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Abstract: This paper presents a fault-tolerant flight control method for a multi-rotor UAV under
actuator failure and external wind disturbances. The control method is based on an active disturbance
rejection controller (ADRC) and spatio-temporal radial basis function neural networks, which can
be used to achieve the stable control of the system when the parameters of the UAV mathematical
model change. Firstly, an active disturbance rejection controller with an optimized parameter design
is designed for rthe obust control of a multi-rotor vehicle. Secondly, a spatio-temporal radial basis
function neural network with a new adaptive kernel is designed. In addition, the output of the
novel radial basis function neural network is used to estimate fusion parameters containing actuator
faults and model uncertainties and, consequently, to design an active fault-tolerant controller for a
multi-rotor vehicle. Finally, fault injection experiments are carried out with the Qball-X4 quadrotor
UAV as a specific research object, and the experimental results show the effectiveness of the proposed
self-tolerant, fault-tolerant control method.

Keywords: actuator fault; active fault-tolerant control; active disturbance rejection control; model
uncertainty; RBF neural network

1. Introduction

With the advent of the Internet, multi-rotor unmanned aerial vehicles (UAVs) have
rapidly developed not only in the consumption field but also in the sectors of logistics and
transportation, warehouse inspection, and agricultural spraying [1]. The use of multi-rotor
UAUVs reduces the human need to enter a hazardous operating zone, while increasing
labor productivity.

However, with the increase in the number of the airborne equipment and tasks to
be performed, multi-rotor UAVs are no longer a simple nonlinear systems [2]. They have
begun to evolve toward a more complex system [3-6]. For an underactuated system
with nonlinear coefficients, a sliding-mode controller is usually used for position and
attitude tracking [7-9]. Alternatively, adaptive technology is combined with a sliding-mode
controller to achieve stability in finite time [10]. However, compared with the methods that
improve the system robustness, the adaptive self-organizing fuzzy neural network also
produces better control performance for quadrotor attitude tracking with uncertainty in
the dynamic parameters and environmental disturbances [11]. For disturbance-sensitive
aircraft flight control systems, when active disturbance rejection control (ADRC) is applied
to a nonlinear and strongly coupled system, it can also achieve system stability under
external disturbances [12]. In practice, instability of the control system due to the faults in
the actuator and sensors is a common occurrence in UAVs [13]. Along with the development
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of fault-tolerant control (FTC) theory [14-17], several researchers have attempted to use the
robust adaptive approach to solve the FTC problem of a nonlinear system with actuator
faults [18,19].

In recent years, a growing number of studies have combined intelligent control with
fault diagnosis while investigating the FTC method for UAVs [20,21]. In the meantime, FTC
algorithms addressing actuator faults have been constantly emerging [22-24]. Boche et al.
proposed an FTC scheme that combines continuous and discrete frameworks to address
multiple actuator faults [25]. To compensate for the unknown disturbance faults in an
aircraft attitude control system, a fault observer was designed based on the radial basis
function (RBF) neural network [16]. However, if uncertain modeling terms and unknown
parameters of the fault terms exist in a system, it is necessary to improve the control scheme
of the system. In this pursuit, a fuzzy neural network was integrated with a multivariable
sliding-model controller to design a fault-tolerant flight controller that was stable in finite
time [26]. The described method effectively identified the uncertain modeling terms and
the unknown parameters of the fault terms in the system. For a multi-input, multi-output
system featured by nonlinearity, strong coupling, and uncertainty, Zhou et al. proposed
an FTC scheme by integrating the ADRC and RBF [27]. This control scheme was able to
handle the faults of an actuator, sensors, and other components.

However, the studies on the flight safety control theories of plant-protection UAVs
are still in the preliminary stage [28]. Plant-protection UAVs usually work under wind
disturbance. Therefore, the disturbance features of lateral wind should be incorporated
into the design of the aircraft flight controller [29]. The influence of wind disturbance
was considered in the fault system of an actuator [30]. The fault-tolerant stability control
of the system was realized using an ADRC controller. However, few studies have been
conducted to date on multiple time-varying actuator faults. The use of the RBF neural
network as an extended state observer (ESO) was further extended to the control system of
a plant-protection UAV with actuator faults [31]. An RBF neural network for predicting the
time series of aircraft state parameters was also reported [32]. This RBF neural network
was combined with the ADRC controller designed with optimized parameters to construct
a fault-tolerant aircraft control (FTAC) scheme. In this pursuit, the highlights of the present
study can be summarized as follows:

(1) Anactive FTC scheme that can simultaneously adapt to the UAV control system with
actuator faults and model uncertainty is proposed. The FTC scheme is resistant to
wind disturbance and capable of FTC under time-varying faults. Compared with the
ESO in earlier studies [30], our control scheme further optimizes the parameter design.
Instead of setting parameters as in conventional methods, there is only a need for the
adaptive adjustment of the uncertain terms and disturbance parameters. This leads to
the improvement in the system’s robustness.

(2) We propose an RBF neural network for predicting the time series of aircraft state
parameters, which can rapidly estimate the fault data and uncertain parameter val-
ues. Fault data were used for training the weight parameters of the neural network.
The trained model was then employed to estimate the testing data of larger fault
values. Through iterative training, the estimate accuracy of the neural network for
fault data was improved, thereby improving the fault-tolerant performance.

