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Abstract: In this paper, we study the convergence properties of a network model comprising three
continuously stirred tank reactors (CSTRs) with the following features: (i) the first and second CSTRs
are connected in series, whereas the second and third CSTRs are connected in parallel with flow
exchange; (ii) the pollutant concentration in the inflow to the first CSTR is time varying but bounded;
(iii) the states converge to a compact set instead of an equilibrium point, due to the time varying
inflow concentration. The practical applicability of the arrangement of CSTRs is to provide a simpler
model of pollution removal from wastewater treatment via constructed wetlands, generating a
satisfactory description of experimental pollution values with a satisfactory transport dead time.
We determine the bounds of the convergence regions, considering these features, and also: (i) we
prove the asymptotic convergence of the states; (ii) we determine the effect of the presence of the
side tank (third tank) on the transient value of all the system states, and we prove that it has no
effect on the convergence regions; (iii) we determine the invariance of the convergence regions. The
stability analysis is based on dead zone Lyapunov functions, and comprises: (i) definition of the dead
zone quadratic form for each state, and determination of its properties; (ii) determination of the time
derivatives of the quadratic forms and its properties. Finally, we illustrate the results obtained by
simulation, showing the asymptotic convergence to the compact set.

Keywords: global attractive set; Lyapunov stability; global asymptotic stability; invariance; diffuse
flow modelling

1. Introduction

Several systems converge to a compact set instead of an equilibrium point, for in-
stance: (i) chaotic systems [1–3]; (ii) closed-loop systems subject to external disturbances or
model uncertainties [4–7], or input saturation [8–10]. For this type of system, the global
stability analysis considers large but bounded initial values of the state variables, and
comprises determining the convergence region of the state variables, proving asymptotic
or exponential global stability, and proving the invariance of the convergence region [2,3].
To this end, the Lyapunov function can be used, which consists of a radially unbounded
function, possibly a quadratic form.

There are three common approaches based on the Lyapunov function for studying the
aforementioned systems converging to compact sets. In the first approach, the Lyapunov
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function is positive definite, and can include quadratic forms of states with some deviation.
The expression of the time derivative of the Lyapunov function is arranged as a first
order differential equation, and it is concluded that the Lyapunov function converges
exponentially to a compact set [2,3,11]. As an example, in Zhang (2017), the stability of
a Lorenz system is determined for three different ranges of a model parameter [3]. This
system consists of three ordinary differential equations (ODEs). In Liao (2017), the stability
of a Yang-Chen system is analyzed [2]. The system consists of three ODE’s with states x,
y, z. Global stability of both compact sets and equilibrium points are studied. To study
global exponential convergence to compact sets, different radially unbounded Lyapunov
functions are constructed for different quadrant regions of the state plane. Also, the ranges
of a model parameter that imply global stability or instability of the equilibrium points
are determined.

In the second approach, the Lyapunov function is positive definite and the expres-
sion of the time derivative of the Lyapunov function is negative when the state vari-
ables are outside the convergence region. It is concluded that the system converges
asymptotically [3,11].

The third approach comprises dead-zone radially unbounded positive functions.
This approach has been traditionally used for robust control design, but not for open-
loop systems. An early development is presented in [12–14], and further developments
in [15–17]. The main advantages of this approach are: (i) it allows rigorous proof of the
asymptotic convergence to compact sets, through Barbalat’s lemma; (ii) it facilitates stability
analysis for the case that asymptotic but not exponential convergence occurs [16–18]. In
Rincon (2020), this approach was used to determine the convergence of a continuously
stirred tank reactor (CSTR) open-loop system that comprises three reactions in the presence
of an external disturbance [19]. This system is described by three cascaded differential
equations whose states converge to a compact set. In the particular case of bioreaction
systems, there are several global stability studies, proving convergence to equilibrium
points, but not the convergence to compact set [20–22].

Another result of global stability analysis for systems converging to compact sets is
BIBO stability. It can be performed for the case of bounded or L2 disturbances, and it results
in an input–output relationship that relates the system output or states in terms of either
the input signal or the time integral of the squared input signal, where the input signal
may be an external disturbance or a manipulated input. This expression is obtained by
integrating the time derivative of the Lyapunov function. A BIBO stability study for an
open loop system is presented in [23], where a non-linear Caputo fractional system with
time varying bounded delay is considered. A quadratic Lyapunov function is defined, and
the resulting fractional derivative is a function of the negative Lyapunov function. As a
consequence of this expression, the upper bound of the Lyapunov function, system states
and system output are a function of the upper bound of the input.

BIBO stability is also determined for closed loop systems (see [24–28]). In [24], a
semi-active controller is formulated for a vibrating structure. The Lyapunov analysis
is combined with passivity theory and uses a storage function as a Lyapunov function.
The BIBO stability result relates the displacements and velocities as a function of L2 external
forces. Also, the ranges of the controller parameters that lead to BIBO stability are defined.
In [25], a robust observer-based controller design is formulated for a class of nonlinear
systems described by Tagaki–Sugeno (TS) models, subject to persistent bounded external
disturbance. A non-quadratic Lyapunov function is used. The BIBO stability result relates
the closed loop states as a function of the external disturbance. In [26], an adaptive neural
controller is developed for a n-link rigid robotic manipulator. Neural networks are used for
approximating the unknown dynamics, and the backstepping strategy is used as a basic
control framework. As a result of the controller design, the overall Lyapunov function (V2)
comprises the subsystem Lyapunov functions associated to the zi states and the parameter
updating error. The dV2/dt expression is a function of V2, so that it is concluded that the zi
states converge to compact sets whose width depends on the neural approximation error.
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In this paper, we study the stability of a network model comprising three CSTRs with
the following features: (i) the pollutant concentration in the inflow to the first CSTR is time
varying; (ii) the first and second CSTRs are connected in series, whereas the second and
third CSTRs are connected in parallel with flow exchange; (iii) the states converge to a
compact set instead of an equilibrium point. The practical applicability of the arrangement
of CSTRs is to provide a simpler model of pollution removal from wastewater treatment
via constructed wetlands, generating a satisfactory description of experimental pollution
values with a satisfactory transport dead time. The aforementioned features make the
global stability analysis complex. The convergence sets of the system states are determined
as a function of the concentration of the inflow to the first tank, and the global asymptotic
convergence of the states to these sets and their invariant nature are proved. Also, the effect
of the presence of flow exchange on the transient value of the system states is determined,
and it is concluded that it has no effect on the convergence regions. The study is based on
global stability using dead zone Lyapunov functions and Barbalat’s lemma.

