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Abstract: The logistics sector should strive for sustainability alongside productivity by protecting
its order pickers’ health and welfare. Existing storage assignment models are mainly based on the
criterion of order picking time and, to a lesser extent, the human factor. In the paper, a solution to
a storage assignment problem using a multi-objective model based on binary integer linear program-
ing is presented by developing a solution that considers order picking time, energy expenditure
and health risk. The Ovako Working Posture Assessment System (OWAS) method was used for
health risk assessment. The downside of solely health risk-optimization is that the average order
picking time increases by approximately 33% compared to solely time-optimization. Contrary to
this, the developed multi-objective function emphasizing time has proven to be promising in finding
a compromise between the optimal order picking time and eliminating work situations with a very-
high risk for injuries. Its use increases the time by only 3.8% compared to solely time-optimization
while significantly reducing health risk.

Keywords: productivity; energy expenditure; health risk; order picking; OWAS; multi-objective
modeling

1. Introduction

Our lives, work and development are primarily driven by trends, concepts and re-
gional or global policies. In the fields of production and intra-logistics, among the most
influential concepts are the lean approach, industry 4.0 and sustainability. In addition to
these listed, due to the aging population, the increase in the number of musculoskeletal
disorders (MSDs) and, last but not least, the pandemic events, the human factor is slowly
coming to the fore. Therefore, there is a need to incorporate more aspects into systems
modeling besides productivity and economic aspect. In manual work, there is a growing
need to add at least the aspect of caring for workers’ physical health besides productiv-
ity. This can be beneficial for the most labor- and time-intensive operations like manual
man-to-goods order picking [1,2], which is the central focus of this paper. The solution
lies in development of a storage assignment model to minimize factors that noticeably
influence on key performance indicators. The storage assignment method is a series of
rules determining how items are assigned to storage locations [3].

In the following, we explain drivers for multi-objective optimization development,
manual man-to-goods order picking, decision support models for storage assignment,
the OWAS method in order to set the goals and structure of research work and the reasons
for them.
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1.1. Lean and Sustainability as Drivers for Multi-Objective Optimization Development

A lean approach is being introduced to production environments to decrease costs and
increase productivity, which creates an intensified work pace and demands [4]. However,
this does not increase the need for workers’ decision-making and self-organization in the
workplace. Work becomes standardized, movements prescribed. Such work can become
more or less burdensome. In a society where more and more companies are introducing
lean, intensive work, this can be reflected in increased MSDs [5–7]. In Germany, for ex-
ample, musculoskeletal and connective tissue disorders accounted for EUR 17.2 billion
(EUR 17,200 million) of production loss (production loss costs based on labor costs) in 2016
and EUR 30.4 billion in loss of gross value added (loss of labor productivity), represent-
ing 0.5% and 1.0% of Germany’s gross domestic product, respectively [8]. Despite that,
the main objective of decision support models and Warehouse Management Systems re-
mains the reduction of the average distance the order picker needs to travel, thus lowering
the order picking time [9] and increasing the number of picks per order picker.

We can achieve nearly the same order picking time with different proportions of
overall traveling, searching and picking times for identical customer orders from different
item layouts at storage locations. We assume that viable alternatives differ in contribution to
order picker’s fatigue, workload, and proportions of postures with a negative impact on the
worker’s physical health. Manual “man-to-goods” order picking requires manual material
handling tasks, such as stretching, turning, lifting, lowering, squatting and carrying, and is
considered highly repetitive because the cycle times are usually measured in seconds.
Manual lifting and exposure to other ergonomic stressors are proven to be linked to low
back pain [10–13]. Up to 80% of the population experiences low back pain approximately
at least once in their lifetime [14–16]. The cost of temporary and permanent incapacity for
work associated with manual material handling is an important, influential element for the
industry [17].

Although this is often overlooked, the lean concept is not just about increasing produc-
tivity but also about improving safety. In some areas, like order picking, it is challenging
to achieve productivity and safety simultaneously. Today, when the interaction of pro-
ductivity and ergonomic suitability is still relatively unexplored, managers prefer not to
talk about the potential detrimental impact of order picking on people’s wellbeing and
even encourage overloading through the variable part of pay [18]. However, this prob-
lem cannot be omitted because the implemented optimization strategy within a logistic
system must be consistent with workers’ consent and commitment for whole system ef-
ficiency [19]. Order picking activities can be seen in optimization aspects as one of the
steps towards a sustainable organization without a waste of time [20] but still friendly
to workers’ wellbeing. It is difficult to achieve consistent and conscious efforts toward
successful lean implementation in a warehouse environment due to the diversity and high
frequency of tasks with the differing workload, but not impossible when considering indus-
try 4.0 based on digitalization. Research has already proven a positive correlation between
lean manufacturing and industry 4.0 [21,22] with its essential information technology (IT)
element. A warehouse management system could then be seen as a lean and sustain-
able solution all at once. It could inform order pickers about the achieved level of safe
daily workload, load them with ergonomically acceptable sequences of tasks, and among
others, propose a more ergonomically favorable picking sequence outside the rush peri-
ods. Therefore, it makes sense to explore the possibility of a multi-objective assignment
model, which will help managers achieve high productivity while preserving order pickers’
physical health and have the potential to upgrade the warehouse management system’s
optimization component.

1.2. Manual Man-to-Goods Order Picking

Over the last decade, we have witnessed the growth of e-commerce driven by digital-
ization, and more recently, a pandemic. Accordingly, the need for picking items listed on
customers’ orders from locations in storage racks is growing and has become omnipresent.
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This activity is in 80% of warehouse environments performed manually by order pick-
ers [23,24]. Most warehouses and distribution centers use a man-to-goods picking model
according to which order pickers travel around the warehouse and collect items sequen-
tially. The costs of these processes are relatively high. Some authors [25,26] report that
they can account for more than 50% of warehouse operating costs. Today, order picking is
mainly recognized as a cost, not adding value for the final customers. The key checked
daily performance indicator for order picking is the cost per line ordered. This mindset
is reflected in the managerial treatment of order picking, where concern for efficiency
and searching for new workers to replace the absentees and those with burnout are at
the forefront. With rising labor costs, an aging population, increasing sick leave costs
and increasing efforts to motivate for quality work, the focus from the economy is slowly
shifting to caring for the physical health of employees.

The research stream in the field of order picking optimization is mainly concerned
with time optimization. It is generally acknowledged that the amount of time spent
depends mainly on factors related to the work environment (job factors) and factors
related to the individual worker (order picker’s factors). Figure 1 highlights the most
frequently mentioned factors, which, however, also affect energy expenditure and health
risk. The use of time optimization benefits in the increase in picks per time unit, as the
same time order pickers spend more energy and repeat movements more frequently.
Time optimization without built-in restrictions leads to workers’ burnout and/or MSDs
occurrence. Energy consumption must not exceed the permanent capacity limit or the
load at which even at 8 h of exposure, no harmful conditions occur. No postures should
represent a high health risk for MSDs occurrence.

Figure 1. Factors influencing order picking time, energy expenditure and health risk.

The turnaround occurs in 2016, when [9] integrated energy expenditure into the bi-
objective optimization model in addition to time [27]. New scientific contributions [28,29]
in solving the storage assignment problem in the last five years propose, justify, and take
into account order picking time and additionally also energy expenditure and health risk.
Adding energy expenditure and health risk results from the fact that they are dependent
on many interrelated factors occurring during order picking. On the other hand, they are
relatively measurable and resultant. The number of published scientific works including
only order picking time in modeling leads before works combining order picking time and
energy expenditure, which, however, are also no longer rare. Since 2016, a growing trend
of scientific contributions that have added health risk to order picking time and energy
expenditure in decision support models for storage assignment is emerging.

