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Abstract: The absolute acoustic nonlinearity parameter β is defined by the displacement amplitudes
of the fundamental and second-order harmonic frequency components of the ultrasonic wave prop-
agating through the material. As β is a sensitive index for the micro-damage interior of industrial
components at early stages, its measurement methods have been actively investigated. This study
proposes a laser-ultrasonic detection method to measure β. This method provides (1) the β measure-
ment in a noncontact and nondestructive manner, (2) inspection ability of different materials without
complex calibration owing to direct ultrasonic displacement detection, and (3) applicability for the
general milling machined surfaces of components owing to the use of a laser interferometer based
on two-wave mixing in the photorefractive crystal. The performance of the proposed method is
validated using copper and 6061 aluminum alloy specimens with sub-micrometer surface roughness.
The experimental results demonstrated that the β values measured by the proposed method for
the two specimens were consistent with those obtained by the conventional piezoelectric detection
method and the range of previously published values.

Keywords: nonlinear ultrasonics; absolute acoustic nonlinearity parameter; laser-ultrasonic detection;
photorefractive interferometer; copper; 6061 aluminum alloys

1. Introduction

The nonlinear ultrasonic technique (NUT) is an innovative nondestructive evaluation
(NDE) method [1,2] used to diagnose micro-damage such as thermal aging [3,4], fatigue
damage [5], creep [6], and others [7,8] at an early stage in industrial components. This
method uses the nonlinear ultrasonic behavior (i.e., ultrasonic nonlinearity) including
nonlinear resonance, mixed frequency response, sub-harmonic generation, or second-
harmonic generation, of an ultrasonic wave propagating through a material [9]. The NUT
is known to be effective for the microstructural characterizations of a material, such as
examining the grain boundaries [10], second-phase precipitates and inclusions [11,12], and
dislocation density [13], when compared with the conventional linear ultrasonic technique
using ultrasonic velocity and attenuation.

In the NUT, a relative acoustic nonlinearity parameter β′, defined by the detected
electric signal amplitudes from any ultrasonic receiver regardless of displacement, is used
as an indicator [14,15]. However, this relative β′ is limited to a relative comparison between
the before and after damage of a material [16]. To address this issue, several researchers
have actively investigated the measurement of the absolute acoustic nonlinearity parameter
β, which is defined by the displacement amplitudes of the ultrasonic wave. This absolute β
measurement provides a quantitative evaluation of the material microstructural properties
and micro-damage, thus providing the potential for quantitative NDE [17].
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Currently, a piezoelectric detection method is the most widely used method to measure
β, owing to its advantages of high sensitivity for the measurement of sub-nanometer-scale
displacements and convenience because it utilizes general NDE equipment [18]. Dace
et al. [19] proposed this method for the first time where they first measured β′ using the
through-transmission method and calibrated β′ to β based on the transfer function using
a pulse-echo method. They successfully obtained the β values for 6061 aluminum alloys
(Al6061-T6) and fused silica. Kim et al. [20] used the piezoelectric detection method to
characterize the material microstructures and successfully investigated the characteristics
of second-phase precipitation in heat-treated Al6061-T6 [16] and thermally aged CF8M cast
stainless steel [21]. They also evaluated the yield strength by ultrasonic reconstruction of a
nonlinear stress-strain curve [22] based on the β measurements and successfully estimated
the yield strength of heat-treated Al6061-T6. However, the piezoelectric detection method
uses a contact-type piezoelectric transducer, which requires a couplant and special shoe for
effective application [23]. Moreover, it requires a complicated calibration to compensate for
the frequency-dependent sensitivity of the transducer and material-dependent-coupling
coefficient between the transducer and tested material, which requires repeating the cali-
bration whenever either the incident wave frequency or test material is changed [24].

To address these issues, studies have reported the use of noncontact detection methods
such as capacitive [25] and laser detection methods [26] to measure β. Yost et al. [25] used
a capacitive receiver, which measures the change in capacitance between one side of a
specimen and the receiver to measure β for the aluminum alloy specimens. Hurley et al. [26]
used a Michelson-type laser interferometer to measure β, which is a well-known method
that provides a direct means of absolute displacement amplitudes. These methods can be
applied without couplant and special shoes. They allow the user to neglect the effect of
coupling at the contact interface compared to piezoelectric detection owing to their broad
frequency range up to several megahertz [27]. However, they required a test specimen
with an optically flat surface with a roughness level of approximately several nanometers,
which makes it difficult to apply to the general NDE industry.