The contribution of this work with respect to closely related studies on global stability
of continuous stirred tank reactors (CSTR) are:

• we consider three connected CSTRs, including a side CSTR with flow exchange,
whereas related studies consider a single CSTR with several states (e.g., biomass and
substrate concentrations) [20,21,29,30];

• we consider the case that the system converges to a compact set, whereas related
studies consider convergence to an equilibrium point [20,21,29,30].

The paper is organized as follows. The preliminaries and description of the model
are presented in Section 2; the stability analysis is presented in Section 3, including the
first tank (Section 3.1) and both the second and third tanks (Section 3.2). The numerical
simulation is presented in Section 4, and the conclusions in Section 5.

2. Model Description

Modelling of constructed wetlands is complex because of the large number of pro-
cesses involved in pollution removal, the hydraulics in a porous medium with the diffusive
flow, and the dead time. In addition, the pollution removal is influenced considerably by the
hydraulics and environmental conditions. The last generation of models (process—based
models) are rigorous but overly complex, with difficult estimation of its parameters [31–33].
In contrast, series/parallel connection of CSTRs is simple and capable of describing trans-
port dead time, diffusion and reaction [31].

In Marsili (2005), a simple model is proposed for describing the disperse hydraulics
and pollution removal dynamics in horizontal subsurface constructed wetlands [31].
The structure of the hydraulic model comprises three series CSTRs, followed by two
parallel CSTRs, and a plug flow reactor. The parallel CSTRs involve no flow exchange.
The kinetics is of the Monod type, and only depends on the concentration of the modelled
pollutant. The outlet and inlet flows of the system are the same, and the liquid CSTR
volumes are constant. The model was fitted to both experimental tracer data and current
(no tracer) data.

In Davies (2007) and Freire (2009), a simple modelling strategy is proposed for describ-
ing hydraulics and pollution removal dynamics corresponding to tracer data from vertical
subsurface constructed wetlands [34,35]. The model comprises three CSTRs, the first and
second CSTRs are connected in series, whereas the second and third CSTRs are connected
in parallel with flow exchange. The inlet flow is considered different from the outlet flow,
and no model is considered for it. The liquid volumes of the parallel CSTRs are constant,
whereas the liquid volume of the first CSTR is considered varying and is described by a
first-order differential equation that is fitted to experimental data. The specific reaction rate
is of the first order and it only depends on the concentration of the modelled pollutant.

We use the global stability definition as follows.
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Definition 1. Consider the system dX/dt = f(X), where X = (x1, x2, . . . , xn) ∈ Rn, f: Rn →Rn,
X(t,to,Xo) denoted as X(t) is a solution to the system, and X0 ∈ Rn is an initial value of X(t).
Consider the compact set ΩQ ⊂ Rn. Define the distance between the solution X and the compact
set ΩQ as:

ρ
(
X, ΩQ

)
= in f

Y∈ΩQ

||X−Y||.

If for all X0 satisfying X0 ∈ Rn, X0 /∈ ΩQ the property lim
t→∞

ρ
(
X, ΩQ

)
= 0 holds, then

the compact set ΩQ is called a global convergence set of the system, and the system is
called globally asymptotically stable.

We consider a series/parallel CSTRs-based model for representing the hydraulics
and pollution removal dynamics in subsurface constructed wetlands, resulting from a
combination of the models proposed by [31,34]. A single pollutant and a time-varying
inflow pollutant concentration are considered. The CSTRs connection comprises three
CSTRs, the first and second CSTRs are connected in series, whereas the second and third
CSTRs are connected in parallel with flow exchange (Figure 1). The mass balances for the
CSTRs are:

dS1

dt
= (Sin − S1)

Q
v1
− rs1, (1)

dS2

dt
= (S1 − S2)

Q
v2
− rs2 +

QD
v2

(S3 − S2), (2)

dS3

dt
= (S2 − S3)

QD
v3

, (3)

Sin = Sin + δsin, (4)

where S1 is the pollutant concentration in CSTR 1; S2 is the pollutant concentration in CSTR
2; S3 is the pollutant concentration in CSTR 3; Sin is the inlet pollutant concentration; Q is
the wastewater flow entering CSTR 1 and CSTR 2; QD is the wastewater flow entering and
leaving CSTR 3; vi is the liquid volume of the ith CSTR; rs1 is the reaction rate of CSTR 1;
rs2 is the reaction rate of CSTR 2. In addition, S1 is defined in R+, S2 is defined in R+, S3 is
defined in R+.
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Figure 1. Schematic structure of the series/parallel continuously stirred tank reactor (CSTR)-
based model.

Assumptions:

Assumption 1. Q, QD, v1, v2, andv3 are positive and constant. This implies that Q/v1,
Q/v2,QD/v2 and QD/v3 are constant and positive.

Assumption 2. Sin is positive and constant,δsin is varying but bounded, max{δsin} > 0,
min{δsin} < 0 .



Appl. Sci. 2021, 11, 4178 5 of 21

Assumption 3. The reaction rate rs1 only depends on S1, it is bounded for S1 bounded, drs1
dS1
≥ 0;

rs2 only depends on S2, it is bounded for S2 bounded, and drs2
dS2
≥ 0.

In the case of constant Sin, δsin = 0 in Equation (4), S1 converges to Seq
1 , S2 converges

to Seq
2 and S3 converges to Seq

3 , where Seq
1 , Seq

2 and Seq
3 are positive constants obtained by

equating Equations (1)–(3) to zero:

0 =
(
Sin − S1

)Q
v1
− rs1, (5)

0 = (S1 − S2)
Q
v2
− rs2 +

QD
v2

(S3 − S2), (6)

0 = (S2 − S3)
QD
v3

. (7)

Let
x1 = S1 − Seq

1 , (8)

x2 = S2 − Seq
2 , (9)

x3 = S3 − Seq
3 . (10)

The x1 dynamics is obtained by subtracting Equation (5) from Equation (1):

dx1

dt
= −D

(
x1 +

rx1

D
− δsin

)
, (11)

rx1 = rs1 − req
s1, (12)

where D = Q/v1 > 0, req
s1 is rs1 evaluated at S1 = Seq

1 .
The x2 dynamics is obtained by subtracting Equation (6) from Equation (2):

dx2

dt
= (x1 − x2)

Q
v2
− rx2 −

QD
v2

(x2 − x3), (13)

rx2 = rs2 − req
s2. (14)

The term req
s2 is rs2 evaluated at S2 = Seq

2 .
The x3 dynamics is obtained by subtracting Equation (7) from Equation (3):

dx3

dt
= (x2 − x3)

QD
v3

. (15)

In addition, x1 is defined in [−Seq
1 , ∞), x2 is defined in [−Seq

2 , ∞), and x3 is defined
in [−Seq

3 , ∞). The model is fitted to current (no tracer) data in Section 3.