(3) Rather than the model-based fault observers, the optimized RBF neural network was
used in this study to estimate the parameter values in the face of changing parameters
of nonlinear terms. The optimized ADRC controller was applied for the overall
stability control of the system, thus achieving a rapid and accurate estimate of the
actuator fault values with the proposed FTAC.

The remaining contents of the present study are organized as follows: Section 2
introduces the dynamic model, fault model, and wind gust disturbance model of the
multi-rotor aircraft; Section 3 provides an overall design of an ADRC controller and an RBF
neural network; Section 4 describes the design of the FTAC scheme as well as the FTC law;
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Section 5 presents the simulation results, which verify the efficacy of the proposed FTAC
scheme. In the end, our general conclusions and an outlook for future work are provided.

2. Mathematical Modeling of Uav
2.1. Dynamic Modeling

To facilitate the acquisition of the dynamic parameter changes of aircraft and design
the FTAC algorithm, we tested and acquired QBall-X4 quadrotor UAV data using fault
injection platform software. We assumed that the aircraft was a rigid body during the
design process. The X-shaped framework was adopted. A general dynamic model of the
quadrotor aircraft was thus constructed. Figure 1 shows the vehicle coordinate system and
the inertial coordinate system of the quadrotor aircraft in an X-shaped configuration.

Zj .
! Inertiaframe

Figure 1. Reference coordinate system of the quadrotor.

The control system of a quadrotor aircraft was powered by the brushless DC motor.
The main task of the controller was to produce the desired aircraft attitude and position
by changing the rotation speed of the four motors. Therefore, converting the rotation
speed into force and moment of force was an essential part of the initial modeling of
the multi-rotor aircraft [33]. The virtual control input of the aircraft U = [u u2u3u4]T is
introduced and defined as follows:

1 = fma+fmotfmsztfma

Uz = fm,2+fm,3 - fm,l — fma
Uz = fma+fms = fmo = fma
us = fmat+fma = fms — fma

, M

where 1 is the total lift provided by the four motors to the UAV; uj; is the input control
quantity of roll; u3 is the input control quantity of pitch; uy is the input control quantity of
yaw. The lift of each actuator is expressed as follows:

fui=cri-QF  (i=1,2,34), @)

where the parameter (), (rad/s) is the angular velocity of the rotor an c7; is the compre-
hensive thrust coefficient of a single oar.
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To design the FTAC algorithm, we referred to the dynamic model of the multi-rotor
UAV from [7,34]. The dynamic model of the quadrotor aircraft considered in this study
used the following form:

(P = glp(]yy - ]zz)/]xx'f']m/]xxeﬂr + l/]xxuz - K4l/]xx¢

0= lpq’(]zz - ]xx)/]yy+]m/]yy90r + l/]yyu?a - KSZ/]yye

lﬁ = ¢9(]xx_]yy)/fzz+1/]zzu3 _K6/]zz¢’ )
¥ = (cos ¢ sin b cos P + sin ¢psiny)uy /m — Ky % /m
ij = (cos ¢ sin Bsiny — sin pcosyp)uy /m — Koy /m
Z = (cospcosO)uy /m—Ksz/m—g

where [¢ 6 1] correspond to the roll, pitch, and yaw angles of the UAV, respectively; [x y z]
is the position of the UAV in the inertial coordinate system in each direction. The inertial
matrix of the UAV is J= diag|Jxx Jyy Jzz]; Jm and Q) are the inertia and total residual
angular velocity of the rotor, respectively; [ is the distance between the central point of the
actuator and rotor bearing; K; > 0 (i =1, - - , 6) is the resistance coefficient; the aircraft’s
mass is m; and the gravitational acceleration is g = 9.81 N/kg.

2.2. Problem Statement

In ideal situations, the multi-rotor UAV with a rigid structure can achieve a stable
attitude when each rotor provides the same thrust. The posture and position of the aircraft
can be changed by changing the thrust of the four rotors. Thus, based on the dynamic
model of the system in Equation (3), the following affine nonlinear system was adopted for
controller design:

21(t) = xa(t)
%(t) = f(x) +g(x) - ui(t) , @
y(t) = x1(t)

where the state variable x(t) = [x t yyzz ¢ ¢ 0 6 ¥ 9] T can be obtained by measurement
and calculation. The system modeling parameters were f(x) € R!2 and g(x) € R12*4,

2.2.1. Wind Disturbance Model of the Multi-Rotor UAV

The aerodynamic performance of the multi-rotor UAV with varying axle distance
is usually disturbed by lateral wind along the direction of hovering and flying, and the
aircraft stability may even be affected in severe cases. UAVs in agriculture, power line
inspection, and other special operations usually work in windy environments (typical
wind force of 4-7). In that case, the actuator needs to provide greater forces to produce a
greater angular movement to maintain aircraft stability. Lei and Wang performed a wind
disturbance study of a multi-rotor UAV in gentle wind [29]. Studies showed that the UAV
undergoes significant horizontal drift due to lateral and horizontal winds. The lift provided
by the actuator may be insufficient due to changes in air pressure in the propeller’s upper
and lower surfaces, which further result in the change ub attitude angle. Here, the influence
of gusts in different directions on the lift of each rotor was considered [29] and is given by
the following equation:

ﬁ:fzu,i+fm,i (i:1/2/3/4)/ (5)
where f,,; is the extra thrust generated by the transverse air flow. To estimate the influence
of the extra thrust on the dynamic model of the aircraft, we considered the induction wind
velocity of each propeller [30]:

Vi [
2p5;

(6)

where p is the air density and S; is the cross-sectional area of the rotating propeller. Further,
the thrust generated by each actuator is given by

fi =208 V'V, @)
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where V" is the induction wind velocity when the actuator is in normal operation and Viml
is the total induction wind velocity of the actuator disturbed by gusts. Considering the
influence of V;* gust disturbance, Vl-t"l is given by

viol = \/(Vlw cos a + Vl’")2 + (VY Sin"‘)z ’ ®)

where the angle « is the angle included between the direction of the transverse wind and
the axial direction of the rotor. Based on the ratio between the velocity of the disturbing
wind force and that of the wind generated by the propeller (the velocity of wind force 7 is
15 m/s and that of the wind generated by the propeller is above 200 m/s), the parameter
ri = v /oM, r; € (0,0.1) was defined. From Equations (6) and (7), the following was
obtained:

fi= 2p51-(V1-m)2\/1 +r2+2ricosu, )
From this, we have
fwi = fi— fm,i
= 205;(V")*\/T+ 1 + 2r; cos & — 205; (V/")* . (10)

< 205;(V")* 7,

Thus, the term d¥ = 2pSi(Vi’”)2 - 7; defines the wind force acting on each pro-
peller. Since the torsion generated by rotor rotation was just the opposite to the aero-
dynamic resistance generated by rotor rotation, the aerodynamic resistance was defined as

T
df = ,oS,-(Viw)2 / 2 Correspondingly, d, = [dﬁoz df df dﬁ was the disturbance vector
caused by gusts, which is defined as

dﬁ;’ (d° + d + d¥ + d?) /m

do— | B | | (8 dy—dl —di) x| an
d3 (df +d§ —dy —df) /Jyy
d}f (dT + d3+di+d}) /] z2

2.2.2. Actuator Fault Model

The four rotors supplied the relevant force and moment of force for the quadrotor
aircraft to maintain hovering or other motion attitudes. In ideal situations, the motor’s rota-
tional speed (); = ); . and (); . exhibited a linear relationship with the control quantity u;:

Qi,c = ko,iui + pi, (12)

where u; is the control quantity; k, ; and p; are the coefficients of normal quantities. How-
ever, in practice, a high temperature usually results from the motor’s rotation, and f, ; is no
longer linearly related to 7. When an aircraft collision happens, the rotors or propellers
may be damaged, resulting in the deterioration of aircraft performance. The resultant
multiplicative fault further impairs the actuator efficiency, while the additive fault causes
the output drift of the actuator. Considering the above situations, the traction provided by
a single actuator is expressed as

fm,i =Cr)i- ((1 - bguin,i(t)kc,i<t))ui + Cbias,i(t) + pi)z ’ (13)

where gy i(t) is the gain fault (0 < bggy i(t) < 1), kc,i(t) is the continuous time function
of the motor’s rotational speed vs. the actual controller signal u;, and cpss(t) is the
additive fault of the actuator. The following actuator fault model is considered to facilitate
the calculation:

upi = (1=0bi(t) - ki(t))u; +ci(t), (14)
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where b;(t) = bgain,i(t), ki(t) = %(It) and ¢;(t) = % As for the attitude, position,
and speed, the system state of a quédrotor aircraft can be calculated using the data from
the gyroscope, magnetometer, and other sensors. Here, the system is described with
a multi-input, multi-output (MIMO) nonlinear model. For the control system featured
by the uncertainty model and actuator faults, and subject to external gust disturbance,
the following affine nonlinear system was reconsidered for the design of the FTC algorithm:

X1 = Xp
iy = (folx) + Af(x)) + (g0(x) + Ag(x))uy (15)
+dy '
y=x1

where uy = (1=b-ku+c f(x) = folx)+Af(x), g(x) = go(x) + Ag(x) , Af(x) and
Ag(x) are the uncertain terms of system modeling and dy,(t) € R* is the external wind
disturbance of the system.

3. Fault-Tolerant Aircraft Controller Design

The active fault-tolerant controller designed in the present study combines an opti-
mized reduced-order ESO with a novel spatiotemporally extended radial basis function
neural network for estimating the uncertain parameters and replacing the original PD
controller with a sliding-mode controller in the nonlinear state error feedback control
section. The designed fault-tolerant controller addresses the tracking of the attitude expec-
tation in the uncertainty model and the fault-tolerant control of the actuator in the event
of the failure of the multi-rotor UAV. Figure 2 shows the FTAC design employed in the
present study.

Desired singal %e_z’
bt _

State singal| TD |y, & ez | SMNLSEF u Plant 2“4,
_ otatesingal | o

Figure 2. Fault-tolerant aircraft controller.