1.3. Decision Support Models for Storage Assignment

A recent literature review on picker routing revealed that in 83% of considered papers,
straight or parallel shelves, which may be intersected by one or multiple cross aisles,
were the subject of research [27,30]. This indicates the popularity and prevalence of such
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layouts in practice. The number of items collected per unit time, fatigue, and physical health
of order pickers are greatly influenced by determining storage positions for individual types
of goods, determining the sequence of picking items from storage racks and layout. In the
literature on order picking, there is a noticeable trend towards developing decision support
models focusing on the assignment of items to storage positions [1,30]. The assignment
can be either random or based on specific criteria but always chosen to support an increase
in the number of items picked per particular time unit or minimization of travel distance.
Researchers have developed several storage assignment methods to shorten total fulfillment
time. Three frequently in practice implemented examples are:

• An ergonomic storage assignment method by classifying items at different heights in
storage locations using flow racks [31];

• A concept of golden zone storage, where high-demand items are stored in the area
between a picker’s waist and shoulders [23,32];

• Modeling order picker’s fatigue/recovery level based on predicted energy expenditure
rate calculated from results of monitoring heart rate [33].

The literature on storage assignment is focused on developing methods that reduce
travel distance and order picking time which put warehouse managers in a precarious
position because the results of the methods used do not inform them about health risks
for operators [31]. Other objectives, such as minimizing order picker’s discomfort or the
prevention of MSDs, have been mainly overlooked in managerial decision support models
for the storage assignment problem [23] or have only very infrequently been discussed [34].
In contrast to the management-oriented literature, order pickers’ wellbeing has been
studied in the ergonomics literature [9]. Several scientific works describe the manual order
picking process as work in an environment that puts workers at risk of developing MSDs
(e.g., [35,36]). Order picking activities require the use of all order picker’s body parts and
thus creating a risk of various MSDs.

The recognized need to incorporate ergonomics or human factors issues into planning
models for order picking in the scientific literature in 2015 [23] was followed by a growing
number of published works in this area in recent years. Works on ergonomics can be
divided into three research streams. First is oriented on physical ergonomics, second on
cognitive ergonomics and third on organizational ergonomics. Because of the topic dis-
cussed in this paper, our research is limited to physical ergonomics. It studies human
anatomical, anthropometric, physiological and biomechanical characteristics and their
links to physical activity. Research works on order picking, including a focus on physical
ergonomics, observe the handling of loads and postures.

Some multi-objective models, including time and health risk dimensions, are already
proposed. A few of them are discussed in more detail in the following [9,27–29,37].

In [9], the authors analyzed the optimal allocation of items to storage locations to min-
imize total picking times and ergonomic strains, the latter based on the energy expenditure
prediction model developed by [38]. In the next step, the rest allowance formulation of [38]
is used to develop an integrated approach that considers both order picking time and
energy expenditure. Researchers’ recommendations are valid for a specific order picking
environment: a single-aisle consisting of a single shelf at a time, each item is stocked in
a unique location, fixed and equally dimensioned storage locations, six different vertical
and horizontal storage levels (0.25, 0.58, 0.94, 1.30, 1.63, 1.96 m), the depot (I/O point) at
one end of the shelf, a return routing policy, walking speed 1 m/s, male operator: 75 kg,
load of 0.2 kg per picked item. As authors already discover, further analyses of the impact
of order profiles, especially the number of items (mass) to be picked per line of an order,
on the relative efficiency of different storage assignment policies are required.

Harari et al. [17] found out in the laboratory experiment that the mass of the handled
box, the initial lifting height, and the final lowering height significantly affected the lifting,
carrying, lowering, and returning task times, and as such should be considered in the
development of time prediction methods. In both the field and the laboratory experiments,
the workers carried the box faster as the box mass increased. Further, the walking veloc-
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ity for returning without a box was lower than the velocity for carrying the box in the
laboratory experiment. Surprisingly, in their laboratory experiment, the worker’s height
and weight did not significantly influence the task times. Konz and Rode [39] concluded
similarly. That is why we think it makes sense to introduce several different masses and
even sizes of loads into modeling.

Larco et al. [40] researched trade-off analysis between time-based function and
ergonomics-based function. If [9] studied human factors through energy expenditure,
ref. [40] studied workers’ discomfort using the Borg CR-10 scale [41] based on self-reporting.
The authors propose a unified methodology to quantify and balance two potentially con-
flicting criteria at order picking. The first is the short-term economic criterion of minimizing
total order-picking time (considering a location in an aisle, shelf height, quantity of a spe-
cific item to be picked, volume). The second is a human wellbeing criterion of minimizing
average discomfort ratings. The recommendations are similar to [9], tied to a specific
warehouse environment: order-picking, “pick-by-light”, zones, limited walking distances,
retrieving time is dominant in the cycle time, items are picked from totes on shelves at three
levels (from 0.2 to 1.90 m), the maximal mass of loads is 3 kg, and most picks involve single
order lines. Numerical data were collected from WMS, and workers reported discomfort
rate. The authors propose a simple heuristic that combines two criteria and the popularity
of an item. The item should be preferably stored close to the depot and in the golden
zone, whereby more frequent items are preferred for more favorable locations. The authors
in [40] excluded the influence of mass from the model, which becomes less suitable for
warehouses where heavier loads are manipulated. In their specific case, the results showed
that volume is a better proxy than mass to handle complexities such as easiness to grab
a product or ease retrieving a product from its location. The authors confirmed that picking
outside the golden zone requires additional retrieving time.

These approaches [9,40] are valuable and beneficial but do not reveal how often an
employee has been exposed to situations with medium or high risk for injuries like MSDs.

The missing aspect of the health risk was included in the analytical model [29] to
assess metabolic cost using the energy expenditure concept and critical postures using
the Ovako Working Posture Analysis System (OWAS) index. The model is one of the first
attempts to integrate health risks and covers different warehouse racks for storing pallets.
It does not respond to the challenges of picking small boxes in various dimensions and
masses from a multi-shelf warehouse rack and the cost viewpoint is missing.

Another solution, including health risk, was proposed in the form of a heuristic
storage assignment model [27], suggesting to minimise health risks based on the NIOSH
lifting equation. The limitation of the proposal is that the NIOSH method is used in cases
where more time is spent on manual material handling than on walking between items
positions, which is a rarity in classical man-to-goods order picking. The NIOSH method
is suitable for assessing health risk in zones rather than picking along long straight racks.
An important contribution of [27] is that neglecting human factors and focusing primarily
on time minimization can cause significant health risks.

The most novel and comprehensive work in the field under consideration introduced
an integrated storage assignment method for man-to-goods order picking considering
cost and human factors objectives [28]. The model includes three different pallet racks
layouts and so still leaves an open research gap on the challenges of picking small boxes in
various dimensions and masses from a multi-shelf warehouse rack. This model supports
the correctness of using the OWAS method for health risk assessment in man-to-goods
order picking environments in this paper.

Literature reviews (ours and [23,30,42]) suggest that efforts to establish a productive
and at the same time safe order picking environment are emerging, but there is still
a need for research. Previous research works do not answer when to use which type
of optimization, how to balance weights of the individual objective functions in multi-
objective models, do not explore the influence of different masses and sizes of loads,
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and models for different layouts are missing. We refer to the recent survey [43] for further
readings on storage assignment.

1.4. The OWAS Method

When performing work, we strive to keep the local loads on the body segments as
small as possible and to be within the permissible body loads. An objective assessment
of physiological wellbeing can only be obtained with the help of established methods for
assessing exposure to risk factors in the normal functioning of the human musculoskeletal
structure. The impact of the performed movements on the occurrence of injuries is stud-
ied with ergonomics evaluation methods, including OCRA, the NIOSH lifting equation,
OWAS, and the Borg-Scale [41,43,44], and others. The methods differ according to the data
acquisition method, namely self-report, observation, and direct measurement [45]. In the
Scopus database, we searched for scientific papers in the field of order picking to identify
which ergonomic evaluation methods were already used and which method predominates
in the frequency of use (Table 1).

Table 1. Use of ergonomic evaluation methods in order picking.

Evaluation
Method

Number of
Categories
Assessed

Scoring Scale Scoring Range Number of
Risk Levels

Number of Papers in
the Scopus Database Sources

OWAS 4 discrete 1–4 4 6 [29,45–49]

REBA 9 discrete 1–15 5 4 [50–53]

RULA 10 discrete 1–7 4 5 [53–57]

NIOSH LI 8 continues 0< * 3 3 [45,48,58]

* In the NIOSH Lifting Index model, there is no theoretical limitation of the upper value of the lifting index level, nevertheless above results
of 3, the risk level is considered the highest risk level.