3. Global Stability Analysis

In this section, the stability analysis is performed for the network model (1), including
the determination of the convergence set, the asymptotic convergence and the invariance.
The stability analysis is based on Lyapunov theory and Barbalat’s lemma. Recall that early
global stability studies based on dead zone Lyapunov functions are presented in [12–14],
whereas later studies are presented in [16,17,19].

A dead zone quadratic form V1 is defined for the first state x1, V2 for the second state
x2 and V3 for the third state x3, and their properties are determined. An overall Lyapunov
function V is defined as a weighted sum of the quadratic forms V1, V2, and V3. The time
derivative of each dead zone quadratic form is determined. The stability analysis of the
first tank is independent of the other tanks, whereas the stability analysis of the second
and third tanks is simultaneous and requires the stability results of the first tank.
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3.1. Stability Analysis for the First Tank

The stability analysis is based on determining the non-positive nature of dV1/dt,
where V1 is the dead-zone quadratic form for x1. The function V1 and its gradient dV1/dx1
are defined so as to achieve this goal.

The procedure comprises the following tasks: (i) determination of the expression for
dV1/dt; (ii) definition of the gradient dV1/dx1 and the dead zone quadratic form V1 for the
state x1; (iii) arrangement of the dV1/dt expression in terms of a non-positive function of
dV1/dx1; (iv) integration of the dV1/dt expression. The definition of the gradient dV1/dx1.
and V1 requires the determination of the dV1/dt expression and the properties of the
terms involved.

Theorem 1. Consider the model in Equations (11) and (12), subject to assumptions 1 to 3.
(Ti) The state x1 converges asymptotically to Ωx1, Ωx1 =

{
x1 : xl

1 ≤ x1 ≤ xu
1

}
, where xu

1 =

{x1 : gx1 −max{δsin} = 0 }, xu
1 > 0, xl

1 = {x1 : gx1 −min{δsin} = 0 }, xl
1 < 0, and

gx1 = x1 +
rx1
D , and S1 converges asymptotically to ΩS1 where ΩS1 =

[
Sl

1 Su
1

]
, Sl

1 = xl
1 + Seq

1 ,

Su
1 = xu

1 + Seq
1 and Seq

1 is provided by Equation (5). (Tii) The sets Ωx1 and ΩS1 are invariant.

Proof. Task 1. Determination of the dV1/dt expression.
The time derivative of V1 can be expressed as:

dV1

dt
= fv1

dx1

dt
, (16)

fv1 =
dv1

dx1
. (17)

Incorporating the x1 dynamics (11) and arranging, yields:

dV1

dt
= (−1)D fv1(gx1 − δsin), (18)

where,
gx1 = x1 +

rx1

D
, (19)

dgx1

dx1
= 1 +

1
D

drx1

dx1
≥ 1. (20)

�

Task 2. Definition of the gradient dV1/dx1 and the dead zone quadratic form V1 for the
state x1.

At what follows, we examine the properties of the term gx1 − δsin appearing in Equa-
tion (18). From Equations (12), (19) and (20) and Assumption 3 we have:

dgx1

dx1
≥ 1; gx1 = 0 f or x1 = 0; sgn(gx1) = sgn(x1), (21)

gx1 − δsin > 0 f or x1 > xu
1 , (22)

gx1 − δsin < 0 f or x1 < xl
1, (23)

where,
xu

1 = {x1 : gx1 −max{δsin} = 0 }, xu
1 > 0, (24)

xl
1 = {x1 : gx1 −min{δsin} = 0 }, xl

1 < 0. (25)

Therefore,

sgn(gx1 − δsin) = sgn(x1) = sgn(gx1) f or x1 /∈
[

xl
1, xu

1

]
. (26)
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To obtain non-positive dV1/dt in Equation (18), we need to choose fv1 such that:

− fv1(gx1 − δsin) < 0 f or x1 /∈
[

xl
1, xu

1

]
, (27)

− fv1(gx1 − δsin) = 0 f or x1 /∈
[

xl
1, xu

1

]
. (28)

In view of properties (26) and to fulfill conditions (27) and (28), we choose:

fv1 =


x1 − xu

1 f or x1 > xu
1

0 f or x1 ∈
[

xl
1, xu

1

]
.

x1 − xl
1 f or x1 < xl

1

(29)

The main properties of fv1 are:

(Pi) fv1 is continuous with respect to x1 , (30)

(Pii) fv1 = 0 f or x1 ∈
[

xl
1, xu

1

]
, (31)

(Piii) fv1 6= 0 f or x1 /∈
[

xl
1, xu

1

]
, (32)

P(iv) sgn( fv1) = sgn(x1) 6= 0 f or x1 /∈
[

xl
1, xu

1

]
, (33)

(Pv) sgn( fv1) = sgn(gx1) = sgn(gx1 − δsin) 6= 0 f or x1 /∈
[

xl
1, xu

1

]
. (34)

A dead-zone Lyapunov function that satisfies dV1/dx1 = fv1 (Equation (17)) is:

V1 =
1
2

f 2
v1. (35)

The main properties of V1 are:

V1 > 0 f or x1 /∈
[

xl
1, xu

1

]
, (36)

V1 = 0 f or x1 ∈
[

xl
1, xu

1

]
. (37)

�

Task 3. Arrangement of the dV1/dt expression in terms of a non-positive function of
fv1 = dV1/dx1.

From properties (31), (34), it follows that the term fv1(gx1 − δsin) appearing in Equa-
tion (18) satisfies:

fv1(gx1 − δsin) = | fv1||(gx1 − δsin)| ≥ 0. (38)

From the definition of gx1 (19) and definitions of xl
1, xu

1 (24), (25), it follows that:

bgx1 − δsinc ≥ |gt1|, (39)

gt1 =


gx1 −max{δsin} f or x1 > xu

1

0 f or x1 ∈
[

xl
1, xu

1

]
gx1 −min{δsin} f or x1 < xl

1

. (40)

From Equations (38) and (39), it follows that:

fv1(gx1 − δsin) ≥ | fv1||gt1| = fv1gt1 ≥ 0. (41)
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From the property (21), definition of gt1 (40), and definition of fv1 (29), it follows that:

|gt1| ≥ | fv1|. (42)

Therefore, Equation (41) yields:

fv1(gx1 − δsin) ≥ f 2
v1 ≥ 0. (43)

Using this in Equation (18) yields:

dV1

dt
≤ −D f 2

v1. (44)

Accounting for the definition of V1 (35), we have:

dV1

dt
≤ −2DV1 ≤ 0.