In this study, a laser-ultrasonic detection method is used to measure β, where a pho-
torefractive interferometer based on two-wave mixing (TWM) in the photorefractive crystal
(PRC) is used as the receiver. This method provides (1) noncontact and nondestructive mea-
surement of β; (2) the inspection ability of different materials without complex calibration
owing to the direct ultrasonic displacement measurement, and (3) applicability for the β
measurement even on the general milling machined surfaces of components because of the
use of a scattered light beam. These advantages provide the potential for the quantitative
characterization of hidden damage and material microstructures. The remainder of this
paper is a brief description of the theoretical background for absolute β and photorefractive
interferometric detection in Section 2; experimental setup for the specimen preparation
and ultrasonic measurement in Section 3; experimental results and validation in Section 4,
and conclusions in Section 5.

2. Brief Description of Theoretical Background
2.1. Absolute Acoustic Nonlinearity Parameter (β)

Physically, the β parameter is directly related to the second-order nonlinear elastic
constants of the material [9]. Because these nonlinear elastic constants are closely related
to the microstructural features and micro-damage of the components, the β parameter
measured using the NUT has been used as an indicator for quantitative NDE [9]. Assuming
that the planar longitudinal wave propagates in lossless isotropic media, β can be defined
as follows based on the nonlinear wave equation solution [28]:

β =
8A2

k2xu A2
1

, (1)

where A1 and A2 are the displacement amplitudes of the fundamental frequency compo-
nent for the propagating ultrasonic wave and that of the harmonic component produced by
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the wave distortion depending on the different nonlinearity sources existing in the material,
respectively, k is the wavenumber, and xu is the ultrasonic wave propagation distance.
When an ultrasonic wave with a monochromatic fundamental frequency generated by an
ultrasonic transmitter propagates through the material, the nonlinearity sources frequently
interact with the propagating ultrasonic wave, leading to wave distortion. Consequently,
the second-order harmonic component for the initial fundamental wave is generated, re-
sulting in a varying β. The relative β′ parameter, which has been conventionally used for
relative comparison, is defined by

β′ =
8A2

′

k2xu A′1
2 , (2)

where the superscript ′ indicates the amplitude of the electrical signal measured by the
receiver.

2.2. Laser-Ultrasonic Detection Using Photorefractive Interferometer

The β parameter can be obtained by measuring the ultrasonic displacement amplitudes
of the fundamental and second-order harmonic components. In this study, a photorefractive
interferometer based on TWM in the PRC is used to measure the ultrasonic displacement
amplitudes. Figure 1 displays a schematic configuration of the system. In this system, a
probe beam and a reference beam that is created by the photorefractive effect are used.
The probe beam, which acquires ultrasonic information in the form of phase modulation
after reflection on the test specimen, transmits into the PRC, interferes with the reference
beam to perform demodulation, and then provides an ultrasonic signal proportional to the
displacement amplitude [29]. Note that the minimum detectable ultrasonic displacement
A obtained from several previous studies [30] is as follows:

A =
λo

4π

(
hν·∆ f
2η·P0

)0.5 exp
(

ζxc
2

)
sinεxc

, (3)

where λo is the optical wavelength, hν is the photon energy, η is the quantum efficiency
of the photodetector (PD), ∆ f is the detection bandwidth, P0 is the probe beam power on
the PRC, ζ and xc are the absorption and thickness of the PRC, respectively, and ε is the
photorefractive amplitude gain. In our experiments, A was approximately 0.01 nm [30],
which is sufficient for the ultrasonic displacement measurements of A1 and A2. A previous
study has also reported that this interferometer has a higher sensitivity even on the rough
surfaces of the components because it uses a scattered light beam from the surface instead
of a specularly reflected light beam [31].
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3. Experimental Setup
3.1. Test Specimens

Two test specimens fabricated using copper and Al6061-T6 bulk materials were pre-
pared to validate the performance of the proposed laser-ultrasonic detection method. The
material properties such as density, wave speed, and acoustic impedance for the two speci-
mens were considerably different from each other. Detailed values are presented in Table 1.
A general milling machine polished the specimen surfaces; the arithmetic average of their
roughness (Ra) measured by a commercial roughness tester was approximately 0.64 µm.
This level is approximately ten times greater than that of the optically flat surface required
for other capacitive receivers or the Michelson and Fabry–Pérot interferometers [9]. Both
specimens were of the same thickness of 20 mm. Note that when the wave propagation dis-
tance (i.e., specimen thickness) is greater than a certain level (called the Fresnel zone [32]),
ultrasonic diffraction occurs independent of the material nonlinearity and increases the
measurement error. Here, because the wave propagation distance (20 mm) is within the
Fresnel zone (copper: 48 mm, Al6061-T6: 37 mm), the diffraction effect is not considered.
Images of the test specimens are displayed in Figure 2.