We observed the use of four ergonomic evaluation methods. Between them, RULA and
NIOSH LI are less appropriate for use in an analyzed working environment in this paper.
OWAS is the most known and widely used in the scientific literature on order picking,
although its authors initially did not envisage such an application. The OWAS method
allows testing the optimization of order picking activities with a relatively simple biome-
chanical assessment model. Therefore, a simplified evaluation scheme can be advantageous
when the method is used as a support in a complex optimization model. It is necessary to be
aware that implementation is time consuming and that quality depends on the knowledge
and training of the observer [3].

In the paper, the OWAS method was chosen according to the frequency of previous use
in order picking, the description of the method and our positive experience in evaluating
the work of order pickers.

Gomez-Galan and co-authors [46] reviewed OWAS. OWAS, an abbreviation for The
Ovako Working Posture Assessment System, originates from Finland. Its reliability was
confirmed on real examples from the industrial environment by a group of engineers.
Afterward, the experts defined four health risk categories, the first related to normal
postures without corrective activity recommendations. The second and third categories
concerned postures with some risk with recommendations for corrective actions to be taken.
The fourth category referred to unacceptable postures; immediate corrective measures are
required [59].

The OWAS method has several purposes. An observer, with its help, identifies the
frequency and time spent in the positions of the observed task. According to the standard
procedure, the obtained assessment is a valuable starting point to make recommendations
for corrective measures [59]. The OWAS identifies the four most common back postures,
three arm postures, seven leg postures, and three handled load mass categories [59].
Each worker’s posture was assigned a four-digit code that depended on the classification
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regarding previously mentioned postures and the load [60]. The process of implementing
OWAS consists of observing work tasks, codifying postures, assigning risk categories
and proposing corrective actions [46]. OWAS is a simple and useful method, can be used
by personnel from different fields, such as health, engineering, industry, etc., without
specialized training [59] and is well documented [60]. Gomez-Galan and co-authors [46]
draw attention to the limitations of the method. Several authors neither differentiated the
right from left upper limbs, nor evaluated the parts of the body such as the neck, elbows,
and wrists, had crude posture coding for the shoulders, took too much time to apply, and
did not take into account repetition or duration of the sequential postures [60].

1.5. Goal and Structure

In the present paper, we consider the overall manual man-to-goods order picking
activity of small boxes in various dimensions and masses from a multi-shelf warehouse
rack through time, energy expenditure and health-risk viewpoints. It is an environment
that has not yet been covered by previous research in terms of a comprehensive approach
from economic and ergonomics perspectives. For health risk modeling OWAS method is
used as it has already been shown to be appropriate in previous research.

We extend research work in the area of storage assignment models and contribute to
the literature by:

• Considering overall order picking activity of small boxes in various dimensions and
masses from a multi-shelf warehouse rack through time, energy expenditure and
health-risk viewpoints. The inclusion of boxes with different masses and dimensions
and different stock structures in terms of the share of light and heavy boxes in the total
stock is original and provides managerial insight into the effects of using distinctive
objective optimization functions;

• Developing a solution to a storage assignment problem using a multi-objective model
including time, energy expenditure and health risk based on binary integer linear
programing with the possibility of a different weighting of individual optimization
criteria;

• Comparing the results of the popular with managers time based-objective function
with the newly developed multi-objective function including time, energy expenditure
and health risk in terms of the occurrence of situations that may endanger the physical
health of order picker;

• Considering the applicability of the developed one- and multi-objective functions.

The paper structure is as follows: Section 2 defines the problem and develops the
multi-objective model. The case study is described in Section 3, and the methodology for
the experiment in Section 4. Section 5 is organized around results. The paper ends with
a discussion in Section 6 and conclusions in Section 7.

2. Problem Description and Models Development

This paper studies the storage assignment problem for a manual man-to-goods order
picking system. The purpose is to fill a theoretical warehouse with m different types of
boxes. The theoretical warehouse consists of one arbitrarily long storage rack with h shelves
on various heights and p horizontally positioned storage spaces (Figure 2). The depot (I/O
point) is located at one end of the storage rack. The order picker picks orders using a return
routing policy, where order pickers leave the aisles on the side where they entered it [61].
The goal is to achieve such an arrangement of boxes that the time, energy expenditure and
health risk for the order picker in the process of order picking would be minimal.
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Figure 2. Scheme of a theoretical warehouse and order picking cycle.

The following restrictions must be observed during the order picking and assigning
boxes to storage spaces:

• Every storage space accepts only one box at a time;
• The order picker starts on the depot, takes a walk to the storing space, takes out the

required box and puts it on the conveyor belt behind him/her. After picking and
placing the box, he/she returns to the depot;

• We can assign any number of different types of boxes, each with its frequency. If the
sum of frequencies is larger than the number of storage spaces in the warehouse,
some of the boxes will not be assign.

The paper introduces three storage assignment solutions, the first according to order
picking time, the second according to energy expenditure, and the third according to
health risk, presented with three one-objective functions. In this way, we create a basis for
researching how optimization according to only one criterion affects the other two criteria
not included in the optimization.

Later we develop a multi-objective model capable of determining storage assignments
for boxes based on the three criteria mentioned above. Multi-objective optimization is
applied when the optimization problem has more than one objective [62], which conflict.
The advantage of the multi-objective function is the ability to weigh each objective function,
where the size of an individual weight depends on business policies and needs. In this way,
we create a basis for researching how results from multi-objective optimization differ/are
the same as in the case optimization according to only one criterion. We are particularly
interested in comparing the results of multi-objective optimization and time-objective
optimization.

2.1. Development of a Model with a Single Objective

The decision variable xij in the arrangement of the boxes in the warehouse represents
the combination of a specific box i in a storage place j. The decision variable xij occupies
the value 1 when the box i is placed on the storage place j and 0 if the box i is not placed on
the storage place j (1).

The first step of model development begins with defining different types of boxes that
need to be stored (2). Boxes are unambiguously marked with a number from 1 to M and
with the frequency for each box type fi. M is an index for the last box, which is the same as
the number of different boxes.

xij =

{
1; if the box positioned on storage space j
0; otherwise

(1)

The second step of model development determines the capacity of storage spaces in the
considered warehouse. The number of storage place N is calculated with the Formula (3).
N represents the j index in the decision variable (2), where each storage place has its index
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determined with the number from 1 to N. N is the index for the last storage space and is
the same as the number of different storage spaces. After this, the determination of the
binary decision variable follows.

i = 1, 2, 3, . . . , M (2)

The third step of model development defines the decision variable xij as a binary
decision variable (3).

j = 1, 2, 3, . . . , N (3)

The fourth step of model development constructs the objective function (4), where we
define the minimization of the sum of the product between coefficient cij and decision
variable xij.

M

∑
i=1

N

∑
j=1

cij · xij (4)

The coefficient cij in the objective function could present a wide range of factors that
impact the decision (for example, order picking time, energy expenditure for picking,
the weight of boxes, etc.). However, in the case where order picking is optimized for one
objective, the meaning of the coefficient cij is uniquely determined.

The last step of model development defines the constraints of the optimization prob-
lem, which define the restriction of the problem. When determining storage assignments for
boxes in the warehouse rack, there are two restrictions. With the first type of constraint (5),
we define the frequency of the individual type of box stored in the warehouse (where fm
represents the frequency of the specific box type). With the second type of constraint (6),
we limit the number of stored boxes in one storage space inside the storage rack, where ln
represents the space restriction for each specific box type in one storage space.