�

Task 4. Integration of the dV1/dt expression.
From the above expression, it follows that:

V1 ≤ V1toe−2D(t−to). (45)

That is, V1(35) converges exponentially to zero, and consequently fv1 converges ex-
ponentially to zero. Further, accounting for the definition of fv1 (29), it follows that x1

converges asymptotically to Ωx1 =
{

x1 : xl
1 ≤ x1 ≤ xu

1

}
. From this convergence result and

the definition of x1 (8), it follows that S1 converges asymptotically to ΩS1; where,

ΩS1 =
[
Sl

1 Su
1

]
, (46)

Sl
1 = xl

1 + Seq
1 , Su

1 = xu
1 + Seq

1 . (47)

Seq
1 is provided by Equation (5), the bounds xl

1, xu
1 are defined in Equations (24) and

(25). This completes the proof of Ti.
From Equation (44) and properties (31) and (32), it follows that dV1

dt < 0 f or x1 /∈ Ωx1

and dV1
dt ≤ 0 f or x1 ∈ Ωx1. Therefore, the set Ωx1 is invariant, and consequently, Ωs1 is

invariant. This completes the proof of Tii. �

Remark 1. The property |gt| ≥ | fv1| (42) is crucial for proving the asymptotic convergence of x1.

Remark 2. The invariance of the set Ωs1 stated in Theorem 1 implies that once the state S1 is inside
the convergence region Ωs1, that is, S1 ∈ Ωs1, it remains inside afterwards.

3.2. Stability Analysis for the Second and Third Tanks

The stability analysis and majorly the proof for asymptotic convergence of x2 and x3 to
their compact sets, is based on determining the non-positive nature of dV/dt = dV1/dt +
k2dV2/dt + k3dV3/dt, where V = V1 + kV2 + kV3, V is the overall Lyapunov function, V2
is the dead zone quadratic form for the state x2 and V3 the dead zone quadratic form for
the state x3, and k2 and k3 are positive constants. To achieve this goal, the functions V2 and
V3 and the gradients dV2/dx2 and dV3/dx3 are defined accordingly, and the non-positive
nature of the terms of the dV/dt expression is determined.

The procedure comprises the following tasks: (i) determination of the expression for
dV2/dt + kdV3/dt; (ii) arrangement of the expression for dV2/dt + kdV3/dt in terms of fv1;
(iii) definition of gradient dV2/dx2 and dead zone quadratic form V2; (iv) arrangement of
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the expression for dV2/dt + kdV3/dt in terms of a non-positive function of dV2/dx2; (v)
definition of gradient dV3/dx3 and dead zone quadratic form V3; (vi) definition of the
overall Lyapunov function V and determination of the non-positive nature of the expres-
sion for dV/dt = dV1/dt + kdV2/dt + kdV3/dt; (vii) integration of the dV/dt expression.
The definition of the gradients dV2/dx2 and dV3/dx3 and the quadratic forms V2 and V3
requires the determination of the expression for dV2/dt + kdV3/dt and the properties of
the terms involved.

Theorem 2. Consider the model (11)–(15), subject to assumptions 1 to 3. (Ti) the state x2 converges
asymptotically to Ωx2, Ωx2 =

{
x2 : xl

2 ≤ x2 ≤ xu
2

}
, where:

xu
2 = {x2 : gx2 −max{δ2} = 0}, xu

2 > 0xl
2 = {x2 : gx2 −min{δ2} = 0}, xl

2 < 0gx2 = x2 +
rx2

Q/v2
, δ2 = −dx1, dx1 =


−xu

1 f or x1 > xu
1

−x1 f or x1 ∈
[

xl
1, xu

1

]
−xl

1 f or x1 < xl
1

.

S2 converges asymptotically to ΩS2 where ΩS2 =
[
Sl

2 Su
2

]
, Sl

2 = xl
2 + Seq

2 , Su
2 = xu

2 + Seq
2

and Seq
2 is provided by Equations (5)–(7). (Tii) the state x3 converges asymptotically to Ωx3,

Ωx3 =
{

x3 : xl
3 ≤ x3 ≤ xu

3

}
, where xu

3 = xu
2 ; xl

3 = xl
2, and S3 converges asymptotically to ΩS3

where ΩS3 =
[
Sl

3 Su
3

]
, Sl

3 = xl
3 + Seq

3 , Su
3 = xu

3 + Seq
3 and Seq

3 is provided by Equations (5)–(7).
(Tiii) The sets Ωx = Ωx1

⋃
Ωx2

⋃
Ωx3 and ΩS = ΩS1

⋃
ΩS2

⋃
ΩS3 are invariant.

Proof. Task 1. Determination of the expression for dV2/dt + kdV3/dt.
The dx2/dt expression (13) can be rewritten as:

dx2

dt
= −QD

v2
(x2 − x3) + (−1)

Q
v2

(gx2 − x1), (48)

where:
gx2 = x2 +

rx2

Q/v2
. (49)

The time derivative of V2 can be expressed as:

dV2

dt
= fv2

dx2

dt
, (50)

fv2 =
dV2

dx2
. (51)

Substituting the dx2/dt expression (Equation (48)) and arranging, yields:

dV2

dt
= fv2(−1)

QD
v2

(x2 − x3) + (−1)
Q
v2

fv2(gx2 − x1). (52)

The time derivative of V3 can be expressed as:

dV3

dt
= fv3

dx3

dt
, (53)

fv3 =
dV3

dx3
. (54)

Substituting the dx3/dt expression (Equation (15)) and arranging, yields

dV3

dt
= fv3

(
(x2 − x3)

QD
v3

)
. (55)
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Hence,
d
dt

(
v3

v2
V3

)
= fv3

(
(x2 − x3)

QD
v2

)
. (56)

Adding dV2/dt (52) and dV3/dt (56), yields

dV2

dt
+

d
dt

(
v3

v2
V3

)
= (−1)

QD
v2

(x2 − x3)( fv2 − fv3) + (−1)
Q
v2

fv2(gx2 − x1). (57)

�

Task 2. Arrangement of the expression for dV2/dt + kdV3/dt in terms of fv1.
The x1 signal appearing in Equation (57) can be expressed as the sum of fv1 and a

disturbance term. Let,
dx1 = fv1 − x1. (58)