3.1. Adrc Controller Design

ADRGC, first proposed by Han [35], is mainly composed of a tracking differentiator
(TD), an extended state observer (ESO), and nonlinear state error feedback (NLSEF). In this
study, based on the traditional ADRC, a reduced-order ESO was used to reduce the system
delay, and a new RBFNN was used to estimate the system signal, while adapting to the
occurrence of faults and interference.

A Tracking Differentiator (TD)

In transition design, the transition signal v; and its derivative v, are provided si-
multaneously. A TD offers better ability to solve the derivative of the reference signal v.
A second-order TD, if used in a controller, was designed as follows:

{ 0 = h?]z(k) (16)

0y = hfhan(vy —v,v9,70,hg)

where v; is the tracking signal of v, v, is the derivative of vy, fhan(-) is the optical time
solution of the expected output signal v; to converge to v and ensures the fast convergence
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of the expected signals to the input signals without overshoot, / is the ultimate amplification
coefficient of acceleration, and rg and kg affect the control accuracy of the system, where
fhan(-) = —ro(§ — sign(a)) - s, — rosign(a). The corresponding parameters were designed
as follows:

d= hgr%, ag = hovy, y = v1 +ap

= vd(d+8lyl)

ay = ag + sign(y)(ay —d)/2

sy = (sign(y +d) —sign(y —d))/2
a=(ag+y—a)sy+az

sa = (sign(a+d) —sign(a—d))/2

a

—_

(17)

B Extended State Observer (ESO)

The classical extended state observer treats the problem of system identification
as a problem of disturbance suppression and treats the quantity of total disturbance
as the state variable of the system. However, when there are faults or strong external
disturbances in the system, full disturbance compensation can over-excite the system.
Therefore, the application of the previous method is no longer able to solve practical
problems and second-order ADRC is too costly in its application to accurately measure the
attitude angle of the vehicle using instruments. Estimating angular signal values through
sensor fusion introduces additional delays and uncertainties. Although using higher-order
ESO provides more accurate data, it also results in a greater phase lag. This problem
occurs due to the delay caused in the system due to the dynamic nature of the digital filters
and actuators and the inability of conventional ADRCs to handle the situation effectively.
Therefore, considering the above reasons, a reduced-order LESO was designed to reduce
the phase lag problem of the ESO while providing reasonable disturbance compensation

e=z1—Y
21 = zp + go(x)u — Bifal(e, v, T) —g(x) (18)
2y = —PBofal(e, vy, T)

where z; is used to estimate the attitude angular velocity, z; is used for an overall estimate
of uncertainty and gust disturbance, and ¢(x) is used for estimating the additive fault
of the actuator. 81 and B, are the positive scalars. With the given observer bandwidth
wo, (B1 = 2wy, B2 = w}). y is the system output. go(x) is the input gain parameter of the
system that can be derived. The saturation function fal(-), which was used to suppress
dither, has the following form

_f le|"sgn(e),0 <t<]e|
fﬂl(e,U,T) - { E/Tliu,o < ‘€| S r (19)

where fal(-) is a nonlinear function. When v < 1, the error and gain cannot be small or
large simultaneously. Thus, when the error is small, the gain is large; when the error is
large, the gain is small.

C Nonlinear State Error Feedback (NLSEF)

Usually, for the classical active disturbance rejection controller, the introduction of a
nonlinear function fhan(-) combined with a feedback controller in a nonlinear state error
feedback link can result in better performance than linear control. The NLSEF is as follows:

61 =01—21
€y = Uy — 2o ’ (20)
ug = —fhan(eq, cey, 11, h1)
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where 71 determines the upper and lower bounds of output, /i; determines the width of
the approximate smooth region between the bounds, and ¢ is the damping factor.

3.2. Design of the Gradient Descent-Based Spatio-Temporal RBF Neural Network

Radial basis function neural networks have many advantages in function approxi-
mation due to their simple structure, low computational complexity, and small required
amount of data, and have arbitrary nonlinear mapping ability, which can be used to es-
timate uncertain parameters in nonlinear systems. Therefore, considering the nonlinear
characteristics of the input and output data of the actuator fault model and wind distur-
bance model, radial basis neural networks were used in this study for parameter estimation.
In contrast, conventional signal processing is mostly conducted with a single temporal or
spatial signal. However, combining time-domain information with spatial information can
provide more advantages for tracking target information. Referring to the ST-RBFNN used
for chaotic time series prediction in [32], we propose a new RBFNN to estimate the actuator
fault data and external disturbance data using its advantages in processing time dynamic
characteristics and spatial nonlinear (complexity) signals, as shown in Figure 3.

Input layer Hidden layer Output layer

Lo
x(r-1) raa

Figure 3. Structure of ST-RBFNN.

x(1) —»

OO

O

A Spatio-Temporal RBF Neural Network (ST-RBFNN)

Initially, the input of the input layer was defined as | x(tf) x(t—1) ]T, where
x(t) € R, x(t — 1) € RP, x(t — 1) is the sampled value of the previous moment of x(t).
x(t) = [¢ ¥ 0 ¢ 0 ¢ ug up uz uy] includes the attitude angle, angular velocity, and con-
trol law signal of the aircraft. Subsequently, when designing the nonlinear hidden layer,
the temporal expansion was considered in the kernel space of the neural network in the
signal processing. As a result, two parallel time layers corresponding to the input were
designed for mapping the dynamic and nonlinear characteristics of the signal in time.The
output layer adopted a linear combination output.

