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Abstract: Remaining useful life (RUL) prognosis is one of the most important techniques in concrete
structure health management. This technique evaluates the concrete structure strength through
determining the advent of failure, which is very helpful to reduce maintenance costs and extend
structure life. Degradation information with the capability of reflecting structure health can be
considered as a principal factor to achieve better prognosis performance. In traditional data-driven
RUL prognosis, there are drawbacks in which features are manually extracted and threshold is
defined to mark the specimen’s breakdown. To overcome these limitations, this paper presents
an innovative SAE-DNN structure capable of automatic health indicator (HI) construction from
raw signals. HI curves constructed by SAE-DNN have much better fitness metrics than HI curves
constructed from statistical parameters such as RMS, Kurtosis, Sknewness, etc. In the next stage, HI
curves constructed from training degradation data are then used to train a long short-term memory
recurrent neural network (LSTM-RNN). The LSTM-RNN is utilized as a RUL predictor since its
special gates allow it to learn long-term dependencies even when the training data is limited. Model
construction, verification, and comparison are performed on experimental reinforced concrete (RC)
beam data. Experimental results indicates that LSTM-RNN generally estimates more accurate RULs
of concrete beams than GRU-RNN and simple RNN with the average prediction error cycles was less
than half compared to those of the simple RNN.

Keywords: concrete structures; remaining useful life (RUL); stacked autoencoder (SAE); deep neural
network (DNN); long short-term memory (LSTM)

1. Introduction

The last decades have witnessed the explosive increase in the construction industry to
meet the unceasing demand for civilian, industrial, and defense purposes. Regardless of
the purpose, one of the most significant criteria for structural materials is durability. Even
though concrete is one of the most popular materials for construction, brittleness can make
it vulnerable to deterioration through cracking progression. The cracking phenomenon is
crucial to structure safety and economics, and it has therefore been frequently studied [1–4].
Besides fault diagnosis and classification (FDC) algorithms that have been widely used
to detect and isolate incipient faults in many applications [5–7]. Fault prognosis methods
have been increasingly receiving more attention in the recent time [8,9]. With prognosis,
imminent failures can be reported, and maintenance can be performed accordingly.

An essential metric for prognostic methods is the remaining useful life (RUL), which
is also called lead time or prognostic distance. It is defined as the duration from the current
time when a specimen is being inspected until its expected useful life expires [9,10]. The
prediction of RUL can be performed by two main approaches: data-driven and model-
based. Model-based methods represent damage progression by analytical models [11],
wherein the researchers need to capture the nature of both the failure and the system. In
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contrast, estimating RUL with available data in data-driven methods does not need the
exact failure mechanisms for data-driven modeling. Therefore, they have been in favor in
recent studies [12].

The data-driven approach to prognosis can be divided into three stages: data acquisi-
tion, construction of health indicators (HIs), and then prognostics. To monitor and highlight
the fracture occurrences, acoustic emission (AE) is commonly used for data acquisition,
being able to detect both external and internal damage on the structure [13–15]. Therefore,
AE is utilized here to study the deterioration of a concrete structure during a loading
process until its final failure. The second stage, which constructs HIs, can strongly affect
the accuracy of the RUL [9]. Most data-driven methods form HIs from statistical parame-
ters, among which kurtosis and root mean square (RMS) are used most often. Williams
et al. [16] proposed the direct use of these two parameters for bearing vibration signal
quantification, while Antoni [17] suggested spectral kurtosis in bearing health monitoring,
which is considered one of the most intriguing and effective HI construction methods. In
this approach, the kurtosis can be calculated by the fourth-order central moment over the
squared second-order central moment. In addition to these two parameters, the smoothness
index [18] is also important. This parameter is the result of the geometric mean over the
arithmetic mean of the modulus of the wavelet coefficients.

In recent years, synthesized HIs have attracted increasing attention [19]. They are
often formed by data fusion techniques that combine multi-dimensional features such as
RMS, kurtosis, and variance into one-dimensional HIs [9,10,20]. Even though synthesized
HIs have achieved spectacular performance and results, there are still disadvantages to be
overcome. The first major problem is the uneven contribution of inputs to HI construction,
which is the consequence of different features having different ranges. The second major
problem is the difficulty in determining the failure threshold, which depends on the specific
specimen at hand.

