Heuristic Search

(1.5, 10, 1, 8.4) P1 = 3.49,R = 6.8,Rtheory = 9.5 P1 = 4.15,R = 10.47
(1.5, 10, 3, 6.4) P1 = 4.11,R = 3.45,Rtheory = 5.5 P1 = 5.50,R = 7.86

(2.0, 20, 1, 21.5) P1 = 4.33,R = 33.8,Rtheory = 36.9 P1 = 4.60,R = 38.6
(2.0, 20, 3, 18.9) P1 = 4.65,R = 20.4,Rtheory = 28.5 P1 = 5.55,R = 31.6

Table 6 presents the two observations. First, R of the equilibrium method matches
Rtheory well. This is expected because I have already shown in Section 4 that the equilibrium
method accurately models the actual system behavior in large capacity networks with
frequent arrival rate updates. Second,R of the algorithm is also very close toRtheory. These
results validate the accuracy of the proposed algorithm.

Table 7 shows very different results. First,R of the equilibrium method is lower than
Rtheory. This is because the system fails to converge to a steady state and the oscillation
drops the overall system utilization (i.e., fewer jobs are submitted than the equilibrium
model estimated), which decreases the system profit for the same price. Second, the price
derived from the algorithm is higher than the price derived from the equilibrium method,
which is due to the lack of accurate knowledge of the current system state from the user
side. As the system oscillates, it broadcasts a low arrival rate and a high arrival rate. The
low arrival rate makes the users underestimate the job completion delay, and the users
are willing to submit their jobs even for a higher price. When the job arrival rate rises as
a result of users’ decisions, the expected job completion delay increases, and the users
decide not to submit their jobs. Third, from the system profit viewpoint, the gain from
high price is more than enough to compensate the loss from the lower overall system
utilization. Therefore, the R of the algorithm is higher than that of the equilibrium. In
essence, the profit-maximizing network takes advantage of the users who do not have
up-to-date knowledge of the system status.

5.5. Example 3

This example compares the algorithm with another equilibrium method (Case II
in Section 4). Case II uses a net-value maximization scheme with a single service level.
As in Example 2, the comparison targets are the price vector and the expected system
objective value. The comparison results are summarized in Tables 8 and 9. Rtheory is the
system objective value (i.e., the system net value or social welfare) computed at the optimal
equilibrium state as follows:

Rtheory = V(λ∗)− v1L− µPB,
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where L is the mean number of jobs, and λ* is the job arrival rate in the equilibrium state. R
is the system objective value computed from the SAM result using the following equation:

R = ∑
{S}

(
W(S)λ∗(S)

[
V′(λ∗(S))− v1T(S)

])
, (17)

where {S} denotes the set of recurring states in the SAM transition graph, W(S) is the
stationary probability of state S, λ∗(S) is the job arrival rate in state S, V′ is the marginal
value function, and T(S) is the average job completion time in state S.

Table 8. Large capacity networks with frequent arrival rate broadcast (F = 100).

(PB, K, v1, µ) Equilibrium Method Heuristic Search

(0.5, 10, 1, 317.7) P1 = 0.5,R = 172.7,Rtheory = 172.7 P1 = 0.5,R = 172.7
(0.5, 10, 3, 351.0) P1 = 0.5,R = 154.0,Rtheory = 154.0 P1 = 0.5,R = 154.0
(1.0, 20, 1, 380.0) P1 = 1.0,R = 361.0,Rtheory = 361.0 P1 = 1.0,R = 361.0
(1.0, 20, 3, 365.4) P1 = 1.0,R = 333.5,Rtheory = 333.7 P1 = 1.0,R = 333.5

Table 9. Small capacity networks with infrequent arrival rate broadcast (F = 5).

(PB, K, v1, µ) Equilibrium Method Heuristic Search

(1.5, 10, 1, 39.0) P1 = 1.5,R = 37.0,Rtheory = 51.3 P1 = [1.7~2.0],R = 48.4
(1.5, 10, 3, 35.0) P1 = 1.5,R = 41.2,Rtheory = 41.4 P1 = [1.5~1.95],R = 41.2
(2.0, 20, 1, 86.4) P1 = 2.0,R = 155.3,Rtheory = 172.7 P1 = [1.05~2.25],R = 155.3
(2.0, 20, 3, 77.0) P1 = 2.0,R = 111.0,Rtheory = 154.0 P1 = [2.25~2.65],R = 145.3

Table 8 offers the same observations as those in Table 6. The equilibrium method
accurately models the actual system behavior in large capacity networks with frequent
arrival rate updates, and as a result, the outcome of the algorithm matches that of the
equilibrium method.

Table 9 is similar to Table 7, with a few differences. First,R of the equilibrium method
is lower than Rtheory. Unlike in Example 2 (the profit-maximizing network), R of the
algorithm is also lower than Rtheory. This is because the sub-optimal decisions of users,
owing to inaccurate knowledge of the system status, do not increase the system objective
value in the net-value-maximizing network. Nonetheless, the algorithm results in higherR
values than the equilibrium method and achieves a system objective closer to the theoretical
maximum valueRtheory. Second, the sensitivity to price is generally lower than that in the
profit-maximizing network because the price that generates the highestR is not a single
point but rather a range of prices. This occurs because the system objective function is not
directly affected by the price (see Equation (17)). As long as the system stays in the same
state or the same set of states (i.e., has the same job arrival rate), the system objective value
is the same regardless of the price.

6. Conclusions

This study investigates the practicality of using equilibrium analysis to address the
price selection problem. Results showed that certain conditions that are needed to produce
a stationary equilibrium may not hold in real networks; consequently, the system may
oscillate instead of converging on the equilibrium. I demonstrated that when such condi-
tions are not met, the system oscillates among a number of states without reaching a static
equilibrium. I also showed that the price vectors computed by the equilibrium methods
are suboptimal when the system fails to converge on a static equilibrium. As an alternative,
I developed a new price selection method that does not rely on an equilibrium analysis.
My findings suggest a need for more realistic modeling of the system dynamics to solve
the price selection problem.
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In future investigations, the multi-criteria decision analysis and simulated annealing
search for the price selection problem would be worthy research topics.
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