Using the definition of fv1 (29), we have:

dx1 =


−xu

1 f or x1 > xu
1

−x1 f or x1 ∈
[

xl
1, xu

1

]
−xl

1 f or x1 < xl
1

. (59)

Hence,
dx1 ∈

[
−xu

1 ,−xl
1

]
. (60)

From Equation (58), x1 can be expressed as:

x1 = fv1 − dx1. (61)

Substituting in expression (57) and arranging, yields:

dV2
dt + d

dt

(
v3
v2

V3

)
= (−1)QD

v2
(x2 − x3)( fv2 − fv3) + (−1) Q

v2
fv2(gx2 − δ2)

+ fv2
Q
v2

fv1.
(62)

where
δ2 = −dx1 . (63)

The effect of the term fv2(Q/v2) fv1 is tackled later by considering the dV1/dt expres-
sion. �

Task 3. Definition of gradient fv2 = dV2/dx2 and dead zone quadratic form V2.
At what follows, we examine the properties of δ2 and the term gx2 − δ2 appearing in

Equation (62), what allows us to choose fv2 and V2. From the definition of δ2 (63) and dx1

(59) it follows that δ2 ∈
[

xl
1, xu

1

]
.

Hence,
max{δ2} = xu

1 > 0, (64)

min{δ2} = xl
1 < 0. (65)

The gradient of gx2 (49) is:

dgx2

dx2
= 1 +

1
Q/v2

drx2

dx2
. (66)

Furthermore, accounting for the definition of rx2 (14), the definition of gx2 in Equa-
tion (49), and the properties of rx2 stated in assumption 3, we have:

dgx2

dx2
≥ 1,

dgx2

dx2
is bounded f or x2 bounded, and sgn(gx2) = sgn(x2). (67)
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In turn, these properties lead to:

gx2 − δ2 > 0 f or x2 > xu
2 > 0, (68)

gx2 − δ2 < 0 f or x2 < xl
2 < 0. (69)

where
xu

2 = {x2 : gx2 −max{δ2} = 0}, xu
2 > 0, (70)

xl
2 = {x2 : gx2 −min{δ2} = 0}, xl

2 < 0. (71)

The term δ2 is defined in Equations (63) and (59) and satisfies Equations (64) and (65).
From Equations (67)–(69) it follows that:

sgn(gx2 − δ2) = sgn(x2) = sgn(gx2) f or x2 /∈
[

xl
2, xu

2

]
. (72)

To obtain the non-positive nature of the term (−1) fv2(gx2 − δ2), appearing in Equa-
tion (62), we need to choose fv2 such that:

− fv2(gx2 − δ2) < 0 f or x2 /∈
[

xl
2, xu

2

]
, (73)

− fv2(gx2 − δ2) = 0 f or x2 ∈
[

xl
2, xu

2

]
. (74)

In view of properties (72) and to fulfill (73) and (74), we choose:

fv2 =


x2 − xu

2 f or x2 > xu
2 > 0

0 f or x2 ∈
[

xl
2, xu

2

]
x2 − xl

2 f or x2 < xl
2 < 0

. (75)

The main properties of fv2 are:

(Pi) fv2 is continuous with respect to x2, (76)

(Pii) fv2 = 0 f or x2 ∈
[

xl
2, xu

2

]
, (77)

(Piii) fv2 6= 0 f or x2 /∈
[

xl
2, xu

2

]
, (78)

(Piv) sgn( fv2) = sgn(x2) 6= 0 f or x2 /∈
[

xl
2, xu

2

]
, (79)

(Pv) sgn( fv2) = sgn(gx2) = sgn(gx2 − δ2) 6= 0 f or x2 /∈
[

xl
2, xu

2

]
. (80)

A Lyapunov function that satisfies dV2/dx2 = fv2 Equation (51) is:

V2 =
1
2

f 2
v2. (81)

The main properties of V2 are:

V2 > 0 f or x2 /∈
[

xl
2, xu

2

]
, (82)

V2 = 0 f or x2 ∈
[

xl
2, xu

2

]
, (83)

V2 is continuous with respect to x2. (84)

�

Task 4. Arrangement of the expression for dV2/dt + kdV3/dt in terms of a non-positive
function of fv2 = dV2/dx2.
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From properties Pv (80) and Pii (77), it follows that the term fv2(gx2 − δ2) appearing
in Equation (62) satisfies:

fv2(gx2 − δ2) = | fv2||gx2 − δ2| = | fv2(gx2 − δ2)| ≥ 0. (85)

In addition, the term (gx2 − δ2) satisfies the following:

|gx2 − δ2| ≥ |g2v|, (86)

where,

g2v =


gx2 −max{δ2} f or x2 > xu

2

0 f or x2 ∈
[

xl
2, xu

2

]
gx2 −min{δ2} f or x2 < xl

2

. (87)

The main properties of g2v are:

(Pi) g2v is continuous with respect to x2, (88)

(Pii) g2v = 0 f or x2 ∈
[

xl
2, xu

2

]
, (89)

(Piii) g2v 6= 0 f or x2 /∈
[

xl
2, xu

2

]
, (90)

(Piv) sgn(g2v) = sgn(x2) 6= 0 f or x2 /∈
[

xl
2, xu

2

]
. (91)

From Equations (85) and (86), it follows that:

fv2(gx2 − δ2) = | fv2||gx2 − δ2| ≥ | fv2g2v| ≥ 0. (92)

From the definitions of g2v (87) and fv2 (75) it follows that:

|g2v| ≥ | fv2|. (93)

Therefore, Equation (92) yields:

fv2(gx2 − δ2) ≥ f 2
v2 ≥ 0. (94)

Using this, Equation (62), yields:

dV2

dt
+

d
dt

(
v3

v2
V3

)
≤ (−1)

QD
v2

(x2 − x3)( fv2 − fv3) + (−1)
Q
v2

f 2
v2 + fv2

Q
v2

fv1. (95)

�

Task 5. Definition of gradient dV3/dx3 and dead zone quadratic form V3.
We choose fv3 with the structure of fv2:

fv3 =


x3 − xu

3 f or x3 > xu
3 > 0

0 f or x3 ∈
[

xl
3, xu

3

]
x3 − xl

3 f or x3 < xl
3 < 0

. (96)

where the bounds xu
3 , xl

3 are defined as:

xu
3 = xu

2 ; xl
3 = xl

2 , (97)
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and xl
2, xu

2 are defined in Equations (70) and (71). A Lyapunov function that satisfies the
gradient dV3/dx3 = fv3 (Equation (54)) is:

V3 =
1
2

f 2
v3 (98)

The main properties of V3 are:

V3 > 0 f or x3 /∈
[

xl
3, xu

3

]
, (99)

V3 = 0 f or x3 ∈
[

xl
3, xu

3

]
, (100)

V3 is continuous with respect to x3. (101)

As a consequence of the definitions of fv2 (75) and fv3 (96), the property:

(x2 − x3)( fv2 − fv3) ≥ 0, (102)

holds true, as proved in Appendix A. Equation (95) can be arranged as:

dV2
dt + d

dt

(
v3
v2

V3

)
≤ (−1)QD

v2
(x2 − x3)( fv2 − fv3)− β1

Q
v2

f 2
v2 + (−1)β2

Q
v2

f 2
v2 + fv2

Q
v2

fv1, (103)

where β1, β2 are positive constants that satisfy:

1 = β1 + β2, β1 ∈ (0, 1), β2 ∈ (0, 1). (104)

�

Task 6. Definition of the overall Lyapunov function V and determination of the non-
positive nature of the expression for dV/dt = dV1/dt + kdV2/dt + dV3/dt.

The term (−1)β2
Q
v2

f 2
v2 + fv2

Q
v2

fv1 appearing in Equation (103) can be expressed in
terms of f 2

v1:

(−1)β2
Q
v2

f 2
v2 + fv2

Q
v2

fv1 = (−1)β2
Q
v2

(
fv2 −

1
2β2

fv1

)2
+

1
4β2

Q
v2

f 2
v1 ≤

1
4β2

Q
v2

f 2
v1. (105)

Substituting into Equation (103), we have:

dV2

dt
+

d
dt

(
v3

v2
V3

)
≤ (−1)

QD
v2

(x2 − x3)( fv2 − fv3) + (−1)β1
Q
v2

f 2
v2 +

1
4β2

Q
v2

f 2
v1. (106)

We tackle the effect of the f 2
v1 term by incorporating the dV1/dt expression. Equa-

tion (44) leads to:
d
dt

(
1
D

1
4β2

Q
v2

V1

)
≤ − 1

4β2

Q
v2

f 2
v1. (107)

Combining with Equation (106) and accounting for the property (102), yields:

dV2
dt + d

dt

(
v3
v2

V3

)
+ d

dt

(
1
D

1
4β2

Q
v2

V1

)
≤ (−1)QD

v2
(x2 − x3)( fv2 − fv3)+(−1)β1

Q
v2

f 2
v2 ≤ 0, (108)

which can be rewritten as:

dV
dt
≤ (−1)

QD
v2

(x2 − x3)( fv2 − fv3) + (−1)β1
Q
v2

f 2
v2 ≤ 0. (109)

where V is the overall Lyapunov function, defined as:

V = V2 +
v3

v2
V3 +

1
D

1
4β2

Q
v2

V1. (110)
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�

Task 7. Integration of the dV/dt expression.
Integrating Equation (108), yields:

V2 +
v3
v2

V3 +
1

4β2
1
D

Q
v2

V1 + β1
Q
v2

∫ t
to f 2

v2dt +
∫ t

to
QD
v2

(x2 − x3)( fv2 − fv3)dt ≤ V2to +
v3
v2

V3to+
1

4β2
1
D

Q
v2

V1to. (111)

Therefore: (BPi) V2 ∈ L∞, V3 ∈ L∞, V1 ∈ L∞, and from the definitions of V1 (35),
V2 (81), V3 (98) it follows that fv1 ∈ L∞, fv2 ∈ L∞, fv3 ∈ L∞, and consequently f 2

v2 ∈ L∞;
(BPii) x1 ∈ L∞, x2 ∈ L∞, x3 ∈ L∞, what follows from the definitions of fv1(29), fv2 (75), fv3
(96); (BPiii) f 2

v2 ∈ L1. Considering the properties f 2
v2 ∈ L1 and f 2

v2 ∈ L∞ and applying the
Barbalat’s lemma (cf. [36]), yields:

lim
t→∞

f 2
v2 = 0. (112)

Furthermore, accounting for the definition of fv2 (75), it follows that x2 converges
asymptotically to Ωx2 =

{
x2 : xl

2 ≤ x2 ≤ xu
2

}
. From this convergence result and the

definition of x2 (9), it follows that S2 converges asymptotically to ΩS2; where:

ΩS2 =
[
Sl

2 Su
2

]
, (113)

Sl
2 = xl

2 + Seq
2 , Su

2 = xu
2 + Seq

2 . (114)

Seq
2 is provided by Equations (5)–(7); the bounds xl

2, xu
2 are defined in Equations (70)

and (71). This completes the proof of the first part of the theorem (Ti).
From Equation (111), it follows that (x2 − x3)( fv2 − fv3) ∈ L1 and from properties

Bpi, BPii it follows that (x2 − x3)( fv2 − fv3) ∈ L∞. Applying the Lasalle’s theorem (cf. [22])
yields lim

t→∞
(x2 − x3)( fv2 − fv3) = 0.

Hence, either x2 − x3 or fv2 − fv3 converges to zero. This result and the convergence
of x2 to Ωx2, the convergence of fv2 to zero, and the definition of fv3 (96) and fv2 (75), imply:
(i) if x2 − x3 converges to zero, then x3 converges to Ωx3, Ωx3 =

{
x3 : xl

3 ≤ x3 ≤ xu
3

}
; (ii) if

fv2− fv3 converges to zero, then fv3 converges to zero, which implies the convergence of x3
to Ωx3. Therefore, as is indicated by both of these possibilities, x3 converges asymptotically
to Ωx3. From this convergence result and the definition of x3 (10) it follows that S3 converges
asymptotically to ΩS3, where:

ΩS3 =
[
Sl

3Su
3

]
, (115)

Sl
3 = xl

3 + Seq
3 , Su

3 = xu
3 + Seq

3 . (116)

Seq
3 is provided by Equations (5)–(7), and the bounds xl

3, xu
3 are defined in Equation (97).