Deep learning techniques have recently been successfully applied in many areas,
including natural language processing, computer vision, and robotics [21,22]. They have
displayed a promising competence to extract features automatically during the requisite
training period. End-to-end classification models with direct mapping to the output classes
from raw input can be constructed without manual feature extraction to establish an
intermediate feature space. In order to solve the problems of uneven inputs and difficulty
in determining the failure threshold described earlier, this paper proposes the development
of a deep neural network (DNN) for HIs formation from raw input. In this approach,
a stacked autoencoder (SAE) is first utilized for pretraining to prevent the DNN from
being trapped in local optimum by random initialization. The DNN’s layers are pretrained
successively in a layer-wise, unsupervised learning strategy. After a regression layer is
added, the whole network is fine-tuned in a supervised manner with the labeled data.
AE hits are detected in each signal segment with the constant false-alarm rate (CFAR)
algorithm [4]; the number of AE hits can represent the damage growth in a concrete
structure [4], and these values are also used as input data labels.

In this study, a recurrent neural network (RNN) is used for RUL prediction. In compar-
ison to a feedforward neural network, the data ‘context’ and data clustering for long-term
prediction in an RNN are presented by competitive learning rules in input preprocess-
ing [22]. To cope with conventional RNNs’ poor long-term dependencies learning, long
short-term memory (LSTM) is implemented in this research. LSTM is able to remember
information for long periods of time via the introduced gates [22,23]. Redundant informa-
tion is disposed of by the forget gate; the key information is stored in the internal state
after being chosen by the input gate; and the output information is then determined by
the output gate. This architecture allows long-term storage, updating the key information
efficaciously, and avoiding gradient vanishing.

LSTM RNN has been widely and successfully applied for machine health monitor-
ing [24], gas concentration prediction [25], marine temperature prediction [26], and wind
power short-term prediction [27]. In this study, concrete degradation data with hundreds
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of segmented signals over the deterioration progression in concrete beams is considered
long-term time-series data. With the availability of offline training data, an LSTM-RNN can
be constructed to perform long-term dependencies learning on the concrete degradation
progress. Then, with just an amount of online data, precise RLU prognosis on the specimen
can be achieved with the trained LSTM-RNN.

This paper presents the following contributions:

1. A health indicator (HI) constructor based on a SAE-DNN is developed. No manually
extracted features are used in the construction of the SAE-DNN-based HI constructor.
The SAE-DNN automatically extracts representative features during the training
process.

2. The constant false-alarm rate (CFAR) algorithm is used to capture the AE hits in every
degradation cycle; the number of AE hits in each cycle is considered the label to train
the DNN.

3. The LSTM-RNN is investigated to learn the long-term dependencies of HI curves
constructed in an offline process and is then used to predict the RUL of a concrete
structure in an online process.

This paper is arranged as follows: Section 2 introduces the experimental setup with
data descriptions and illustrations. Section 3 describes the SAE-DNN-based HI constructor
thoroughly, along with the LSTM-RNN-oriented RUL prognosis. Section 4 gives the
experimental results and analysis. Finally, Section 5 presents our conclusions.

2. Experimental Setup
2.1. Experimental Specimens and Data Acquisition System

All of the reinforced concrete (RC) beam specimens are identical in terms of speci-
fications: 240 × 15 × 30 cm in length × width × height; compressive strength 24 MPa;
and five reinforcing bars of 16-mm diameter (Figure 1). The maximum tensile strength for
each specimen is over 455 MPa. To test our proposed approach, a run-to-failure dataset
is constructed from four-point bending tests on the RC beams (Figure 2). Each four-point
bending test is performed as follows: an RC beam is loaded equally with two concentrated
loads. Supports are placed 2000 mm apart, center-to-center. The displacement rate applied
by the actuator through the I-section of an 80-cm steel beam can be either 1 mm/s or
2 mm/s. This load is continuously applied on each RC beam until the beam is completely
crushed. The vertical displacement is measured by a linear variable differential transformer
(LVDT) located at the middle of the bottom surface (Figure 2).

The data acquisition system is an eight-channel PCI-based AE system (PCI-8). This
device is capable of simultaneous data acquisition, waveform processing, and data transfer
up to 132 Mb/s in the 1–400 kHz range. Its channels are connected to eight low-frequency
AE R3I-AST sensors mounted on the specimen’s surface. These sensors have outstanding
sensitivity and require no extra preamplifier on the long cable drive. In order to ensure that
the inherent characteristics of the concrete are omitted, the sampling rate of 5 MHz is set.
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Figure 2. Schematic illustration of the four-point bending test for the RC beam.