Consider ST-RBFNN for parameter estimation ¢(k). The expected value of the kth
target signal can then be defined as d(k). The error between the network estimate and the
network expected value is 6 (k) = d(k) — (k). The corresponding cost function is

1 1
e(k) = 5 (d(k) = ¢ (k) = 502 (k). (21)
The overall mapping of the spatio-temporal radial basis function neural network

adopted in this study was derived as follows:

T

6(k) = Y Y win R ([|x —cp|) + o0, (22)

i=1t=1
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where ¢ : R” — R1, w(; 1) (k) is the current weight value of the hidden layer to the output
layer, p is the number of neurons in the hidden layer of the neural network, T is the cutoff
time, c(; ;) € R™ is the central value of the neural network, and b(k) is the deviation term
for the output neuron. w(; ;) (k) and b(k) is updated with each iteration, and ¢ ; ;) is the
basis function of the hidden layer of the neural network. First, the common Gaussian
kernel function was adopted by [36]

r—canl)

g ([x —can ) =ew| =z 23)

The gradient descent learning algorithm of RBFNN based on spatio-temporal exten-
sion was designed as follows:

Wi p) (k +1) = Wit (k) — Kéw(me(k), (24)

where w(; ) (k+1) is the updated weight value, « is the learning step length, dy,, is
the regular derivative, and —5w(i,t)£(k) can be estimated by the differential chain rule.
To facilitate calculation, its partial derivative can be further taken as

0 o(k) = oc(k)  00(k) oc(k)
iit) ao(k) "~ ag(k) ~ owy (k) | (25)

= =9([}x = ca])ow

Substituting Equation (25) into (24) yields

Wiy (k+1) = wp (k) + K9 (x/ C(i,t)>5(k)- (26)
Similarly, the learning rule of b(k) is
b(k+1) = b(k) + xé(k). (27)

B Design of a New Adaptive Kernel of ST-RBFNN

In order to further optimize ST-RBFNN’s need for an initial weight value, an improve-
ment in the estimation precision of the RBFNN was needed. In this pursuit, Khan [37]
introduced fusion cosine and a Euclidean distance metric that adjust the weights of an
adaptive kernel that optimized the initial weights of ST-RBFNN in the process of anexperi-
ment. Our method shows better results than the manual fusion of the kernels and can be
represented as follows:

i (x/C(i,t)) =m¥i (Hx — C(ip) H) + 12¢i2 (x-c(i,t)>r (28)

where the Gaussian kernel ;1 (Hx = C(ip) H) is the Euclidean kernel, and the cosine kernel

Pio (X.C(i,t)) can be expressed as

x~C(i,t)

— (29)
t+ D%l [leqin |

Pio (x-C(i,t)) =

where 1 — 0" is a normal quantity. The parameters y; and 7y, in the new fusion kernel
are the weight coefficients of the Euclidean kernel and the cosine kernel, respectively;
and |y1(k)| + |y2(k)| = 1. Therefore, the cost function can be redefined as

e(k) = e(n (), 12(k)) = 5 (d(K) — ¢(Kk))2 30)
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In order to obtain the learning rules in the new kernel, the design method in
Formula (26) was used to design the weight coefficient 1 and 7, gradient learning descent
algorithm as follows:

Y1(k+1) = 71 (k) — xdy, w(k) (1)
Y2(k+1) = 72(k) — 16y, w(k)
Subsequently, chain differential differentiation yielded
oP;( x, ¢
de(k) a6(k)  9g(k) l( (bf)) (32)

oy e(k) = 93(k) g (k) gy, (x,c(i,t)) 971 (k)

Accordingly, after taking the partial derivative of Formula (32), the update rule of
71 (k) was obtained as follows:

m(k+1) = 71(k) +x8(k)w(i, (k)
(71 ()| r2(k)|

N© 1 (O] + 728 1 3)
X [%1 (HX = C(ip) H) — i (X-C(i,t))]
Similarly, the update rule of 7, (k) is
Y2(k+1) = 72(k) +x6(k)w; p (k)
[7r1(k)[[r2(K)|
7 . (34)

T2(0) [ (k)] + |2 (k)|

(I =ecal])]

X [l/’iz (X'C(i,t)) — i ’

3.3. Design of Fault-Tolerant Aircraft Control Law

To improve the system robustness, we introduced sliding-mode control into the
nonlinear feedback component of the ADRC. For a given system model, we chose the
fast-moving sliding-mode surface as follows:

s(t) = ex(t) —cer(t), (35)

where ey(t) = é1(t), e1(t) = x1(t) — x4(t), ¢ > 0 satisfies the Hurwitz stability criteria.