This completes the proof of the second part of the theorem (Tii).
From Equation (109), it follows that:

i f V = 0 f or t = t∗, t∗ ≥ to, then V = 0 f or t ≥ t∗. (117)

The condition V = 0 implies: (i) fv1 = 0, fv2 = 0 and fv3 = 0, as follows from
definitions of V (110), V1 (35), V2 (81), and V3 (98); (ii) x1 ∈ Ωx1, x2 ∈ Ωx2, x3 ∈ Ωx3,
as follows from the definition of fv1 (29), fv2 (75) and fv3 (96). Therefore, it follows from
(117) that Ωx = Ωx1

⋃
Ωx2

⋃
Ωx3 is invariant, and consequently Ωs = Ωs1

⋃
Ωs2

⋃
Ωs3

is invariant. This completes the proof of Tiii. �

Remark 1. Important advantages of the stability result stated in theorem 2 are:

• the widths of the convergence regions Ωx1, Ωx2, Ωx3 are arbitrarily large, as they are a function
of δsi, which is arbitrarily large but bounded;

• the initial values of x1, x2, and x3 can take arbitrarily large but bounded positive values, since
x1 is defined in [−Seq

1 , ∞), x2 is defined in [−Seq
2 , ∞), and x3 is defined in [−Seq

3 , ∞), as
stated in Section 2.
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Remark 2. In the study of the stability of x1, the dynamics of x2 and x3 (2), (3) are not accounted
for, as can be noticed in the proof of Theorem 1. This is a consequence of the fact that x2 and x3 are
not involved in the dynamics of x1 (11). In contrast, in the study of the stability of x2 and x3, the
dynamics of x1, x2 and x3 are accounted for, as can be noticed in the proof of theorem 2. This is a
consequence of the fact that x1, x2 and x3 are involved in the dynamics of x2 (13).

Remark 3. The first tank influences the transient value of x2, which can be noticed from Equation
(111). Also, the first tank influences the width of the convergence region of x2, that is [xl

2, xu
2 ], what

can be noticed from the definition of xl
2, xu

2 (70), (71), the definition of δ2 (63), (58), the properties of
δ2 (64), (65), and the definition of xl

1, xu
1 (24), (25).

Remark 4. The presence of the third tank influences the transient value of x2, what can be noticed
from Equation (111). However, it does not influence the width of the convergence region of the state
x2, that is, [xl

2, xu
2 ], since the bounds (xl

2, xu
2 ) are not influenced by the parameters of the third tank,

that is, QD and v3, which can be noticed from the definition of xl
2, xu

2 (70), (71).

Remark 5. Important tasks of the stability analysis are: the definition of the overall Lyapunov-
like function V (110) consisting on the weighted sum of three dead-zoned quadratic forms; the
determination of the property (102), which expresses the effect of the flow exchange on the non-
positive nature of dV/dt; the property |g2v| ≥ | f2v| (93) which was required for proving the
convergence of x2. These tasks are crucial for proving the non-positive nature of dV/dt. Also, the
whole stability analysis and especially these tasks are major contributions to the study of convergence
of biological processes to compact sets.

Remark 6. The invariance of the set Ωs stated in Theorem 2 implies that once the three states S1, S2,
S3 are inside the convergence region Ωs, that is, S1 ∈ Ωs1, S2 ∈ Ωs2 and S3 ∈ Ωs3 simultaneously,
they remain inside afterwards.

Remark 7. The developed stability analysis can be extended to other types of nonlinear connected
systems, featuring a higher number of state variables, and a vector field with different non-linear
terms, by using the following general procedure: (i) determination of the equilibrium points
corresponding to the case of no time varying external disturbance; (ii) definition of the new states
as the differences between the current state variables and their equilibria; (iii) rewriting of the
system dynamics in terms of the new states; (iv) definition of the subsystem Lyapunov functions,
corresponding to each state variable, and determination of its properties; (v) determination of
the time derivative of each subsystem Lyapunov function, arrangement in terms of non-positive
functions and definition of the convergence regions; (vi) definition of the overall Lyapunov function
V as a weighted sum of the subsystem Lyapunov functions; (vii) determination of the dV/dt
expression and arrangement in terms of non-positive functions; (viii) integration of the dV/dt
expression, determination of the boundedness properties of the state variables and their functions;
(ix) application of the Barbalat’s lemma. As part of this procedure: the subsystem Lyapunov functions
can be defined as dead-zone quadratic forms, or they can be defined according to the non-linear terms
of the vector field; the subsystem Lyapunov functions corresponding to the state variables featuring
connection must be chosen so as to obtain a non-positive effect in the dV/dt expression; if there are
one or more state variables whose vector field is independent of the other states, an independent
stability analysis can be performed for each of them.

4. Simulation and Analysis

In this section, some simulations of the system (1)–(3) are performed to illustrate the
results stated in Theorems 1 and 2.

We consider the following reaction rate expressions:

rs1 = µmx1
S1

K1+S1
, hence rs1 = µmx1

x1+Seq
1

K1+x1+Seq
1

,rs2 = µmx2
S2

K2+S2
, hence rs2 = µmx2

x2+Seq
2

K2+x2+Seq
2

.
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The terms rs1 and rs2 satisfy assumption 3. The model (1)–(3) with these reaction
rate expressions was calibrated with data of suspended solids concentration from vertical
subsurface flow constructed wetlands (CWs) reported in [37]. The CWs are located in
Cuenca (Ecuador) and receive domestic wastewater coming out from primary treatment.
The influent wastewater comprises a suspended solids concentration of 88.83 mg/L, BOD5
concentration of 95.75 mg/L, and temperature of 24.6 ◦C. The hydraulic loading rate (HLR)
is 0.2 md−1.

Model (1)–(3) was fitted by minimizing the sum of the square residuals between
experimental and model data of suspended solids concentration. The parameter values
obtained were used in the first simulation case and are shown in Table 1.

Table 1. Parameter values for the CSTR network model (1)–(3).

Parameter Value for the First
Simulation Case

Value for the Second
Simulation Case

Value for the Third
Simulation Case

Q1/v1 0.702 day−1 0.702 day−1 0.702 day−1

Q2/v2 0.702 day−1 0.702 day−1 0.702 day−1

QD/v2 0.0001 day−1 0.0001 day−1 0.0001 day−1

QD/v3 1 day−1 1 day−1 1 day−1

µmax1 101 mg /(L day) 101 mg /(L day) 101 mg /(L day)
K1 303.1 mg/L 303.1 mg/L 303.1 mg/L

µmax2 101 mg/(L day) 202 mg/(L day) 404 mg/(L day)
K2 303.1 mg/L 151.55 mg/L 30.31 mg/L

To evaluate the obtained convergence results stated in Theorems 1 and 2, model (1)–(4)
is simulated with

Sin = 100 mg/L; δsin = A1sin
(

2πt
Tsin

)
, A1 = 10; Tsin = 20 days. (118)