2.2. Separation of Destructive Processes

A conventional RUL prediction is based on the specimen’s deterioration progress. The
progression of damage occurs as follows: the specimen shows high and stable performance
during a long starting phase, which then begins to deteriorate gradually during the second
period. In the final stage, the degradation intensifies and, as a consequence, the specimen’s
performance plummets abruptly and drastically until its final failure.

In comparison, fracture monitoring separates crack growth into four stages, as shown
in Figure 3:

Stage 1: The RC specimen deteriorates from its normal condition to a damaged state.
Micro-cracks start at the end of this stage.
Stage 2: Hairline cracks appear on the surface, which soon develop into macro-cracks.
Stage 3: Main cracks form. Distributed flexure appears along with shear cracks, which
soon lead to steel yielding.
Stage 4: The steel yielding intensifies and shear cracks ultimately culminate in concrete
crushing.

The degradation process measured by sensor 1 of specimen 1 is shown in Figure 3 in
terms of load and number of AE hits in 1-second signal cycles.
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Figure 3. Damage progression in an RC beam during a bending test.

3. Methodologies
3.1. SAE-DNN-Based HI Constructor

The multiple hidden layers concept has been available since the early years of deep
learning. This approach was initially disappointing because its performance was even
worse than shallow networks, the result of the limitations of conventional back-propagation
due to poor training, which often utilized random initialization and got stuck in unopti-
mized local solutions. This difficulty was overcome in 2006 with unsupervised layer-wise
pretraining, which was proposed by Hinton et al. [28] to deal with the existing limitations
of DNN optimization. Currently, more sophisticated and abstract features with hierarchi-
cal structures can be learned because pretraining offers layer-by-layer, high-level feature
extraction from lower-level ones.
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An excellent choice for an efficacious layer-wise unsupervised learning algorithm
would be a stacked autoencoder (SAE) [29]. This structure includes multi-layer AEs, each
of which is a single-hidden-layer unsupervised neural network, and its input/output
layers are set identically. The original input is intended to be reconstructed by the output
layer with high accuracy. A simplified AE structure is illustrated in Figure 4. The input
of SAE, which is supposedly x = [x1, x2, . . . , xn]

T ∈ Rn with dimension n, is projected
by the encoder to the hidden layer h = [h1, h2, . . . , hm]

T ∈ Rm by the following mapping
function f :

h = f (x) = s f (Wx + b) (1)

in which m stands for the dimension of the hidden variable vector; W is the m× n weight
matrix; b ∈ Rm is the bias vector; and the nonlinear activation function s f can be either the
sigmoid function, the tanh function, or the rectified linear unit function.
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The hidden representation h is then mapped to the output layer x̃ ∈ Rn by the mapping
function f̃ in the decoder:

x̃ = f̃ (h) = s f̃ (W̃h + b̃) (2)

with W̃ as an n×m weight matrix; b̃ ∈ Rn as the bias vector term for the output layer; and
the activation function s f̃ as either the sigmoid function or others. Overall, θ =

{
W, W̃, b, b̃

}
is the AE parameter set and gθ(x) = f̃ ( f (x)) ≈ x is the function to be learned. As
aforementioned, an AE aims to get the reconstructed output x̃ as close to the initial input x
as possible. This is done by forcing constraints on the network, for example, a hidden unit
number limitation. Assume that the training input is X =

{
x(1), x(2), . . . , x(N)

}
, where the

total number of training samples is denoted as N. Initially, each x(i) is projected to a hidden
representation h(i) and then mapped to the reconstructed data x̃(i). By the following mean
squared reconstructed error calculation, the reconstructed loss function can be minimized:

J(W, W̃, b, b̃) =
N
∑

i=1
‖x̃(i) − x(i)‖

2/
2N

=
N
∑

i=1
‖gθ(x(i))− x(i)‖

2/
2N

(3)

The gradient descent (GD) is used for AE parameter updating. After the completion
of training, the weight and bias are then saved for this AE. The multi-AE-layered structure
of an SAE is presented in Figure 5. The layer-by-layer training of an SAE is done as follows:
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Initially, the original input data is mapped in the first hidden feature layer by the first AE;
the output of the first AE is then considered the input for the second AE, and the process
continues. By the end, every layer in the SAE is pretrained. To prevent the AE from just
learning the identity of the input and make the learnt features more robust, noise can be
added to the input data for training. The AE is forced to reconstruct a corrupted version of
the input. This method is called a stacked denoising autoencoder (SDA) and it is chosen
for our study.