∀m, n ∈ N, n = 1, 2, . . . , N, m = 1, 2, . . . , M

and

xm,j, xi,n ∈ {0, 1}
we define :
N
∑

j=1
xm,j = fm

(5)

M

∑
i=1

xi,n = ln (6)

2.2. Development of a Model with Multiple Objectives

However, when storage assignment is optimized for more than one objective, we have
to consider all of the single objective function’s desired variables. Let us assume that K
different objectives are included in the optimization process (7).

wo1 · (
m

∑
i=1

n

∑
j=1

o1ij · xij), wo2 · (
m

∑
i=1

n

∑
j=1

o2ij · xij), . . . , woK · (
m

∑
i=1

n

∑
j=1

oKij · xij) (7)

Each objective function has its priority weight (wo1 , wo2 and woK present different
priority weights for different objectives). Determining the value for the priority weights
is left to the decision-maker in the company. Multi-objective function user can weigh the
individual coefficient on the basis of preliminary calculations, practical experiences or
depending on which objectives are important for him/her at a given moment. In the below-
described case study, we weighted the most important coefficient with 0.8 and remining
two each with weigh 0.1. This weigh distribution indicates the priority of the selected
coefficient and at the same time does not negate the importance of taking into account
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other coefficients. All of the coefficients in objective functions have to be normalized
(o1ij , o2ij and oKij present the normalized data based on different objectives). The constraints
(5) and (6) from the single objective model are also included in the multi-objective model.

3. Case Study

For a simple validation of our models, we analyzed a warehouse that consists of
a single storage rack with five vertical and nine horizontal storage levels (Figure 3B). On
that storage rack, boxes are stocked in 45 storage spaces (Figure 3A). Storage spaces have
fixed and equal dimensions. The box is positioned in the middle of the front width of the
storage space. The order pickers can pick items from each of them one at a time.

Figure 3. The case study’s storage rack: (A)—technical data; (B)—placement in the laboratory.

Two different lengths of storage rack are analyzed—the first one with 1.06 m spacing
between rack holders and the other with 3.18 m spacing. The box is always stocked in the
middle of two rack holders. Distances between the depot (I/O) and the end of a specific
position from P1 to P9 are also shown in (Figure 3A).

The order picker handles nine types of cardboard boxes without handles in the above-
described warehouse (Table 2). Boxes appear in three sizes: Large (31 cm × 37 cm× 45 cm),
Medium (20 cm × 30 cm × 40 cm), and Small (7 cm × 11 cm × 18 cm). Each box size is
represented in three different masses: Large (0.1 kg, 5 kg, 10 kg), Medium (0.1 kg, 5 kg,
10 kg), and Small (0.1 kg, 1 kg, 5 kg).

Table 2. Types and masses for the boxes.

Box Type/Mass Label Box Type/Mass Label Box Type/Mass Label
Large/0.1 kg L Medium/0.1 kg M Small/0.1 kg S
Large/5 kg L Medium/5 kg M Small/5 Kg S

Large/10 kg L Medium/10 kg M Small/1 kg S

In the described working laboratory environment (Figure 3A), which is an excellent
approximation to the actual storage environment of smaller dimensions, it was necessary
to obtain data on the picking time for each box type/mass at all five possible shelf heights.

Nine men with a mean age of 42 (SD 17.8) years, the height of 179 (SD 5.2) cm, weight
of 86 (SD 9.4) kg, and eight women with a mean age of 40 (SD 15.2) years, the height of 163
(7.4) cm, the weight of 62 (12.4) kg participated in the experiment. The participants were of
different professions. Five men and four women are physical workers, two male and three
female are students, and the rest are office workers. None of them have ever worked as an
order picker in a warehouse. They all signed a consent form approved by the Senate of the
Faculty of logistics at the University of Maribor.

The participants picked cardboard boxes without handles in three different volumes
and with four different loadings from shelves on five different heights in the steel ware-
house rack.



Appl. Sci. 2021, 11, 4179 11 of 27

During the experiment, each participant picked the ordered box from a rack and
lowered or lifted the box on a surface for disposal, using a grip of the box’s side surfaces
between the palms (Figure 4).

Figure 4. Order picking for the purpose of determining picking times.

A sequence of boxes on the picking list was determined randomly and was the same
for all participants. The participants did not know how heavy the box they should pick is.
After unloading the box on the surface for disposal, the assistant immediately read the new
number of the box for picking and removed the box from improvised surface for disposal.
A video camera with a rate of 60 frames per second recorded the participants while they
were performing the tasks. Later a time study was conducted by measuring picking times
directly from the video recordings (Table 3).

Table 3. Average picking times from different heights.

Type/Mass
Average Picking Time at the Height of . . . [s]

13 cm 56 cm 100 cm 143 cm 185 cm

Large 0.1 kg 2.71 2.62 2.71 2.80 3.04

Large 5 kg 3.77 3.57 3.13 3.30 4.54

Large 10 kg 4.37 3.85 3.99 4.15 5.57

Medium 0.1 kg 2.50 2.30 2.26 2.19 2.73

Medium 5 kg 3.70 3.44 3.21 3.81 4.23

Medium 10 kg 4.03 3.70 3.77 4.16 5.39

Small 0.1 kg 1.95 1.74 1.71 1.79 2.00

Small 5 kg 2.91 2.73 2.78 3.14 3.45

Small 1 kg 2.21 1.95 2.00 2.15 2.61

The laboratory-derived average times from Table 3 were later used as input data for
model validation and for use in simulated scenarios. We designed four different scenarios
with a different frequency of individual boxes:

• Scenario 1 (S1)—all types of boxes are presented randomly (frequency of individual
boxes is between 1 and 6);

• Scenario 2 (S2)—all types of boxes are equally represented (all types of boxes have
a frequency of 4);

• Scenario 3 (S3)—heavy boxes predominate (heavy boxes have a frequency of 9 and all
others a frequency of 2);

• Scenario 4 (S4)—light boxes predominate (light boxes have a frequency of 9 or 8 and
the heaviest have a frequency of 2 or 1).

In all four scenarios, there are 36 boxes in order to achieve comparability of results.
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4. Methodology for the Experiment

As mentioned, the storage space assignments of boxes were made:

• With a time-based objective model;
• With an energy expenditure-based model;
• With a health-risk based model;
• With a multi-objective model (all described in Section 4).

Three single-objective models and one multi-objective model were developed. We
choose three factors that significantly impact the decision-making process about storage
assignment: picking time, energy expenditure and health risk.

The first single-objective function is time-based, where the objective is to minimize
the total time needed for order picking (T). The second single-objective function is an
energy-based objective function (E), where the rack locations are determined based on the
minimum energy expenditure for order picking. As a novelty, the third single-objective
function is a health risk-based objective function (O), where the objective is to minimize
the health risk for the order picker. The following Formulas (8)–(10) define single-objective
models for the presented case (where we use the corresponding objective function for the
selected optimization):

min(T) = min
9

∑
i=1

45

∑
j=1

tij · xij (8)

min(E) = min
9

∑
i=1

45

∑
j=1

eij · xij (9)

min(O) = min
9

∑
i=1

45

∑
j=1

oij · xij (10)

where tij represents the time needed for the whole process of picking the i-th box from the
j-th storage space, eij represents the energy usage for the entire process of picking the i-th
box from the j-th storage space, and oij represents the value of health risk for the whole
process of picking the i-th box from the j-th storage space.

All three single-objective functions are subject to the same following constraints (11):

∀m, n ∈ N, n = 1, 2, . . . , N, m = 1, 2, . . . , M

and

xm,j, xi,n ∈ {0, 1}
we define :
N
∑

j=1
xm,j = fm

9
∑

i=1
xi,n ≤ 1

(11)

fm refers to the frequency of individual boxes which need to be picked in each scenario.
The last is the multi-objective function where optimization of arrangements is based

on all three objective factors (12):

min(T, E, O) = min(
9

∑
i=1

45

∑
j=1

wt(tij · xij),
9

∑
i=1

45

∑
j=1

we(eij · xij),
9

∑
i=1

45

∑
j=1

wo(oij · xij)) (12)

where wt represents the weight of time function, we represents the weight of energy
function, and wo represents the weight of health risk function.

Further, we analyze four differently weighted scenarios (Table 4). The advantage of
the multi-objective function is that the decision-maker can determine the importance of
specific criteria in a particular situation. The constraints are the same as (11).
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Table 4. Differently weighted scenarios.