Table 1. Material properties of copper and Al6061-T6 specimens.

Specimen Copper Al6061-T6

Thickness (mm) 20 20
Density (kg/m3) 8960 2700

Longitudinal wave velocity (m/s) 4750 6300
Acoustic impedance

(106 kg/m2s) 42.6 17.0
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3.2. Ultrasonic Measurement Using Laser Detection

Figure 3 displays a schematic diagram for the measurement of the β parameter using
the proposed laser-ultrasonic detection method. A high-power pulser (RITEC, RAM-5000)
produced tone-burst sinusoidal signals with 10 cycles and drove a LiNbO3 transducer with
a center frequency of 2.25 MHz, which was used as a transmitter. The ultrasonic wave
produced by the transmitter propagated through the test specimen and was measured on
the other side using laser-ultrasonic detection. In the laser-ultrasonic detection system
(TECNAR, TWM), the probe beam laser used was a frequency-stabilized Nd:YAG operating
at a wavelength of 1064 nm. The probe beam was delivered into the PD head through fiber
optics to illuminate the surface of the test specimen, and the scattered light collected by the
head optics was delivered into the main interferometer. A picture of the photorefractive
interferometric system is displayed in Figure 4. The PD head was positioned vertically
relative to the target surface to detect the out-of-plane displacement; the distance between
the PD head and surface was 45 mm. The output signal from the interferometer was
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recorded on a digital oscilloscope (Lecroy, Wavesurfer452) with 300 averaging and signal
processing on a computer. All experiments were conducted by increasing the input power
to obtain the linear fitting plot of A2 over A 2

1 (i.e., β) and repeated four times to improve
the repeatability and reproducibility of the measurement.
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4. Experimental Results
4.1. Laser-Ultrasonic Detection Results

The absolute β parameter was measured using a laser-ultrasonic detection method.
Before measuring β, the capability of the absolute ultrasonic displacement amplitude mea-
surement of the photorefractive interferometer was compared with that of the conventional
Fabry–Pérot interferometer. Because the surface roughness of the tested prepared speci-
mens was rougher (Ra: 0.64 µm) than the optically flat surface level (Ra: approximately
several nanometers), where the Fabry–Pérot interferometer was applicable, the copper
and Al6061-T6 specimens were polished with a mirror-like finish (approximately 8 nm).
Figure 5 displays the measurement results of the ultrasonic displacement amplitudes for the
copper (blue circle) and Al6061-T6 (brown square) specimens using the photorefractive and
Fabry–Pérot interferometers, where the former used general milling machined specimens
and the latter used the mirror-like specimens. The measurement results for the copper
and Al6061-T6 specimens indicated a high correlation with the y = x function, within 10%
deviation, demonstrating the capability of the absolute ultrasonic displacement amplitude
of the photorefractive interferometer, even on a rough surface. Note that a deviation of
about 10% is an acceptable level in consideration of the experimental environment or the
effect of surface roughness of the specimen [26].
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Figure 5. Performance comparison for absolute displacement measurement between photorefractive
and Fabry–Pérot interferometers.

Figure 6 displays typical ultrasonic signals in the time-domain measured using the
laser detection method, where the blue solid and brown dotted lines represent the signals
obtained from the copper and Al6061-T6 specimens, respectively. The y-axis represents
the ultrasonic displacement amplitude. For a clear comparison of the waveforms obtained
from the two specimens, the waveform for the copper specimen was horizontally shifted
in the time domain corresponding to that of the Al6061-T6 specimen. Note that because
the longitudinal ultrasonic velocities for the copper (4750 m/s) and Al6061-T6 (6300 m/s)
specimens are different from each other, the arrival times of the ultrasonic signals measured
for the two specimens are different.
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Figure 6. Typical ultrasonic signals in time-domain for copper (blue solid line) and Al6061-T6 (brown
dotted line) specimens. The two signals aligned with the time axis overlap each other.

The displacement amplitudes of the fundamental (A1) and second-order harmonic
(A2) components were extracted in the frequency domain. Here, a Hanning window was
applied to increase the frequency resolution, where a side-lobe effect generated by the
fundamental component, which has the potential to bury the second-harmonic component,
was minimized. The scaling factor was also compensated for by the energy loss according
to the Hanning window [33]. The typical signals for the tested specimens in the frequency
domain, which were Fourier transformed using fast Fourier transform, are displayed in
Figure 7, where blue and dotted-brown lines present the signals for the copper and Al6061-
T6 specimens, respectively. In Figure 7, while the ultrasonic displacement amplitude of
the fundamental frequency component for the copper specimen corresponded to that of
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the Al6061-T6 specimen, displacement amplitudes of the second-order harmonics for the
copper and Al6061-T6 specimens are slightly different with each other. Although the
surface roughness of both specimens was not optically flat, the spectra of the second-order
harmonics and that of the fundamental frequency components can be clearly observed.
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Figure 7. Typical frequency-domain signals for copper (blue solid line) and Al6061-T6 (brown dotted
line) specimens.