Following the unsupervised pretraining, the output layer is added to the top of
the SAE and the weights and biases are fine-tuned. Each hidden layer’s weights are
initialized by the pretrained weights {Wk, bk}k=1,2,...,K. The output layer’s parameters
{W0, b0} can be set by random initialization. Afterwards, back-propagation is utilized
to achieve improved weights

{
W ′k, b′k

}
k=1,2,...,K by fine-tuning the entire network. The

predicted error is minimized as follows:

Jo =
N

∑
j=1
‖yj − ŷj‖

2/
2N (4)

with yj and ŷj being the jth data sample’s label and predicted output, respectively. The SAE
training procedure is displayed in Figure 5.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 17 
 

2

( ) ( )

1

2

( ) ( )

1

( , , , ) 2

( ) 2

N
i i

i

N
i i

i

J W W b b x x N

g x x N





 

 





 (3) 

The gradient descent (GD) is used for AE parameter updating. After the completion 

of training, the weight and bias are then saved for this AE. The multi-AE-layered structure 

of an SAE is presented in Figure 5. The layer-by-layer training of an SAE is done as fol-

lows: Initially, the original input data is mapped in the first hidden feature layer by the 

first AE; the output of the first AE is then considered the input for the second AE, and the 

process continues. By the end, every layer in the SAE is pretrained. To prevent the AE 

from just learning the identity of the input and make the learnt features more robust, noise 

can be added to the input data for training. The AE is forced to reconstruct a corrupted 

version of the input. This method is called a stacked denoising autoencoder (SDA) and it 

is chosen for our study. 

Following the unsupervised pretraining, the output layer is added to the top of the 

SAE and the weights and biases are fine-tuned. Each hidden layer’s weights are initialized 

by the pretrained weights 1,2,...,{ , }k k k KW b  . The output layer’s parameters 0 0{ , }W b  can 

be set by random initialization. Afterwards, back-propagation is utilized to achieve im-

proved weights 1,2,...,{ , }k k k KW b 
   by fine-tuning the entire network. The predicted error 

is minimized as follows: 

2

1

ˆ 2
N

o j j

j

J y y N


   (4) 

with jy  and ˆ jy  being the thj  data sample’s label and predicted output, respectively. 

The SAE training procedure is displayed in Figure 5. 

 

Figure 5. Training procedure of an SAE. 

3.2. Impulse Detection Using the Constant False Alarm Rate (CFAR) Algorithm 

In this study, impulse detection is performed with the CFAR algorithm. CFAR is a 

popular data-based target-detecting technique that excels in environments where back-

ground noise and interference are varying, especially for radar systems. A threshold based 

on power is determined so that when a signal segment exceeds it, this segment can be 

considered a “hit” on the target. 

Most CFAR schemes utilize a power threshold calculated from the noise floor of the 

cell blocks surrounding the cell under test (CUT). Several cells adjacent to the CUT are 

Figure 5. Training procedure of an SAE.

3.2. Impulse Detection Using the Constant False Alarm Rate (CFAR) Algorithm

In this study, impulse detection is performed with the CFAR algorithm. CFAR is a
popular data-based target-detecting technique that excels in environments where back-
ground noise and interference are varying, especially for radar systems. A threshold based
on power is determined so that when a signal segment exceeds it, this segment can be
considered a “hit” on the target.

Most CFAR schemes utilize a power threshold calculated from the noise floor of the
cell blocks surrounding the cell under test (CUT). Several cells adjacent to the CUT are
neglected to protect the training cells from signal leaking, which can negatively influence
the noise estimation. Figure 6 describes a simplified CFAR scheme.
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Figure 6. Diagram of a CFAR detection scheme.

In this study, the cell average CFAR with acknowledged stability and robustness [30]
is chosen for implementation. The threshold for detection T is first computed as follows:

Ti = αPi (5)

with α as the threshold factor and Pi being the estimated noise power, as calculated:

Pi =
1

2N

G+N

∑
`=G+1

|Ci+`|2 + |Ci−`|2 (6)

where N and G are the number of training cells and guard cells, respectively. Generally, the
number of leading and lagging cells are set as equal. The threshold factor α is harnessed to
control the number of detected targets in a directly proportional relationship:

α = N(P−1/N
f a − 1) (7)

with Pf a being the desired false alarm rate. This parameter should be chosen with caution,
since it is a trade-off between the number of detected targets and the number of detected
false targets.