The bounds Sl
1, Su

1 of ΩS1 (47); the bounds Sl
2, Su

2 of ΩS2 (114); and the bounds Sl
3, Su

3
of ΩS3 (116) are computed and represented by the upper and lower horizontal dotted lines,
whereas the equilibrium values Seq

1 , Seq
2 and Seq

3 (Equations (5)–(7)) are represented by the
middle horizontal dotted lines. The calculation of the aforementioned bounds requires the
calculation of bounds xl

1, xu
1 (24), (25); xl

2, xu
2 (70), (71); and xl

3, xu
3 (97). Three simulations

are performed, using definitions (118) and parameter values shown in Table 1.
In the three simulations, convergence to the regions within the calculated bounds

is observed: the state S1 convergences to the region within computed bounds Sl
1, Su

1
(see Figure 2a, Figure 3a, Figure 4a,b); the state S2 converges to the region within computed
bounds Sl

2, Su
2 (see Figure 2b, Figure 3b, Figure 4c,d); and S3 converges to the region within

the computed bounds Sl
3, Su

3 (see Figure 2b, Figure 3b, Figure 4c,d).
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Figure 2. Simulation of the CSTR network model (1)–(4), first case. (a) Time course of S1; the upper
and lower horizontal dotted lines indicate the bounds of ΩS1. (b) Time course of S2 and S3, the upper
and lower horizontal dotted lines indicate the bounds of ΩS2, and ΩS3.
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Figure 3. Simulation of the CSTR network model (1)–(4), second case. (a) Time course of S1; the
upper and lower horizontal dotted lines indicate the bounds of ΩS1. (b) Time course of S2 and S3,
the upper and lower horizontal dotted lines indicate the bounds of ΩS2 and ΩS3.
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Figure 4. Simulation of the CSTR network model (1)–(4), third case. (a) Time course of S1; the upper
and lower horizontal dotted lines indicate the bounds of ΩS1. (b) Detail of the time course of S1.
(c) Time course of S2 and S3, the upper and lower horizontal dotted lines indicate the bounds of ΩS2

and ΩS3. (d) Detail of the time course of S2 and S3.

Also, the three simulation cases illustrate the results stated in Theorems 1 and 2: (i) the
invariant nature of Ωs1, stated in Theorem 1 and discussed in Remark 2: one can see that
once S1 enters Ωs1, it remains inside; (ii) the equivalence of the convergence regions Ωs2
and Ωs3 defined in Theorem 2: one can see that S2 and S3 converge to the same regions;
(iii) the definitions of Ωs1 and Ωs2, which indicate that Ωs1 and Ωs2 can be quite different,
as Ωs2 depends on the reaction rate rx2: one can see this remarkable difference in the
regions to which S1 and S2 converge; (iv) the invariant nature of Ωs, stated in Theorem 2
and discussed in Remark 6: one can see that once the three state variables are inside the
convergence region Ωs, that is, S1 ∈ Ωs1, S2 ∈ Ωs2, S3 ∈ Ωs3, simultaneously, they remain
inside afterwards.

5. Conclusions

This paper presented the analysis of the stability of a network model comprising three
CSTRs with the following features: (i) the pollutant concentration in the inflow of the first
CSTR is time varying but bounded; (ii) the first and second CSTRs are connected in series,
whereas the second and third CSTRs are connected in parallel with flow exchange; (iii) the
states converge to a compact set instead of an equilibrium point. The practical applicability
of the arrangement of CSTRs is the creation of a simpler model of pollution removal from
wastewater treatment via constructed wetlands, generating a satisfactory description of
experimental pollution values with a satisfactory transport dead time.

The convergence sets of the states of the CSTR model were determined, and the global
asymptotic convergence to these compact sets and their invariance were proved. Also,
the effect of the side tank (third tank) on the transient value of the system states was
determined, and it was concluded that it had no effect on the convergence regions. To this
end, the proposed stability analysis comprises:
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(i) the definition of a dead-zone Lyapunov-like function for each state, the determination
of its properties, and the definition of the overall Lyapunov function as the sum of the
dead zone quadratic forms;

(ii) the determination of the time derivative of the quadratic forms and their properties;
(iii) the use of these properties in the time derivative of the overall Lyapunov-like function.
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Appendix A

The expression (x2 − x3)( fv2 − fv3) can be expressed as:

(x2 − x3)( fv2 − fv3) = |(x2 − x3)( fv2 − fv3)| sgn(x2 − x3) sgn( fv2 − fv3), (A1)

or

(x2 − x3)( fv2 − fv3) == |(x2 − x3)( fv2 − fv3)| sgn(x3 − x2) sgn( fv3 − fv2). (A2)

Thus, the signum of (x2 − x3)( fv2 − fv3) depends on the value of sgn(x2 − x3)
sgn( fv2 − fv3), or, equivalently, the signum of sgn(x3 − x2) sgn( fv3 − fv2). To determine

it, three different cases are analyzed as follows.
Case 1. | fv2| 6= 0, | fv3| 6= 0. In this case,

fv2 6= 0, fv3 6= 0. (A3)

From the definitions of fv2 (75) and fv3 (96) it follows that:

x2 /∈
[

xl
2, xu

2

]
, x3 /∈

[
xl

3, xu
3

]
. (A4)

Hence,
sgn( fv2) = sgn(x2) 6= 0, (A5)

sgn( fv3) = sgn(x3) 6= 0. (A6)

Therefore, accounting for the definition of fv2 and fv3, we have:

sgn( fv2 − fv3) = sgn(x2 − x3). (A7)

Therefore, from Equation (A1), it follows that:

(x2 − x3)( fv2 − fv3) ≥ 0. (A8)
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Case 2. fv2 = 0, fv3 6= 0. In this case,

x2 ∈
[

xl
2, xu

2

]
, x3 /∈

[
xl

3, xu
3

]
. (A9)

Moreover,
sgn( fv2) = 0, (A10)

sgn( fv3) = sgn(x3) 6= 0, (A11)

sgn(x3 − x2) = sgn(x3) 6= 0. (A12)

Furthermore, accounting for the definition of fv2 (75) and fv3 (96), we have:

sgn( fv3 − fv2) = sgn( fv3) = sgn(x3) 6= 0. (A13)

Therefore,
sgn( fv3 − fv2)sgn(x3 − x2) = +1. (A14)

Therefore, from Equation (A2), it follows that:

(x2 − x3)( fv2 − fv3) ≥ 0. (A15)

Case 3. fv2 6= 0, fv3 = 0. In this case, with a procedure similar to that used for case 2,
it is found that:

(x2 − x3)( fv2 − fv3) ≥ 0 (A16)
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