Type of Situation Objective Function

All three decision factors are equally important min(
9
∑

i=1

45
∑

j=1
(tij · xij),

9
∑

i=1

45
∑

j=1
(eij · xij),

9
∑

i=1

45
∑

j=1
(oij · xij))

The health risk is the most important decision factor min(
9
∑

i=1

45
∑

j=1
0.1 · (tij · xij),

9
∑

i=1

45
∑

j=1
0.1 · (eij · xij),

9
∑

i=1

45
∑

j=1
0.8 · (oij · xij))

Time is the most important decision factor min(
9
∑

i=1

45
∑

j=1
0.8 · (tij · xij),

9
∑

i=1

45
∑

j=1
0.1 · (eij · xij),

9
∑

i=1

45
∑

j=1
0.1 · (oij · xij))

Energy is the most important decision factor min(
9
∑

i=1

45
∑

j=1
0.1 · (tij · xij),

9
∑

i=1

45
∑

j=1
0.8 · (eij · xij),

9
∑

i=1

45
∑

j=1
0.1 · (oij · xij))

Before single- and multi-objective functions were used for storage assignment pur-
poses, all data ware normalized. Sections 4.1–4.3 explain how we calculated total time,
total energy expenditure, and overall health risk values in the minimization functions.
All linear programing results were obtained using the MATLAb software tool.

4.1. Calculation of Total Time, Used for the Time-Based Minimization Function

We calculated the total time used for the minimization function with the Formula (13):

Ttotal = Twalking + Tpicking (13)

where Tpicking represents the average time, measured by multiple experiments (described
in [63]), for each box and storage place. Twalking is calculated by the Formula (14):

Twalkingi
=

si
vwalking

(14)

where for vwalking the value 0.83 m
s is taken into account and si is defined by the middle of

the storing place (Figure 4).

4.2. Calculation of Total Energy Consumption, Used for the Minimization Function

Total energy consumption, used for the minimization function, was calculated with
the Formula (15):

Etotal = Ewalking + Epicking (15)

where Epicking represents the average energy consumption [37] calculated based on the
Formula (16):

E·job =

nl
∑

i=1
E·post · ti +

n
∑

i=1
4Etaski

T
(16)

where [37]:

• E·job = average energy expenditure rate of the job (Kcal/min),

• E·post = metabolic energy expenditure rate due to the maintenance of the ith posture
(Kcal/min),

• ti = time duration of ith posture (min),
• nl = total number of body postures employed in the job,
• 4Etask = net metabolic energy expenditure of the ith task in a steady-state (Kcal).

Ewalkingi
is calculated by the Formula (17):

Ewalkingi
= Twalkingi

· BMR (17)
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where for BMR the value of 3.39 Kcal
min was used, which coincides with the velocity of walking

vwalking = 0.83 m
s [37].

4.3. Calculation of the Overall Level of Health Risk Based on OWAS Coding, Used for the
Minimization Function

To use the OWAS method in the minimization function, we needed to determine
numerical values that will unequivocally communicate health risks for specific boxes on
specific storage spaces because the OWAS codes did not prove useful. In the first step,
which followed the standard OWAS procedure, work postures during order picking in the
case study warehouse rack [63] were observed and recorded (Figure 5). The observation
was followed by codifying. We assigned a 4-digit code to each posture that appeared in
the order picking process. The resulting codes depend on the classification for different
parts of the body. The first numeric value in the 4-digit code refers to the back (4 postures),
the second to arms (3 postures), the third to legs (7 postures), and the fourth to the mass
of the load handled (3 categories). Codes were a prerequisite for calculating the overall
level of health risk for a specific box at a specific storage space, taking into account the
box’s frequency in the entire scenario. In a particular case study (1 storage rack and four
different scenarios), 405 calculations were needed (9 different boxes with their frequencies,
five different heights above the ground). For each numerical value in the 4-digit code,
a reasonably thought-out numerical value was assigned to indicate the health risk level for
a specific group of postures/categories (back, arms, legs, mass). The overall level of health
risk for a specific box at a specific storage space, taking into account the frequency of the
box in the entire scenario, is a sum of 4 selected health risk values according to the baseline
four-digit code.

Figure 5. Observation of work postures during the order picking process.

The numerical health risk values describing the health risk level for a specific group
of postures/categories (back, arms, legs, mass), were reasonably thought-out in a way that
the sum of all numerical health risk values for a specific scenario could never exceed the
health risk value determined for the next health risk.

We use three different health risk values based on postures/categories and repetition
frequencies:

• Health risk value 1: negligible risk—normal postures without recommendations for
any corrective activity;

• Health risk value 200: some risk—one or more postures with recommendation(s) for
corrective action(s) to be taken;

• Health risk value 30,000: very-high risk—one or more unacceptable postures with
recommendation(s) for immediate corrective measure(s).

5. Results

Based on the calculation of the overall level of health risks based on OWAS coding,
we got 405 different calculation results for a specific combination of the i-th box and the
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j-th positions. Table 5 presents the frequency of a specific health risk level occurring for
order pickers in the case study environment.

Table 5. Frequency of occurrence of a specific health risk level.

Health Risk Level (HRL) (HRL) Occurrence Frequency for Specific Rack Type

Type Number of Cases Short Rack Long Rack

Very-high risk

9 1 0.25% 0 0%

2 12 2.96% 8 1.98%

1 4 0.99% 5 1.23%

Some risk

4 7 1.73% 0 0%

3 13 3.21% 13 3.21%

2 71 17.53% 37 9.14%

1 122 30.12% 133 32.84%

Negligible risk one to several 175 43.21% 209 51.60%

Sum 405 100% 405 100%

The calculation revealed the smallest percentage of cases with very-high health risk
levels among 405 possible combinations of box type, box frequency, and different heights
above the ground. A very-high health risk level stands for one or more unacceptable
postures that need immediate corrective measures. Such cases should not occur in practice,
as each occurrence poses a direct threat of immediate injury. The percentage of HRL
occurrence frequency with very-high health risk is slightly higher in a shorter storage rack
(4.2%) than in a longer one (3.2%). We counted 37 cases (6.81% of all cases) with a direct
threat in the short storage rack and 21 cases (4.41% of all cases) with a direct threat in the
long storage rack. In our specific case study, the risk that the order picker will be injured
is 43.2% higher in the case of shorter routes than in the case of longer routes between
storage spaces. In both types of racks, cases representing some risk predominate. In such
cases, immediate injuries are very unlikely, but the likelihood increases in the long run.
The percentage of HRL occurrence frequency with some health risk is slightly higher in
a shorter storage rack (52.6%) than in a longer one (45.2%). We counted 331 cases (81.72%
of all cases) with a long-term threat in the short storage rack and 246 cases (60.74% of all
cases) with a long-term threat in the long storage rack. In our specific case study, the risk
that the order picker will be injured in the long term is 25.7% higher in the case of shorter
routes than in the case of longer routes between storage spaces. We revealed that order
picking in our specific case study is safer in the case of longer distances between storage
spaces than in the shorter one.

5.1. Comparisons between Results of Minimization Functions with One Optimization Factor

As described, we used all three single-objective minimization functions on four differ-
ent scenarios in two different warehouses, differing in length of storage spaces. Below we
present the results for the short rack and scenario 3 in which heavy boxes predominate.

When optimization considers just time, we can see (Figure 6) that heavier boxes (10 kg,
colored orange) are placed close to the depot (I/O) and in a golden zone, where picking
times are shorter. Walking time has an impact but only in a limited way due to the short
distances between storage spaces in a rack. As the number of boxes for storing is smaller
than the number of available storage spaces, empty storage spaces expectedly appear on
the rack’s remote part (according to the depot I/O). The best solution in a time-based
manner encompasses two cases with a very-high health risk, which makes the proposal
unsuitable from the point of view of safety (the HR value is 67,107). On the other hand,
the proposal is excellent in terms of employee productivity (calculated time is 495.95 s and
energy consumption is 57.43 Kcal).
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Figure 6. Storage assignment proposal based on minimization of the time-based objective function
(scenario 3, short rack).