This study deals with signals in one-second segments, each of which is then divided
into 2000 cells for analysis. Both leading and lagging blocks contain 30 cells, in which 20
are used for training and the rest are guard cells. Equations (5)–(7) are used to calculate the
adaptive threshold of each CUT. A target is detected when the power of the CUT exceeds
its threshold. The concept and results of this algorithm are shown in Figure 7.
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3.3. LSTM-RNN-Oriented RLU Prediction

LSTM has been adopted as a popular solution for temporal sequence and long-range
dependency modeling, having been applied in numerous studies on language modeling,
speech recognition, and online handwriting recognition, among others. The reason for the
preference of LSTM over RNN is its ability to resolve the vanishing/exploding gradients
inherent in RNN training. Figure 8 presents LTSM in its basic structure, with the number
of input layers, recurrent layers, and output layers all being 1. The innovation of LSTM is
that it introduces different types of gates, such as the input gate i(t), forget gate f(t), output
gate o(t), and input modulation gate g(t), and other components like hidden units h(t) and
memory cells c(t).
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Information disposing is determined and performed by the forget gate f(t). This gate
utilizes a logistic activation function for inputs x(t) and h(t−1), of which the output is then
provided to an element-wise multiplication operation. The gate is closed if the output is 0,
and open if it is 1. The forget gate’s calculation is:

ft = σ(Wx f xt + Wh f ht−1 + b f ) (8)

Afterwards, new information is evaluated to decide whether it can be stored in the
internal state. Initially, the “input modulation gate” g(t), which acts as a tanh layer, forms a
candidate state vector c(t). Then, the input gate i(t) determines which parts of g(t) are to be
supplemented to the long-term state c(t). The two outputs are computed as follows:

i(t) = σ(Wxix(t) + Whih(t−1) + bi) (9)

g(t) = tanh(Wxgx(t) + Whgh(t−1) + bg) (10)

Deriving from Equations (8)–(10), the previous internal state c(t−1) can be used to
achieve the current state c(t):

c(t) = f(t) ⊗ c(t−1) + i(t) ⊗ g(t) (11)

Eventually, the long-term state is then evaluated by the output gate o(t) to determine
which parts of it can be read and output at this time to both h(t) and y(t). After putting the
internal state c(t) through a tanh layer (to push the values to be between −1 and 1), it is
multiplied by the output of the sigmoid gate to acquire the remaining state values. This is
calculated as follows:

o(t) = σ(Wxox(t) + Whoh(t−1) + bo) (12)

y(t) = h(t) = o(t) ⊗ tanh(c(t)) (13)
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with W and b as the layer weights and biases, respectively.

4. Experimental Validation
4.1. Dataset Description

Figure 9 displays the four-point bending test from which the dataset used here was
collected. Our proposed method is validated on AE data acquired by AE sensors at the
sampling frequency of 5 MHz. The duration of each degradation cycle is set at 1 s. For each
four-point bending test, a total of eight sensors are positioned on the RC beam to collect
data in the run-to-failure process.
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Figure 9. Pictogram of the four-point bending test.

Twenty-four run-to-failure process signals are acquired during three four-point bend-
ing tests to validate the proposed approach. Details about the dataset are listed in Table 1.
The data is divided into two equal parts for training (signals from sensors 1–4) and test sets
(signals from sensors 5–8) formation. Figure 10 shows the degradation process of three test
run-to-failure sensor signals (i.e., sensor 5), one from each of the concrete beams, in terms
of RMS, kurtosis values, and AE hits.

Table 1. Specifics of the experimental dataset.

Dataset Bending Test Concrete Beam
No. Sensors
(Run-to-Fail

Signals)

Signal Length
(s)

Training dataset
1 A 4 600
2 B 4 650
3 C 4 620

Test dataset
1 A 4 600
2 B 4 650
3 C 4 620
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4.2. The Efficacy of an SAE-DNN-Based HI Constructor

This stage starts with SAE-DNN-based HI constructor training. Initially, fast Fourier
transform (FFT) is utilized to determine the signal segment’s spectrum. Since each segment
is 5 × 106 in length, after FFT there are 2.5 × 106 data points which are too big to feed into
the SAE. Therefore, the number of inputs is reduced by splitting the spectrum of the AE
signals into a suitable amount of frequency bands and then computing their root mean
square (RMS), which represents an approximation of each band’s energy.