To simplify the calculation, according to Equations (13) and (14), we defined the
nonlinear function g1 (x) = Af(x) 4+ go(x)c + Ag(x)c containing uncertain parameters of
the system model and actuator deviation faults. We also defined the nonlinear function
G2(x) = Ag(x) — go(x)b - k — Ag(x)b - k containing the actuator gain faults and physical
characteristic parameters of the actuator. The system was rewritten in the following form:

X1 = X3
X2 = fo(x) +61(x) +go(X)u +go(x)u +dy - (36)
y=x1

Uncertain terms account for a very small proportion of system modeling. Particularly,
a system with virtual control input hardly changes as long as the aircraft is not destroyed.
Therefore, the following inequality holds in the uncertain terms of the system modeling:

(37)

{—go<x> < Ag(x) < go(x)
—g(x) < Ag(x) < g(x)
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It is easy to obtain Ag(x)/g(x) € (0.5,2). The parameter T = |¢2/go| was defined,
and the following inequality was derived:

Ag(x) = go(x)b- v — Ag(x)b- L

-
%0 xA)g(x)(l—b~v

(38)

Because 0 < 1 —b-v < 1, T < 1. To facilitate the design of the system control
rate, positive constants (; an (, were defined, and these are in the form of |dy(t)| < (3.
The following inequalities exist for parameter A:

A>1, >0
=1 G (39)
A< -1, <0

The following adaptive law was designed for some parameters involved in the control
law as

él = xils|

i (40)
61 = ¢15

G2 = T¢as|

where x1, X2, ¢1, and @y are positive constants. The parameters ¢ and ¢; are the calculated
outputs of the neural network and ¢ = ¢1 — ¢1, {2 = ¢2 — §2. Let us define @ > O,
@ = |¥3+cer — fo(x) — {1sgn(s) — ¢1| — &». According to Equation (28), the following
control rate was defined for a nonlinear system with actuator faults

(4 +cer — fo(x) — {isgn(s) — &1 —Adsgn(s) — 1sgn(s)) (41)

80(¥)
where ¢ = (@ and 1 are positive constants.

4. Stability Verification

We chose the Lyapunov function to validate the effectiveness of the FTAC algorithm
that combined the new ADRC and the spatio-temporal RBF neural network:

V=32 + '8+ 30 -0 G+t B+ 19y (42)

where { i =0i— 4 ;» By referencing Formula (41), the derivative of the Lyapunov function
with respect to time can be obtained as follows:

V=si— Kflglzl -1 —~T)X£lzzzz — 9116161 — 93 'Got, (43)
=35 —(qls| = (1 = 1)0,@|s| — G158 — G275
The derivative with respect to the sliding mode surface can be expressed as

s':éz—célz(xz—jc'd)—cel

= folx) + ¢1(x) + go(x)u + Ga(x)u + dup — g — cey (“44)
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Substituting the control law from Equation (41) into Equation (44) and replacing the
control law concerning the known parameter g (x) yield

s = fo(x) +¢1(x) + ga(x)u + dw — %4 — cey
—I—go(x)golﬁ (%4 4 ce1 — fo(x) — {1sgn(s)
—¢1 —Adsgn(s) — tsgn(s)) . (45)
=G (X) + gz(X)M +dyw — élsgn<s)
—Adsgn(s) — 1sgn(s)

Furthermore, the derivative of the Lyapunov function can be extended to

V = s¢a(x)u + sdqy — s{isgn(s)
—sAdsgn(s) — sisgn(s)
—Cils| = (1= 1)0@]s] — Gatls| : (46)
= sco(x)u + sdy — (15| — AO|s| — 1]s]
=Gilsl = (1 = 1)f,@1s] = &27ls]

From the formula, T < 1 can be obtained. Therefore, according to the parameter
T= |g2 / Qo|, for part sg»(x)u of Formula (46), the following relation can be derived:

s¢a(x)u = ngglo (%44 cer — fo(x) — C1sgn(s)
—(¢1 —AUsgn(s) — isgn(s))
< s‘g—g’(xd + cep — fo(x) — {isgn(s)
—(¢1 —AUsgn(s) — isgn(s))
< Tls| (| %4 + cer — fo(x) — C1sgn(s)
—G1l =G+ G+ A +1)
< 7ls[(@ +G2 + A0+ 1)

(47)

So, for Formula (46), we obtain

V < Tls|(@ +82 + A + 1) + sdyy — 1|
—ABs| — t|s| — ¢4 ]s] . (48)
—(1—=1)5,@[s] — Ga1ls]

Because {, = 1/1 — 1, |dy]||s| — {1]s| <0, ¢ = (@, it follows that

V < t@l|s| + TASs| + Tefs| + sdy — {13
—Ads| —tfs| = §|s| = (1 — 1) 5,5
<t@ls| = (1-1)(A = 1)5@|s|
~(1 = 0)a0ls| + Tifs| + sdu : (49)
—Cls| = dfs[ = (1 = 1)Cy@s
<-1-7)(A-1)5a[s| — (1 - T)w@|s|
—(L—7)s]

Since T < 1,1 — 7 > 0, according to the inequality relation in Equation (39), it is true
that when {, > 0, there is V < 0; and when {» < 0, A < —1, the derivative of Lyapunov
function V < 0 still holds.Therefore, the system is asymptotically stable.