When optimization considers just energy, we can see (Figure 7) that heavier boxes
(10 kg, colored orange) are placed in a golden zone, and below it, in storage spaces where
picking energy expenditures are small. Walking time has an impact but only in a limited
way due to the short distances between storage spaces in a rack. As the number of boxes
for storing is smaller than the number of available storage spaces, empty storage spaces
expectedly appear in the last remote column (according to the depot (I/O) and on the
lowest and highest shelves due to significant picking energy expenditures. The best
solution in an energy-based manner encompasses four cases with a very-high health risk,
which makes the proposal even more unsuitable from the point of view of safety than
the time-based proposal (HR value is 126,508). The proposal is also worse in terms of
employee productivity (calculated time is 505.93 s and energy consumption is 57.11 Kcal).

Figure 7. Storage assignment proposal based on minimization of the energy-based objective function
(scenario 3, short rack).

When optimization considers just health risk, we can see (Figure 8) that heavier boxes
(10 kg, colored orange) are placed in a golden zone and below and above it, in storage
spaces far from the depot (I/O). Unlike in the previous two storage assignment proposals,
empty storage spaces are now located closer to the depot (I/O). Placing boxes on the
end of the rack corridor reduces the share of time spent performing a certain posture in
the total time spent for picking boxes out of the shelves, thus reducing the health risk.
As the number of boxes for storing is smaller than the number of available storage spaces,
empty storage spaces appear closer to the depot (I/O), above and below the golden zone
due to some or very-high health risks. The result matches expectations before the use of
the health-risk minimization function. The best solution in the health risk-based manner
encompasses no cases with a very-high health risk, making the proposal excellent from the
point of view of safety (HR value is 1935). The proposal is the worst in terms of employee
productivity between one-objective solutions (time needed to complete the scenario is
657.84 s and energy consumption is 75.16 Kcal).
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Figure 8. Storage assignment proposal based on minimization of the health risk-based objective
function (scenario 3, short rack).

The best solution for the order picker’s physical health is the minimization of the
health risk-based objective function, where we note that no box is placed in a storage space
with a very-high health risk. Nine boxes are positioned in storage spaces with some health
risk and others in spaces with negligible risk. On the other hand, this increases the time
by 32.65% in comparison with time-objective optimization. A summary of the results for
scenario 3 (short rack) and the other three scenarios described in the case study section is
given in Table 6.

Table 6. Comparison of results for different scenarios, rack type and single-objective function.

Scenario
(Rack Type) Observed Factor Time-Based

Optimization 4
Energy-Based

Optimization 5
HR-Based

Optimization 6

Scenario 1
(Short rack)

T 1 (s) 478.71 488.39 642.2

E 2 (Kcal) 55.09 54.83 72.93

HR 3 (value) 64,321 154,416 2183

Scenario 2
(Short rack)

T (s) 480.1 491.35 643.14

E (Kcal) 55.32 55.0 73.17

HR (value) 65,913 155,910 2183

Scenario 3
(Short rack)

T (s) 495.95 505.93 657.84

E (Kcal) 57.43 57.11 75.16

HR (value) 67,107 126,508 1935

Scenario 4
(Short rack)

T (s) 464.67 477.28 626.88

E (Kcal) 53.68 53.4 71.14

HR (value) 45,316 65,166 2532

Scenario 1
(Long rack)

T (s) 970.68 973.42 1294.9

E (Kcal) 110.79 110.49 146.42

HR (value) 66,704 96,906 3718

Scenario 2
(Long rack)

T (s) 973.07 976.32 1301.28

E (Kcal) 111.02 110.7 147.19

HR (value) 64,658 94,256 3224

Scenario 3
(Long rack)

T (s) 988.92 991.49 1239.97

E (Kcal) 113.13 112.67 140.29

HR (value) 64,906 94,905 2924

Scenario 4
(Long rack)

T (s) 902.43 907.88 1234.55

E (Kcal) 103.15 102.93 139.51

HR (value) 65,653 65,803 2425
1 T—time in seconds; 2 E—energy expenditure in Kcal; 3 HR—health risk; 4 time-based optimization is expressed in (s) for T, in (Kcal)
for E, and (numerical value) for HR; 5 energy-based optimization is expressed in (s) for T, in (Kcal) for E, and (numerical value) for HR;
6 HR-based optimization is expressed in (s) for T, in (Kcal) for E, and (numerical value) for HR.
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The average results of three one-objective optimizations (time-, energy-, health risk-
based) are compared according to the type of rack (short, long) in Table 7. As a starting
point of the comparison, we took the average results of time-based optimization and
determined the percentage deviations of the average results of energy- and health risk-
based optimizations.

Table 7. Comparisons of the average results from the perspective of time-based optimization.

Observed Factor Rack Type Time-Based
Optimization

Energy-Based
Optimization

HR-Based
Optimization

Average time
(s)

Short rack 100% +2.32% +33.97%

Long rack 100% +0.37% +32.2%

Average energy
(Kcal)

Short rack 100% −0.53% +32.0%

Long rack 100% −0.3% +30.89%

Average HR
(value)

Short rack 100% +106.88% −96.34%

Long rack 100% +34.34% −95.31%

As presented in Table 7, when comparing average picking times, energy-based and
health risk-based optimizations give on average longer order picking times than time-based.
The only difference is that in the case of energy-based optimization the difference is much
smaller than in the case of health risk-based optimization. The value of average energy
expenditure logically drops when comparing the energy-based optimization with time-
based, but the difference is relatively small, less than 1%. A comparison of average health
risk values shows that in time-based optimization the order picker is on average more
often exposed to the very-high health risk. If in time-based optimization the order picker is
on average twice exposed to a very-high health risk (with the minimum of once and the
maximum of twice), in energy-based optimization it is three times (with the minimum of
once and the maximum of five times). On the other hand, with the health risk-optimization
function the order picker is never exposed to very-high risk.

5.2. Comparisons between Results from Differently Weighted Multi-Objective Minimization
Functions

A comparative analysis on four different scenarios in two different warehouses, dif-
fering in length of storage spaces, was made based on three differently weighted multi-
objective functions. In the first, time, energy expenditure and health risk are equally
weighted. In the second, the health-risk is the most weighted and in the third, time-risk is
the most weighted. Results are presented in Table 8.

Table 8. Comparison of results for different scenarios, rack type, and minimization based on differently weighted multi-
objective functions.

Scenario
(Rack Type) Observed Factor

Weighted Multi-Objective Minimization Function

t + e + o 0.1t + 0.1e + 0.8o 0.8t + 0.1e +0.1o 0.1t + 0.8e +0.1o

Scenario 1
(Short rack)

T (s) 498.36 579.85 495.74 475.24

E (Kcal) 56.45 64.33 56.55 54.07

HR (value) 3328 1338 3527 5314

Scenario 2
(Short rack)

T (s) 501.57 583.47 498.04 500.27

E (Kcal) 56.78 64.67 56.77 56.79

HR (value) 3328 1338 3726 65,316
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Table 8. Cont.

Scenario
(Rack Type) Observed Factor

Weighted Multi-Objective Minimization Function

t + e + o 0.1t + 0.1e + 0.8o 0.8t + 0.1e +0.1o 0.1t + 0.8e +0.1o

Scenario 3
(Short rack)

T (s) 519.95 601.70 515.38 518.50

E (Kcal) 59.26 67.10 59.24 58.99

HR (value) 3328 1338 3925 65,515

Scenario 4
(Short rack)

T (s) 486.81 566.03 483.87 486.79

E (Kcal) 54.94 62.64 55.23 55.26

HR (value) 3328 1338 3527 5517

Scenario 1
(Long rack)

T (s) 1032.50 1211.3 1024.33 1023.95

E (Kcal) 116.75 136.45 116.45 116.04

HR (value) 3420 2624 3319 5116

Scenario 2
(Long rack)

T (s) 1034.72 1213.52 1026.63 1026.44

E (Kcal) 117.00 136.7 116.66 116.25

HR (value) 3570 2624 3469 4317

Scenario 3
(Long rack)

T (s) 1033.04 1212.89 1024.9 1044.67

E (Kcal) 117.21 137.07 116.92 114.45

HR (value) 3120 2474 3769 3916

Scenario 4
(Long rack)

T (s) 1019.24 1198 1011.32 1012.96

E (Kcal) 115.24 134.85 114.83 114.72

HR (value) 3968 3622 3766 4919

t: time, e: energy and o: health risk value (due the fact that HR is calculated with the OWAS).