Following the data preprocessing, the SAE model is constructed and trained. Signal
spectrum vectors of size 2000 are fed to the encoder, which are then processed by three
size-diminishing dense layers (1000 to 200 to 10 units with Xavier initialization and the
ELU activation function). The encoder’s output (size of 10) is then fed to the decoder and
processed by three size-increasing dense layers (200 to 1000 to 2000 units). Dropout layers
with rate of 0.1 are added before the dense layers to improve the SAE’s regularization.
Afterwards, Adam optimization is utilized for SAE training with unlabeled signal spectra
as both the inputs and targets. Different levels (from 0.1–0.5) of the fractions of masked
zero are tested, which shows the best performance at 0.1.

Then the encoder’s layers are reused in the DNN model as the hidden layers. After
a logistic regression layer addition, this DNN model is fine-tuned in a supervised way.
The DNN output layer’s size is 1 and its according label is the normalized number (in
the range of [0, 1]) of AE hits detected in each degradation cycle. The DNN model is
designed so that the outputs, which are the HI values, are in the range of [0, 1], therefore
the sigmoid activation is chosen as the activation function of the output layer. During
the training process, the reused layers are frozen so that they retain the learning ability of
high-level features from the low-level input features of the SAE model. In addition, the
early stopping and checkpoint techniques are applied during training SAE and DNN to
get the best parameters of SAE and DNN structures.

Following the completion of SAE-DNN-based HI constructor’s training, the run-to-
failure data is harnessed for the concrete beam’s HI construction. Half of the signals are
utilized here for the evaluation of the HI constructor’s performance. Figure 11 shows the
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HIs of the three tests from sensor 5. In comparison to HIs constructed from conventional
features like RMS and kurtosis with larger scales, the proposed method’s HIs ranges
between 0 and 1, with 1 being the failure condition. Consequently, the threshold definition
has no need for such HI employment. An HI exceeding a fixed FT triggers the obtain
of RUL.
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Two other metrics, monotonicity and trendability, [24] are also used in this study for
HI fitness validation. Monotonicity is the characterization of the underlying increasing or
decreasing trend:

M =

∣∣∣∣no.o f .d/dx > 0
n− 1

− no.o f .d/dx < 0
n− 1

∣∣∣∣ (14)

with n being the number of observations for a specific feature. Monotonicity M can
be calculated with the absolute difference between a feature’s “positive” and “negative”
derivatives. It ranges from 0–1, with 0 emphasizing a non-monotonic feature and 1 showing
a highly monotonic feature.

The second metric, trendability, is related to an extracted feature’s functional form and
correlation with time. In another words, it shows how an asset’s state varies with time. For
example, a constant function presents zero correlation with time, while a high correlation
can be found with a linear function. Similarly, non-linearity also causes a variation in
correlation. This metric is computed as follows:

R =
n(∑ xy)− (∑ x)(∑ y)√[

n∑ x2 − (∑ x)2
][

n∑ y2 − (∑ y)2
] (15)

with R being the correlation coefficient between x and y, which are the feature and time
index, respectively, in this study. The state of correlation can be either no correlation,
negative, positive, or perfect. Thus, R ranges from −1 to 1. Figure 12 shows a conceptual
demonstration of the curve fits.
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With the aim to highlight the improvement of the proposed method’s HIs compared
to HIs based on RMS or kurtosis, a fitness analysis is done on the testing dataset. In this
analysis, two aforementioned metrics of each type of HI are measured. Table 2 shows
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the summarized results, in which the proposed method presents a significant boost of
performance in comparison with the two HIs based on RMS and kurtosis. This implies that
our method is more suitable in terms of describing the concrete beam degradation process.

Table 2. Metric comparison of different types of HIs.