5. Simulation Results

As shown in Figure 4, to verify the effectiveness of the proposed fault-tolerant control
algorithm, we employed the QBall-X4 UAV platform for UAV data acquisition and flight
verification, and the platform could effectively achieve the injection of real actuator fault
data. In order to realistically analyze the control performance of the proposed fault-
tolerant control algorithm, we collected real flight data in the experimental phase, which
mainly included the state data [(]),l/),G,([),Q,i,b] , control signal [u1,u,u3,14], and the desired
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signal {cpre FrPre f,Gmf} of the remote control in manual control mode. In this paper, we

mainly present the performance curve of the attitude controller to verify and demonstrate
the effectiveness of the designed algorithm, where the selected roller subsystem can be
expressed as follows:

{ ¢:;@¢&%%E+QN@)+ﬁym+€ﬂxW2+dw (50)

y=¢

where fo = /2= oy = L] = 001194 kg-m?, J, = 0.01194 kg-m?, J.. = 0.02181

kg-m?, | = 0.2 m, and the parameters ¢; and ¢, are the parts of the system for which
parameter fusion estimation is required.

QBallX4 Fault injection platform software

e

“"State data monitoring ¥

/ / and fault injection

T “\EEffL@Wﬂ(4 -

(w—cu] |

T265 sensor

Independent Bﬁé‘ﬁi@nigg
A

Figure 4. Schematic diagram of the experimental system.

In ST-RBEFNN, the state variables were used as the input for model training, and the
collected data were then used as parameters and for subsequent calculations. The raw
dataset was a combination of the standard flight data and the fault data from a fault
injection test UAV. In this study, each set of experimental data was collected at a sam-
pling frequency of 1 ms, and each set contained 60,000 consecutive time series of data,
with the training data and test data divided in a 5:1 ratio. The neural network was then
iteratively trained according to the weight update rule of the novel ST-RBFNN designed in
Section 3. Finally, the trained network model was embedded in the controller in the experi-
ments. As shown in Figure 5, given a set of 500 sample data for validation and comparison,
the average mean squared error of the proposed RBFNN based on the new adaptive kernel
was found to be better than that of the conventional RBFNN.

)I

% - - -Conventional RBF
N S, Statio-Temporal RBF | |
AT IR T IN
o S S RAEE LR TP
B -30 7“\
> .
(%' ........
c 40 T e |
c .
—
50 ‘ ‘ ‘ ‘
0 100 200 300 400 500
Sample data

Figure 5. Testing MSE curves of ST—RBF and conventional RBF.
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According to Figures 6 and 7, ST-RBFNN tracked the predicted sample data more
accurately than the conventional RBFNN, with a tracking error close to zero.

0.4 |—Desired 3
----- Conventional RBF
----- Statio-Temporal RBF

'02 _ 1 1 1 L |
0 100 200 300 400 500
Testing samples

Figure 6. Prediction results of ST—RBF and conventional RBE.

0.2 - - -Conventional RBF
e Statio-Temporal RBF
0.15% 1
5 |
LU 0.1 : 1 ]
" 1
0.05 § = .rmeenrnts ; : |
1 n )
‘I‘-“"""I\"“n-lum"'\lll |\\\"“\§.\sui
(0] —— A 320 oot
0 100 200 300 400 500

Testing samples

Figure 7. Prediction error of ST—RBF and conventional RBF.

In the validation phase of the effectiveness of the fault-tolerant controller, the pitch and
roll systems selected in this study were compared with the experimental results. To validate
the effectiveness of the proposed fault-tolerant controller, a multi-rotor UAV with modeling
uncertainties was selected in this study. Additionally, three flight simulation scenarios
were considered for the qualitative analysis of the control performance of the controller.

Scenario 1: Testing the flight effects of an active disturbance rejection, fault-tolerant con-
troller based on a spatio-temporal RBF predictive neural network in the absence of external
wind gust disturbances and actuator failures.

Scenario 2: Numerical simulation of a horizontal wind gust disturbance of 3-9 m/s.
The controller’s performance was analyzed on the basis of the effect of the aircraft in a
sustained wind disturbance scenario. The performance of the controller was analyzed on
the basis of the effects of the aircraft in a wind disturbance situation that lasts for a period
of time.

Scenario 3: In the gust-disturbed environment of Scenario 2, UAV Motors 1-4 were further
injected with specified fault values via the UAV’s fault-tolerant control system, corre-
sponding to the gain fault and deviation fault data shown in Table 1. At the same time,
an additional 80 dB Gaussian white noise disturbance was added to the fault data during
the experiment.
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Table 1. Actuator fault data of the quadrotor.

Fault Generation Time (s)  Gain Fault Value = Deviation Fault Values (pwm: 0-150)

5s 5% 30
13 s 10% 50
30s 15% 60
40s 15% 100
50s 20% 150

The experimental data for Scenario 1 are shown in Figures 8 and 9. Comparing the
performance of the traditional ADRC and the ST-RBFNN ADRC controller, we observed
that both the flight controller designed in this paper and the traditional self-impeding
control were able to achieve good attitude tracking control. However, in the experiment,
when the remote control offered a large change in control command, the adjustment time of
traditional ADRC was longer and the tracking error was larger than that of the fault-tolerant
flight controller, and resulted in the oscillation of aircraft attitude.

o
2]

Pitch 6(deg)
o

—Pitch-desired

0.5 - - Traditional ADRC
] ‘ ‘ —-=-ADRC based ST-RBFNN
0 10 20 30 40 50 60
Time(s)
15

—Theta-desired
1r n - - Traditional ADRC
—-=-ADRC based ST-RBFNN

Theta 6(deg)

Time(s)
Figure 8. Flight attitude of quadrotor in Scenario 1.