The average results of the differently weighted multi-objective minimization functions
are compared according to the type of rack (short, long) from the perspective of time-based
optimization in Table 9.

Table 9. Comparisons of the average results from a perspective of time-based objective minimization function.

Observed Factor Rack Type
Time-Based

Optimization
Weighted Multi-Objective Minimization Function

t + e + o 0.1t + 0.1e + 0.8o 0.8t + 0.1e + 0.1o 0.1t + 0.8e + 0.1o

Time (s)
Short rack 100% +4.55% +21.45% +3.83% +3.20%

Long rack 100% +7.42% +26.09% +6.57% +7.12%

Energy (Kcal)
Short rack 100% +2.67% +16.80% +2.83% +1.62%

Long rack 100% +6.42% +24.42% +6.11% +5.33%

HR (value)
Short rack 100% −94.51% −97.79% −93.94% −41.62%

Long rack 100% −94.69% −95.72% −94.59% −93.03%

t: time, e: energy and o: health risk value (due the fact that HR is calculated with the OWAS).

As presented in Table 9, it is important to emphasize that the order picker is never
exposed to very-high health risk in the first three analyzed situations (t + e + o, 0.1t + 0.1e +
0.8o, 0.8t + 0.1e + 0.1o), even in a situation where time is the most crucial decision factor.
In the equal importance of all factors, the order picker is exposed 19 times to some risk and
58 times when the time is the most important factor. The order picker is exposed to some
risk only 12 times when health risk is the most weighted factor.

Different behavior was found only in the multi-objective emphasizing energy mini-
mization function (0.1t + 0.8e + 0.1o) for the short rack. There, the HR value also decreases,
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but more than 50% less than with other multi-objective minimization functions. Scenarios
S2 (all types of boxes are equally represented) and S3 (heavy boxes predominate) each
contain one situation with very-high risk.

6. Discussion

The developed general model supports manual man-to-goods order picking in ar-
bitrarily long racks with several shelves and one entry and exit point. As this is manual
order picking, the highest shelf should not be placed higher than 177 cm. As a novelty in
the paper, we develop three single-objective functions and one multi-objective function to
support decision-making on storage assignment in a described warehouse environment.
They allow minimization of time, energy expenditure and health risk individually or in
a weight-adjusted trinity. In addition to developing individual models, we are interested in
comparisons between results from the use of functions from a decision-maker perspective.
For them, the most important is time-saving and consequently lowering costs. The cost of
order picking largely depends on the number of items collected per unit time.

The introduction mentioned authors that have already experimented with time, energy
expenditure, and health risk objective functions, but in different environments or by
addressing less influential factors. This paper addresses order picking of smaller boxes
in various dimensions and masses, which is a daily practice in packet distribution for the
retail sector’s needs.

Including only time and energy expenditure would represent a sound basis for safer
order picking. Still, it would not protect against MSDs due to the unanalyzed presence of
situations with a high risk for injuries. Therefore, it makes sense to explore the possibility
of a multi-objective assignment model and check if it is possible to achieve increased
productivity while preserving the order pickers’ physical health.

Our experiment shows that less strenuous and safer work requires longer operating
times and results in lower productivity. This result was logical and expected. The question
is, what is the magnitude of this deviation. Focusing only on lower energy expenditure is
reflected in a less than 3% increase in the order picking time, which is not much, and the
benefits are questionable. A 3% time savings in one shift equals a 15-min break. Similar
results were already observed by authors [9], who proposed a bi-objective model, includ-
ing time and energy expenditure. They calculated that the maximum difference is about
2% in time and 2.5% in energy. In their case, the order fulfillment time in employing
the energy-based storage assignment was 2% higher than the total time that results if
the time-based assignment was used. Comparable results from the previous study con-
tributed to the validation of our model. By extending the model to a multi-objective one,
we find another concern about energy-based assignment usability, which was not previ-
ously understood from the mentioned bi-objective model. A comparison of average health
risk values shows that the order picker is on average more often exposed to very-high
health risks (unacceptable, immediate action required) in energy-based assignments than
in time-based assignments. Scientific literature suggests a dynamic determination of breaks
according to energy expenditure amounts. Still, even in this case, we cannot guarantee the
absence of individual pick activities with a high risk of injury without additional modeling.
Ergonomic assessment needs to be built into decision models, as it is not enough to protect
workers from overwork; they also need to be protected from injury and MSDs. It has
been revealed that with the health-risk optimization function, the order picker is never
exposed to very-high risk (unacceptable, immediate action required). Only some boxes
are positioned in storage spaces with some health risk, and the majority of them in spaces
with negligible risk. On the other hand, this increases the average time by approximately
33% compared to single-objective time-objective optimization. A single-objective health
risk-based assignment is suitable from a managerial perspective for a time frame when the
number of customer orders is low. It is also ideal for warehouses where rush hour traffic
can be rescheduled throughout the working day.
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To mitigate the extremes of single-objective functions’ results, we have developed
a multi-objective one with the possibility of a different weighting of individual optimization
criteria. The multi-objective order picking time-weighted function (the weight is 0.8) has
proven to be promising to find a compromise between optimal time and elimination of
situations with a very-high risk for injuries. Figure 9 visualizes results from different single-
and multi-objective functions. Their use resulted in different assignment scenarios and
different overall picking times needed to prepare orders. Overall picking time is one of the
most interesting aspects for managers who are most inclined to organize work in a way
that it is performed in the shortest possible time. They would be willing to do something
more for their employees’ physical health, as long as it does not prolong the overall picking
times too much.

Figure 9. Comparisons of order picking times from different objective functions.

In scenario 4 (S4) we achieve the shortest overall order picking time because we move
mostly light boxes weighing about a tenth of a kilogram. For scenario 3 (S3) we achieve
the longest overall order picking time because we move mostly heavy boxes weighing 5
or 10 kg. The time achieved in scenario 2 (S2) is somewhat in the middle because heavy
and light boxes were equally frequent. In Figure 9, of course, this is hard to see, however,
it can be read from Tables 6–9. We were more interested in the visualization of the results
of single-objective functions and differently weighted multi-objective functions to show
that the relationship between the results of different functions does not strongly depend on
the structure of the goods in terms of weight and dimensions. The characteristics of boxes
in terms of mass and dimensions affect the overall order picking time to some smaller
extent. At short storage racks, the impact comes to the fore less than with long racks.
This aspect was not further analyzed in the present paper but is an interesting topic for
future research. We know that sole time optimization does not have the best effect on
people’s wellbeing and can cause injuries. Figure 9 visualizes which objective function is
closest in the result (overall order picking time) to the optimal single-objective time-based
function, which is the most popular with managers. Results reveal, for example, that solely
energy-based optimization, although very close in time and less tiring for the worker, is not
a suitable replacement for solely time-based optimization because it contains more health
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risky situations that can cause injuries. A long rack significantly increases the differences
in overall order-picking times between individual functions due to long distances.

According to Figure 9, the best order picking times are expectedly achieved by using
a time-based objective function. In the short storage rack, a time emphasizing multi-
objective function, an energy-based single-objective function and an equally weighted
multi-objective function give a minimal increase in overall order picking time compared to
a time-based single-objective function. In contrast, minimal time differences are observed
between the time-based single-objective function and the energy-based single-objective
function at a long storage rack. The overall order picking times are most increased when
using the health risk-based single-objective function and the multi-objective function em-
phasizing health risk. The multi-objective function emphasizing time achieves promising
results in terms of a minimal increase in time consumption. Simultaneously, the multi-
objective function emphasizing time is also excellent in terms of a slight increase in health
risk without the presence of situations with a high health risk. Health risk increases in
the multi-objective function emphasizing time, only 10% on average in the short rack and
1.74% on average in the long rack. In contrast, in the health risk-based objective function,
the increase was around 33% for both types of racks.