Type of HI Min Value Max Value M R

RMS 0.0005 0.1529 0.037 ± 0.022 0.347 ± 0.064
Kurtosis 2.7496 5629.1 0.004 ± 0.021 0.458 ± 0.050

Crest factor 3.0803 145.91 0.0013 ± 0.183 0.7416 ± 0.024
Skewness −19.279 10.855 0.0102 ± 0.0215 0.1077 ± 0.1020
Entropy 0.0883 4.8324 0.0019 ± 0.0234 0.1886 ± 0.1740

SAE-DNN 0.0125 1 0.6788 ± 0.079 0.6801 ± 0.0489

4.3. The Efficacy of the LSTM-RNN-Oriented RLU Prediction

The LSTM-RNN-based RLU predictor is then trained with previously constructed
HI curves, which are segmented into a series of time-steps. The data can be considered
a univariate time series due to it being a sequence of one value per time step. The RUL
predictor utilizes past HI values to predict the future ones until a predefined threshold is
met. In order to maximize the number of time series to train the model, a shifting window
of size 50 is used in the segmentation process. This procedure is shown in Figure 13.
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At this step the LSTM predictor is already capable of forecasting the next time-step
value. However, with an alteration in the procedure, it can also predict more than just one
future state. The next prediction can be added to the inputs (acting as if this predicted value
had occurred) to further predict the following ones until the end. Our model is trained to
forecast at every time-step instead of just the final time-step. By following this technique,
the loss can contain a term for every time-step output rather than just the output at the last
time step. This allows more stabilization and faster training as more error gradients are
able to flow through the model [22].

One input layer of the same size as the number of time-steps is utilized for the
construction of the applied LSTM-RNN. Following this layer are two hidden LSTM layers
of size 20. A linear activation function is utilized in the dense output layer of one neuron.
Early stopping and checkpoint techniques are also used during training to construct a
better LSTM-RNN model.

The developed method is implemented with degradation data collected from three
concrete beams A, B, and C. Generally, RUL estimations toward the end of a degradation
process are more important than earlier ones because this is usually when maintenance
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decisions are made. Therefore, two major time stamps at cycle 350 (minor crack initializa-
tion) and cycle 450 (major crack initialization) are chosen for the average prediction error
calculation. The definition of the RUL prediction error is:

e =
∣∣∣LCi − L̂Ci

∣∣∣ (16)

with e being the RUL prediction error, and LCi, L̂Ci are the actual cycles and the estimated
cycles, respectively.

In this study, the DNN model is designed so that the outputs, which are the HI values,
are in the range of [0, 1]. Therefore, the sigmoid activation is chosen as the activation
function of the output layer. In this case, the fixed HI threshold should be set to 1. However,
experimental results have shown that the output of DNN rarely reaches the value of 1.
Hence, this study has set the fixed HI threshold of 0.95 to mark the specimen’s breakdown.

Figure 14 shows specimen A’s RUL prediction error with the prediction calculated
at cycle 350, and the prediction error calculated at cycle 450. The details of statistics
concerning specimen A’s RUL prediction error can be found in Table 3 along with the other
two specimens; a minor prediction error with a small standard deviation is preferred. As
can be seen in Table 3, the proposed method’s prediction error at cycle 350 is 32 cycles,
which is lower than the error of 36 and 81 cycles predicted by the gated recurrent unit
(GRU) RNN [31] and the simple RNN, respectively. This indicates that our method is
more effective at capturing long-term dependencies than those other two approaches. The
prediction error at cycle 450 is 21, 32, and 61 cycles, respectively. It is clear that, in both
cases, the simple RNN presents the largest error. This is ample evidence showing its
inability to effectively store and learn long-term dependencies without special gates.

Table 3. RUL prediction results.

Fault-to-Failure
Signals Method Prediction Error Cycles

(at Cycle 350)
Prediction Error Cycles

(at Cycle 450)

Concrete beam
A

LSTM-RNN 32 ± 3 21 ± 4
GRU-RNN * 36 ± 4 32 ± 5
Simple RNN 81 ± 6 61 ± 8

Concrete beam
B

LSTM-RNN 41 ± 7 34 ± 5
GRU-RNN * 43 ± 6 37 ± 7
Simple RNN 95 ± 11 89 ± 8

Concrete beam
C

LSTM-RNN 36 ± 3 24± 3
GRU-RNN * 39 ± 7 32 ± 3
Simple RNN 88 ± 4 68 ± 7

* Gated recurrent unit RNN [31].

Appl. Sci. 2021, 11, x FOR PEER REVIEW 15 of 17 
 

 

Figure 14. LSTM-RNN-based RLU prediction results of concrete beam A: (a) at cycle 350; (b) at 

cycle 450. 

The proposed method’s results on specimen B are shown in Figure 15. The prediction 

error of our proposed LSTM-RNN, the GRU-RNN, and the simple RNN at cycle 350 were 

41, 43, and 95 cycles, respectively. At cycle 450, they were 34, 37, and 89 cycles. 