Figure 8 displays the relationship between A2 and the square of A1, which were
extracted from their frequency spectra, as a function of increasing input displacement
amplitudes in both specimens. The relationships indicate acceptable linearity with a high
correlation coefficient (0.99) for both specimens. From the slope, ultrasonic wavenumber
(ku), and ultrasonic wave propagation distance (xu) for each specimen described above, the
absolute β parameters for the copper and Al6061-T6 specimens were determined and are
listed in Table 2. The β value of the copper specimen obtained from the laser-ultrasonic
detection method was βcu = 3.4, and that of the Al6061-T6 specimen was βAl = 4.9.
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The difference in β values between the two materials is attributed to the difference in
the microstructural characteristics such as the lattice parameter, crystal structure, phase,
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and dislocation density between the two materials. Generally, the β value of Al6061-T6 is
higher than that of the copper because aluminum alloys such as Al6061-T6 are composed
of various ingredients, which may result in higher lattice anharmonicity and dislocation
density when compared to the pure copper [9].

4.2. Validations

A conventional piezoelectric detection method was used to validate the experimental
results for the proposed laser-ultrasonic detection method. This method was composed
of two parts: a relative β′ parameter measurement and calibration [20]. In the former,
a through-transmission method [20] with a pair of 2.25 MHz and 5 MHz piezoelectric
transducers as transmitter and receiver was used to measure the β′ parameter. Here,
except for the change in the receiver, the experimental procedure was virtually the same
as the aforementioned laser-ultrasonic detection. In the latter, a pulse-echo method [34]
with a 5 MHz piezoelectric transducer, which corresponded to the receiver in the through-
transmission method, was conducted to obtain a transfer function; this was used to calibrate
the electric voltage amplitude measured from the piezoelectric receiver to the absolute
displacement amplitude.

Table 2. Measured absolute parameters (βCu) and (βAl).

Measurement of β Results

Laser Detection Piezoelectric Detection Reference Range

Copper 3.4 3.2 2.1–3.5 [35,36]

Al6061-T6 4.9 5.0 4.5–5.69 [9,37]

The βCu and βAl values obtained from the piezoelectric detection method are listed
in Table 2 with those obtained using the laser detection method. The reference ranges of
the previously published studies are listed together. The βCu and βAl values obtained from
the piezoelectric detection were 3.2 and 5.0, respectively. The experimental results for the
laser and piezoelectric detection methods demonstrated acceptable agreement within a
deviation of approximately 4%. These values were within the range of previously published
values. This 4% deviation could be unavoidable when considering the differences in the
experimental environment, detector size, and surface roughness. These results indicate that
the proposed method is suitable for measuring the absolute β parameter independent of the
material type in a noncontact and nondestructive manner. Furthermore, the results indicate
that this laser-ultrasonic detection method could be applicable even on rough surfaces
corresponding to general milling machined surfaces (approximately sub-micrometer scale).

5. Conclusions

In this study, the measurement of the absolute acoustic nonlinearity parameter (β) was
conducted using the laser-ultrasonic detection method, where a laser interferometer based
on TWM in the PRC was used as the receiver. This detection method provides (1) noncon-
tact and NDE to measure the β parameter; (2) owing to the direct ultrasonic displacement
detection, an inspection ability of different materials without complex calibration when
compared to conventional piezoelectric detection, and (3) applicability for general milling
machined surfaces owing to the use of photorefractive interferometer.

First, the absolute ultrasonic displacement amplitudes measured in the general milling
machined surfaces (Ra: 0.64 µm) for the copper and Al6061-T6 specimens using photore-
fractive interferometric detection indicated high correlation with those measured on an
optically flat surface (Ra: 8 nm) using conventional Fabry–Pérot interferometric detection.
For the copper and Al6061-T6 specimens with general milling machined surfaces, the abso-
lute βCu and βAl values measured by the proposed method were 3.4 and 4.9, respectively,
which matched well with those of the conventional piezoelectric detection method and the
cited reference ranges. These results indicate that the proposed laser detection method is
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applicable to components with different material properties and rough surfaces. A future
study is warranted to apply the proposed laser detection method to different materials and
assess material degradation such as fatigue and thermal aging.
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