Figure 10 visualizes results from different single- and multi-objective functions. Their
use resulted in different assignment scenarios and different energy expenditures needed to
prepare orders.

Figure 10. Comparisons of energy expenditures from different objective functions.

Maximum energy consumption is the result of optimization with health risk-based
objective function and multi-objective emphasizing health risk. As expected, energy
consumption is higher in longer storage corridors and scenario 3 (S3) where heavy boxes
predominate.

Figure 11 visualizes results from different single- and multi-objective functions. Their
use resulted in different assignment scenarios and different health risks values.
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Figure 11. Comparisons of health risk values from different objective functions.

The health risk value is calculated so that it has a message value, which has not been
found in the scientific literature so far. Attention should be paid to scenarios where the
health risk value exceeds 30,000. This means that it demands one or more unacceptable
postures with recommendations for immediate corrective measures. The health of order
pickers is more endangered in short racks than in long ones, especially in the case of energy
optimization.

One of the more important findings is concluded from the results in Table 9. Regardless
of which differently weighted multi-objective function is used, we consistently achieve
a considerable reduction in health risks compared to the solely time-based single-objective
function.

The theoretical contribution of this study is in a developed solution to a storage
assignment problem using a multi-objective model including time, energy expenditure and
health risk based on binary integer linear programing with the possibility of a different
weighting of individual optimization criteria. By counting the number of very risky
postures for employee injuries, we determined a new view on the inclusion of health
risk in treating warehouse assignment problem. We can give practice recommendations
based on comparing several different optimization models or changing weights within
the multi-objective model. The practical contributions of this study can be described with
managerial insights:

• Managerial insight #1. Less strenuous and safer work requires longer operating
times and results in lower productivity. To overcome this issue, managers should
use multi-objective optimization models to reduce health risk significantly at the
cost of a small increase in time consumption, below 5% in short racks and below
10% in long racks. A single-objective health risk-based assignment is suitable from
a managerial perspective for a time frame when the number of customer orders is low.
It is also ideal for warehouses where rush hour traffic can be rescheduled throughout
the working day.
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• Managerial insight #2. Energy optimization is less tiring for employees, but solely en-
ergy optimization or multi-objective optimization emphasizing energy has not proven
very suitable in practice. They both increase the number of very risky postures for
employee injuries. A very-high health risk level stands for one or more unacceptable
postures that need immediate corrective measures. Such cases should not occur in
practice, as each occurrence poses a direct threat of immediate injury.

• Managerial insight #3. Employee health is becoming increasingly important. When
buying a warehouse management system (WMS), pay attention to the possibility of
taking order picker’s factors into account when optimizing work in the warehouse.

Study Limitations

This experiment was conducted in a laboratory environment. Although this is a study
limitation, it does not diminish the credibility of the results. Picking times were measured
based on measuring the actual picking performed by people. Order pickers were using
properly weighted cartoon boxes stored in a real warehouse rack. The OWAS method was
performed by posture observation during order picking in a replica of a real environment.
The same positions would also be observed in the real warehouse. OWAS method is not
based on the automatic capture of work data, which in the case of a good knowledge of the
real process eliminates the need to intervene in the industrial environment.

The order picking in the laboratory environment was carried out at room temperature,
under standard office lighting, without noise, with properly rested and healthy people,
unburdened by the required amount of picking items per working day. However, the in-
ability to generalize results in terms of different working conditions is also a limitation of
studies performed in specific industrial environments.

The developed approach does not account for pick correlations of items and does not
strive to place near items that are frequently picked together like [64,65].

7. Conclusions

The lean concept is not just about increasing productivity but also about improving
safety. The logistics sector should strive for sustainability by protecting its order pickers’
health and welfare and treating them as its most vulnerable resource, as most order
picking worldwide is still done manually. In order picking processes, safety requirements
ensure order pickers’ physical health maintenance with an ergonomically appropriate
workload and elimination of situations with a high risk for immediate and long-term
injuries. This paper contributes to these efforts by comparing results from the use of
several single-objective and multi-objective functions taking into account the criteria of
time, energy expenditure, and health risk. In doing so, we are aware that the practice is not
always in favor of introducing care for employees’ physical health, which is especially true
for less developed countries with cheap and relatively young labor. By entering a smart
society, however, our efforts are welcome, as we help build smart systems that will allow
for the dynamic adaptation of the operation of warehouse systems for the benefit of all
stakeholders involved, including employees. We certainly see a multi-objective decision
model as part of modern warehouse management systems.

The paper represents only the first attempt to create a multi-objective model, which,
however, can inspire the broader scientific community. We notice some opportunities
for future research work, such as the need to improve the methodology of integrating
the 4-digit OWAS codes into the overall health risk assessment system for different order
picking scenarios. An important piece of information is the number of situations with
a high risk of injury.

We further note that it makes sense to focus future research efforts on finding the
optimal balance between weights for time, energy expenditure and health risk in a multi-
objective function. Goal programing should be applied. Thanks to our study, we have
now come closer to the optimal choice using the multi-objective function emphasizing
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the time. A promising direction is to increase the number of objectives and their rank-
ing/determination of weight coefficients.

Although input data adequately represent the real situation, we want to use optimiza-
tion models on the real data as well.
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19. Sadłowska-Wrzesińska, J.; Mościcka-Teske, A. Relations between stress potential of work features and occupational commitment

of transport workers-in the context of optimization of logistics strategy of a company. IFAC Pap. 2016, 49, 1761–1766. [CrossRef]
20. Huang, M.; Guo, Q.; Liu, J.; Huang, X. Mixed model assembly line scheduling approach to order picking problem in online

supermarkets. Sustainability 2018, 10, 3931. [CrossRef]
21. Sanders, A.; Elangeswaran, C.; Wulfsberg, J. Industry 4.0 implies lean manufacturing: Research activities in industry 4.0 function

as enablers for lean manufacturing. J. Ind. Eng. Manag. 2016, 9, 811–833. [CrossRef]

http://doi.org/10.1016/j.ejor.2006.07.009
http://doi.org/10.1016/j.eswa.2010.08.058
http://doi.org/10.1016/j.cirp.2020.04.011
http://doi.org/10.1037/1076-8998.4.2.108
http://www.ncbi.nlm.nih.gov/pubmed/10212864
http://doi.org/10.1016/j.ergon.2004.07.005
http://doi.org/10.1016/j.cie.2016.01.020
http://doi.org/10.1007/s10926-012-9375-z
http://doi.org/10.1111/ner.12018
http://doi.org/10.1002/ajim.20232
http://www.ncbi.nlm.nih.gov/pubmed/16299708
http://doi.org/10.1016/j.apergo.2017.04.016
http://doi.org/10.1002/art.34347
http://doi.org/10.1186/1471-2431-13-14
http://www.ncbi.nlm.nih.gov/pubmed/23351394
http://doi.org/10.1016/S0140-6736(11)60610-7
http://doi.org/10.1016/j.apergo.2017.09.003
http://www.ncbi.nlm.nih.gov/pubmed/29122201
http://doi.org/10.3233/WOR-203107
http://doi.org/10.1016/j.ifacol.2016.07.837
http://doi.org/10.3390/su10113931
http://doi.org/10.3926/jiem.1940


Appl. Sci. 2021, 11, 4179 26 of 27

22. Mrugalska, B. Lean and Ergonomics Competencies: Knowledge and Applications. In Human Systems Engineering and Design II;
Ahram, T., Karwowski, W., Pickl, S., Taiar, R., Eds.; Springer: Cham, Switzerland, 2020.

23. Grosse, E.H.; Glock, C.H.; Jaber, M.J.; Neumann, P.W. Incorporating human factors in order picking planning models: Framework
and research opportunities. Int. J. Prod. Res. 2015, 53, 695–717. [CrossRef]
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