 

Figure 15. LSTM-RNN-based RLU prediction results of concrete beam B: (a) at cycle 350; (b) at 

cycle 450. 

In Figure 16, specimen C’s prediction results from the proposed method are plotted; 

its values can be again checked in Table 3. The first prediction at cycle 350 shows the pre-

diction error for our proposed method and the GRU-RNN as 36 and 39 cycles, respec-

tively; the prediction error at cycle 450 are 24 cycles with LSTM-RNN and 32 cycles with 

GRU-RNN. Concerning the simple RNN, the 88 and 68 divergent cycles in the two pre-

dictions clearly demonstrate its failure of long-term dependencies learning. 

 

Figure 16. LSTM-RNN-based RLU prediction results of concrete beam C: (a) at cycle 350; (b) at 

cycle 450. 

5. Conclusions 

Reliable HI curves construction and long-term dependencies learning of degradation 

data are important but challenging tasks for an accurate remaining useful life (RUL) esti-

mation of concrete structures. In this study, we proposed an SAE-DNN model that auto-

matically constructs HI curves from degradation raw signals. The HI curves constructed 

have better fitness metrics than statistical parameters-based HI curves. More specifically, 

these HI curves have the average monotonicity and trendability metrics of 0.67 and 0.68, 

respectively, which much higher than those of HI curves based on statistical parameters 

Figure 14. LSTM-RNN-based RLU prediction results of concrete beam A: (a) at cycle 350; (b) at cycle
450.

The proposed method’s results on specimen B are shown in Figure 15. The prediction
error of our proposed LSTM-RNN, the GRU-RNN, and the simple RNN at cycle 350 were
41, 43, and 95 cycles, respectively. At cycle 450, they were 34, 37, and 89 cycles.
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Figure 15. LSTM-RNN-based RLU prediction results of concrete beam B: (a) at cycle 350; (b) at
cycle 450.

In Figure 16, specimen C’s prediction results from the proposed method are plotted; its
values can be again checked in Table 3. The first prediction at cycle 350 shows the prediction
error for our proposed method and the GRU-RNN as 36 and 39 cycles, respectively; the
prediction error at cycle 450 are 24 cycles with LSTM-RNN and 32 cycles with GRU-RNN.
Concerning the simple RNN, the 88 and 68 divergent cycles in the two predictions clearly
demonstrate its failure of long-term dependencies learning.
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Figure 16. LSTM-RNN-based RLU prediction results of concrete beam C: (a) at cycle 350; (b) at
cycle 450.

5. Conclusions

Reliable HI curves construction and long-term dependencies learning of degrada-
tion data are important but challenging tasks for an accurate remaining useful life (RUL)
estimation of concrete structures. In this study, we proposed an SAE-DNN model that au-
tomatically constructs HI curves from degradation raw signals. The HI curves constructed
have better fitness metrics than statistical parameters-based HI curves. More specifically,
these HI curves have the average monotonicity and trendability metrics of 0.67 and 0.68,
respectively, which much higher than those of HI curves based on statistical parameters
such as RMS, Kurtosis, or Sknewness, etc. Moreover, the curves’ HI values are in the range
of a [0, 1], therefore, threshold definition is no need for such HI employment.

The HI curves constructed from training degradation data are then fed to train the
LSTM-RNN for RUL prediction. The study validates the prediction performance of the
LSTM-RNN by estimating RUL and calculating the average prediction error on testing
experimental concrete beams at two times; at cycle 350 (minor crack initialization) and
at cycle 450 (major crack initialization). Experimental results on concrete beams A, B,
and C indicate that the LSTM-RNN generally estimates more accurate RULs of concrete
beams than the GRU-RNN and the simple RNN. The average prediction error cycles of the
LSTM-RNN on concrete beams A, B, C at cycle 350 are 32, 41, and 36, respectively; at cycle
450 are 21, 34, 24, respectively. These error values are lower than those of the GRU-RNN
and much lower than those of the simple RNN. In other words, the proposed method
outperformed a GRU-RNN and a simple RNN in predicting the RUL of concrete structures.

Overfitting is an important issue that needs to be handled carefully during training
deep neural networks, especially when the data training is limited as in this study. It
makes the outcome of deep neural networks low and unstable. There are currently many
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techniques to help neural networks avoid overfitting such as L1 and L2 regularization,
Monte Carlo dropout, etc. In the upcoming times, our focus is to dig deep into these
techniques to find the best one for our model.
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