Figures 10 and 11 show the effect of the control of the aircraft attitude during the
gust disturbance in Scenario 2. In the test experiment, we simulated a gust disturbance
lasting 7 s, with a wind speed of 3-7 m/s on the aircraft at 14 s. A gust disturbance lasting
4 s with a wind speed of 5-9 m/s was simulated for the aircraft at 43 s. We observed
that the aircraft based on active disturbance rejection control preserved good tracking
performance in the presence of disturbances. Table 2 shows the controller performance
parameters obtained for a given unit step of signal perturbation in Scenario 1 and Scenario 2
experiments. The fault-tolerant controller designed in this paper exhibited more stable
tracking performance, a shorter adjustment time, and less overshoot than the traditional
active disturbance rejection controller.
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Flight attitude tracking error of quadrotor in Scenario 1.
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Figure 10. Flight attitude when external interference occurred in Scenario 2.

Table 2. Controller performance index.

Controler Settling Time Overshoot Angle Error
Traditional ADRC in Scenario 1 23s 12.3% 0.3°
ST-RBFNN ADRC in Scenario 1 15s 0% 0.04°
Traditional ADRC in Scenario 2 3.2s 15.6% 0.4°
ST-RBFNN ADRC in Scenario 2 22s 5.3% 0.12°
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Figure 11. Flight attitude tracking error when external interference occurred in Scenario 2.

Figures 12 and 13 show the change in the attitude of the aircraft in Scenario 3 when
the fault was injected. In the experiment, we injected a gain fault of 0.05 into Motor 1 at
5 s and a deviation fault of 30 into Motor 2. After 13 s, Motor 1 was injected with a gain
fault of 0.1 and Motor 2 with a deviation fault of 50. At the 30 s mark, both Motors 1 and 2
were injected with a gain fault of 0.15 and a deviation fault of 60. After 40 s, Motors 1-3
were simultaneously injected with the fault values in Table 1. At 50 s, all four motors were
simultaneously injected with the fault data from Table 1.
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Figure 12. Flight attitude when actuator failure occurred in Scenario 3.
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Figure 13. Flight attitude tracking error when actuator failure occurred in Scenario 3.

Comparing the tracking effects of the fault-tolerant controller in Figures 12 and 13, it
is clear that in the first two fault injections, the conventional active disturbance rejection
controller achieved stable tracking control by treating the actuator faults as external distur-
bances. However, from 30 s onward, when a number of actuators experienced both gain
and deviation faults, the conventional active disturbance rejection controller was already
unstable, yet the fault-tolerant control proposed in this paper was still able to achieve
stable control.

Figure 14 shows the estimated values of parameters ¢; and ¢ for the pitch and roll
controllers, respectively, in the event of an actuator failure. It can be seen that the proposed
fault-tolerant controller provided a parameter complement to the attitude control during
the take-off phase of the aircraft, allowing fast and accurate estimation of fault data in the
event of an actuator fault.
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Figure 14. Estimation of parameters 1 and 2.
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6. Conclusions

The flight stability of an aircraft may be adversely influenced by external disturbances
and actuator faults. When performing tasks in different environments, the aircraft is consid-
erably affected by the climate, including temperature, humidity, and air pressure. Aircraft
collision may also happen in unknown flight environments. All of these adverse factors
adversely impact the actuator or sensors and induce uncertain changes in the aircraft’s
model parameters. To address the above problems, we integrated an ADRC controller
with a spatio-temporal RBF neural network to construct an FTAC scheme. This RBF neural
network was capable of the online estimation of uncertain terms in the system model. In ad-
dition, the optimal gradient descent method reduced the controller’s calculation amount
and achieved a faster response. A combination with the sliding-mode controller further
improved the attitude stability of the aircraft. The experimental results showed that the
FTAC can maintain stable flight in finite time, thus verifiying the reliability of the proposed
FTAC. Therefore, the method proposed in this paper can be used to control a multi-rotor
UAV with actuator failure, gust disturbance, and model uncertainty. Furthermore, the
experimental data showed that in the case of increasing actuator fault values, the system'’s
estimates of parameters due to model uncertainty continually increased, which indirectly
led to a decrease in the controller’s tracking performance. Due to the loss of the actuator
power caused by the large fault value and the different minimum lift required for different
masses of aircraft, the control effect of the controller on different control objects was not
identical. Therefore, the fault-tolerant controller proposed in this paper does not fully
satisfy all the use scenarios. As a result, certain improvements are still needed in this area.
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Abbreviations

The following abbreviations are used in this manuscript:

ADRC Active Disturbance Rejection Control
UAV Unmanned Aerial Vehicles

FTAC Fault-Tolerant Aircraft Control

RBF Radial Basis Function

FTC Fault-Tolerant Control

DC Direct-Current

ESO Extended State Observer

SMNLSEF  Sliding Mode Nonlinear State Error Feedback
ST-RBFNN  Spatio-Temporal Radial Basis Function Neural Network
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